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Abstract. Asymptotic properties of the parametric bootstrap procedure for
maximum pseudolikelihood estimators and hypothesis tests are studied in the
general framework of associated populations. The technique is applied to the
analysis of toxicological experiments which, based on pseudolikelihood infer-
ence for clustered binary data, fits into this framework. It is shown that the
bootstrap approximation can be used as an interesting alternative to the clas-
sical asymptotic distribution of estimators and test statistics. Finite sample
simulations for clustered binary data models confirm the asymptotic theory
and indicate some substantial improvements.
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1. Introduction

In this paper the parametric bootstrap technique is studied for hypothesis
tests based on clustered binary data. This type of data arises e.g. from develop-
mental toxicity studies. Different types of models (marginal, conditional, random
effects models) are available and estimation methods range from full likelihood
to methods based on quasi-likelihood, generalized estimating equations or pseu-
dolikelihood (see e.g. Pendergast et al. (1996)). We focus attention on the latter
method for conditionally specified models.

Recently, Molenberghs and Ryan (1999) proposed a conditional model for mul-
tivariate clustered binary outcomes, based on the multivariate exponential family
model as proposed by Cox (1972). The model benefits from the elegance and sim-
plicity of exponential family theory. It allows for flexible response relationships
and combines a likelihood basis with numerical stability. A main problem how-
ever, particularly with large clusters, is the evaluation of the normalizing constant.
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Geys et al. (1997, 1999) propose the use of a so-called pseudolikelihood for cor-
related outcomes. The principal idea is to replace the joint density by a product
of conditional densities that do not necessarily multiply to the joint distribution.
The advantage of this particular type of misspecification is that the normalizing
constant cancels. Pseudolikelihood estimation is widely applicable, see e.g. Besag
(1975), Arnold and Strauss (1991), Cressie (1991).

Geys et al. (1997, 1999) show that the use of pseudolikelihood estimators
results in moderate efficiency loss. They also propose likelihood ratio tests in the
pseudolikelihood framework. As a consequence of the likelihood misspecification,
the asymptotic distribution of the pseudolikelihood ratio test statistic is a weighted
sum of independent x? variables. The weights are unknown eigenvalues and have
to be estimated. The estimators can be calculated under the null hypothesis
but also under the alternative hypothesis. All this complicates the computation
of critical points and p-values. In this paper it is shown theoretically that the
parametric bootstrap leads to a consistent estimator for the distribution of the
pseudolikelihood ratio (PLR) test statistic. The bootstrap approach does not
need any additional estimation of unknown eigenvalues. It automatically corrects
for the misspecification of the joint distribution. We focus on the parametric
bootstrap since it easily allows to generate bootstrap samples reflecting the data
mechanism under any null hypothesis (in contrast with a nonparametric bootstrap
method).

A small simulation study illustrates the benefit of using the parametric boot-
strap for testing purposes in the area of clustered binary data from toxicity studies.
There are only a few papers in which bootstrap techniques are used for clustered
binary data. They mainly use the nonparametric bootstrap method to estimate
the variance of parameter estimators (Lockhart et al. (1992), Carr and Portier
(1993)). Recently, Frangos and Schucany (1995) proposed a particular parametric
bootstrap procedure to construct improved confidence intervals in certain toxico-
logical experiments.

This paper is organized as follows. Section 2 summarizes the basic asymptotic
properties of the maximum pseudolikelihood estimators and tests. These results
are reconsidered for the bootstrapped pseudolikelihood estimators in Sections 3 (es-
timation) and 4 (hypothesis tests). Next to the PLR test we also include results for
the robust Wald and the robust score test. The theoretical results in these sections
are presented in the general framework of multiparameter pseudolikelihood when
sampling from a finite number of associated populations. According to Bradley
and Gart (1962), associated populations are distinct but related, in the sense that
they may have some parameters in common. As indicated in Section 5, the analy-
sis of clustered binary data from toxicity studies fits into this framework. This last
section briefly describes the conditional model of Molenberghs and Ryan (1999)
and the pseudolikelihood approach of Geys et al. (1997, 1999) and presents the
results of a finite sample simulation study. It illustrates the estimation problem
of the unknown eigenvalues and shows that the x? type PLR test, based on these
estimators, has severe problems in achieving the nominal level. The bootstrap
PLR test, using bootstrap critical points, seems to nicely correct this towards the
nominal size. Similar problems can be remedied by the bootstrap for the Wald
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and, less pronounced, for the score test.
2. Pseudolikelihood estimation and inference

The basic asymptotic properties of maximum pseudolikelihood estimators and
hypothesis tests, when sampling from a finite number of associated populations,
combine classical maximum likelihood theory as presented in e.g. Serfling (1980)
and Lehmann (1983), the extension to associated populations (Bradley and Gart
(1962)) and pseudolikelihood estimation and testing (Geys et al. (1997, 1999)).
The proofs of the theorems stated in this section are omitted.

Let f;(y,0) with y = (y1,...,Ym;) € R; (i = 1,...,p) denote p joint den-
sity or discrete probability functions. The support R; does not depend on the
unknown parameter vector § = (6,...,0,)T. Let Yi1,...,Y;,, be independent
random variables with common joint density function f;(y,#). Define A; as the
set of all 2™ — 1 vectors a of length m;, consisting solely of zeros and ones, with
each vector having at least one non-zero entry. Denote by Yig-a) the subvector of
Y;; corresponding to the non-zero components of a with associated joint density

function fi(a) (¥(9), 8). The log of the pseudolikelihood is defined as

Y4 ni
logPL.(6) =3 " 6. > log £V (4, )

i=1 acA; j=1

with {6, | @ € A;} a set of 2™ — 1 real numbers, not all zero. Classical maximum
likelihood corresponds to §, = 1 for @ = (1,...,1) and zero otherwise. Another
typical choice is 8;,, = m,; and 8,, = —1for £ =1,...,m; where 1,,, is a vector of
ones and ay consists of ones everywhere, except for the ¢-th entry. This particular
choice is referred to as the “full conditional” log pseudolikelihood function. It has
the effect of replacing the joint density function by a product of m; univariate
conditional density functions, thus avoiding the incorporation of a possibly very
complicated normalizing constant.

The number p of (possibly) different populations is considered as fixed whereas
the numbers n; of observations from the distinct populations become large as n =
>°F_, n; tends to infinity, according to n;/n — A; where SP A =1withall \; >
0. Before stating the main asymptotic properties of the maximum pseudolikelihood
estimators, the Wald, the score and the pseudolikelihood ratio test, we first list
the required regularity conditions on the density functions fi(a)(y(“), 8) for all a in
A ={a€ A;|6,#0}and eachi=1,...,p. Let u denote the Lebesgue measure

for continuous Yi(ja) and the counting measure if Yi(ja) is discrete. For @ in an open
set ) containing the true value g,

(R1) The densities fi(“) (y(*), 8) are distinct for different values of the parameter
0: the supports Rl(a) of fi(a) (y(*),8) do not depend on 6.

(R2) Second order partial derivatives of fi(a) (y(¥),8) w.r.t. 0 exist and may be
passed under the integral sign in [ fi(a) (@, 0)du(y).

(R3) For each k,£=1,...,r, E9|£l-‘—’%‘1@l < oo and the r X r matrix
Js5(0o) as defined in Theorem 2.1 is positive definite.



518 MARC AERTS AND GERDA CLAESKENS

(R4) Third order partial derivatives of fl-(a) (y(9,8) w.rt. § exist and there
exist functions K; (y(®) and K5 (y(®, y(a)) such that, for each a,a’ in A? and each
k.f{m=1,...,r,

83 log £V (y), 9)
004,00,00,,

8%log £V (¥, 0) dlog £ (3@, )
00,00, 00,

S Kl(y(a))’

< Ky (y @, y@))

and Ey[Ky(Y\")] and Ep[Ka(Y ", Yi(lal))] are, as functions of 6, uniformly
bounded on §2.

Theorem 2.1 guarantees the existence of at least one solution to the pseudo-
likelihood equations

0 logPL,(8) =0, ¢=1,...,r

(2.1) %0

which is strongly consistent and asymptotically normal.

THEOREM 2.1. Assume conditions (R1)-(R4). Then there exist solutions
én = (énl,.. . ,ém)T to the pseudolikelihood equations (2.1) such that, as n — oo
andn;/n— X; foralli=1,...,p,
i) 6, is strongly consistent for 6p.
ii) nl/ 2(én —6) is asymptotically normal with mean vector 0 and covariance
matriz

s(00) = (J5(60)) "1 K5(60)(Js(80))~*
with
(a) (yr(a)
(J5(6))ke = ZA D Eo[ 5210%5‘;)“9(21 ,0)

=1 acAy?

and

(Ks(0))ke = Z)\i Z Z 8264 Fo

i=1 a€A? a’'€A?

dlog f (¥, 6) dlog £ (v, 0)
o0, 00,

Next, consider the following hypothesis
Hy:0€0©¢ versus H;,:0€0\0

where ©g is a (r — t) dimensional subspace of the parameter space ® C R” such

that § = (0y,...,6,)T belongs to ©p if and only if §; = --- =8, =0,1 <t < 7.
More general situations, in which Hy is of the form Hy : hi(0) = --- = hy(0) =0
for some smooth real-valued functions hq,...,h:, can be put into this form by a

reparametrization.



BOOTSTRAPPING PSEUDOLIKELIHOOD MODELS 519

In maximum likelihood theory, the Wald, likelihood ratio and score tests are
commonly used significance tests. Under appropriate regularity conditions, they
are asymptotically equivalent in distribution, both under the null hypothesis and
under local alternatives converging sufficiently fast (see e.g. Serfling (1980)). Wald
tests however are known not to be invariant to equivalent reparameterizations of
nonlinear restrictions (see e.g. Phillips and Park (1988)). Several authors studied
and compared the three test procedures in more detail (see e.g. Chandra and
Joshi (1983), Chandra and Mukerjee (1984, 1985), Mukerjee (1990a, 1990b) and
Cordeiro et al. (1994)). In the context of clustered binary data, several papers
directly or indirectly compared these and other test procedures (see e.g. Chapter 6
in Morgan (1992)). For pseudolikelihood, Geys et al. (1999) propose, similar to
the likelihood ratio test, a pseudolikelihood ratio (PLR) test.

The next theorem gives the asymptotic null distributions of the PLR, the
robust Wald and the robust score test statistics. Let CT = [I; 0¢,—_¢] with I the
(t x t) identity matrix and O¢,_; the zero matrix of dimension ¢ x (r —t). For a
7 X T matrix A, define the partitioning

A= (ALL ALR)
Agrr Agr

where A;;, = CTAC and for any r x 1 vector v, let vy (resp. vg) denote the
subvector of the first ¢ (resp. last r — t) elements.

THEOREM 2.2. Assume conditions (R1)—(R4). Under the null hypothesis
Hy, asn — o0 and n;/n — X; for alli=1,...,p, we have
i) Wp =n(0,1)T(S6(6n) ) *0nr converges in distribution to a x; random
variable where . R R .
5(0) = (J5(6)) ' K5(8)(Js(6) ™"
with

o2 log f(a) (Y(G) 0)

(J5(0))ke = —"Z Z ba Z agkao;] :

i=1 a€A? Jj=1

and

dlog f(“) (Y(“) 0) dlog f*) (v, 0)

(Ks(0))ke = Z > s 6(1’2 4 - 56,

i=1 a€A7 a’€A]

i) Su = nH(BDT(JF5(83) )L (Es(63) L) 1 (Js(02) L Ha(03)L con-
verges in distribution to a x2 random variable where 0; is the mazimum pseu-
dolikelihood estimator over ©qg and

Hal®) = 230 3 6.3 Volog £ (¥ 6)

i=1 a€A; i=1

with Vg log fi(a)(y(a),f)) the r x 1 vector of partial derivatives of log fi(a) (y9,6)
w.r.t 6.
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iii) —2logA, = 2(log PL,(6,) — log PL,(62)) converges in distribution to
EZ=1 ar X where 8,, is the mazimum pseudolikelihood estimator over ©, X,,...,
X, are independent xf random variables and ay > --- > oy are the eigenvalues of

(Zs(00)LL)((Js(B0)~ )LL)

For the special case that §, = 1 for @ = (1,...,1) and zero otherwise (classi-
cal maximum likelihood theory), the results of Theorems 2.1 and 2.2 simplify to
the well-known results. Indeed, for this special case, Js(6p) = Ks(6) such that
5(00) = (J5(6)) . Hence all eigenvalues oy are equal to 1 and the limiting dis-
tribution of —2log A,, reduces to a x? distribution. Since for this special case the
asymptotic null distribution does not depend on unknown parameters, the boot-
strap test is expected to have a smaller asymptotic order of error in level. Beran
(1988) shows that the bootstrap likelihood ratio test automatically accomplishes
the Bartlett adjustment.

For all other choices, the asymptotic null distribution of the pseudolikelihood
ratio test is rather complex (as a consequence of the misspecification of the joint
distribution f;(y,8)). The bootstrap can play an important role here. As shown
in Section 4, the bootstrap estimator is a consistent estimator for the unknown
distribution of —21log A,,. No eigenvalues aj have to be estimated.

3. A parametric bootstrap procedure

In this section we discuss the generation of the bootstrap samples and show
how they can be used to estimate consistently the distribution of the maximum
pseudolikelihood estimators 0,. As before, let Y;1, ..., Y;n, be a sample from the i-
th population. Based on these p samples, the maximum pseudolikelihood estimator
6,, is computed. For each i = 1,...,p, define the bootstrap sample Yi,..., Y, as
n; independent random variables with common density function f;(y, 6,). Denote
9; the maximum pseudolikelihood estimator, which maximizes

P ni
(3.1) logPLL(8) = > 3" 6.3 log £9(4;\,0)

i=1acA? j=1

with y;-(a) defined as before but now based on the bootstrap sample.
We need the following extra regularity conditions on the density functions
fi(a) (y(9),0), for all @ in A2 and eachi=1,...,p.
(R5) For each k,£=1,...,7 and each a,d’ in A,

gy (L8 LO0R0) g, (Vs RU00 los 7 (T, 6)
89,..,604 ' aek 69(

. . 2 (a) (y(a) .
are continuous as functions of 6 at 6 = 6y and Eg{(%l’—a))z} is, as func-

tion of 6, uniformly bounded on 2.
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(R6) There exist a function H(®)(y(®) and a § > 0 such that

0 a
‘(ao log f{* (@, 9))

and Eg[H@ (Y )] is, as function of §, uniformly bounded on Q.

In what follows, P*, E*, Var* stand for the bootstrap probability, expectation
and variance, conditionally on Y;1,...,Yin,, ¢ = 1,...,p. The statements in the
proofs hold, conditionally on Y;1,...,Y;s,, ¢ = 1,...,p, for almost all sample paths

(Ya,Yio,...),i=1,...,p.

< HO ()

THEOREM 3.1. Assume conditions (R1)—(R6). Then, for almost all sample
paths (Y;1,Y52,...), i = 1,...,p, there exist solutions é* of the pseudolikelihood
equations (3.1) such that, as n — oo and n;/n — A; for all i = 1,...,p,

i) 0* converges in bootstrap probabzlzty to B

ii) supeg- [P {g(n’ /205~ 02)) < t} — P{g(n'/2(6n — 60)) < t}| = (1)
with g : R” — R” a continuous function such that the distribution function of
9(Z) with Z a r'-dimensional normal distributed random variable, is continuous.

Proor. Consider the expansion

(3.2) H}(8) = Hy(Bn) + > Hiy(62) (0 — One)
=1
+ P Z erm (02 - ne)(9 - énm)
Z m=1
where

> 6 i Blogf(“)( (@), 9)

a€A? j=1

H(0) = Z Z 8a

Hi(0) =

:3|'—‘
-

P
i=
P

i H2 log f(a) (Y;-(a), 9)

i=1 a€A? j=1 aekaoe
and
83 log f(a) (Y;(a), 0)
Hiom(0) = 3 a;g ba ; 010,90

and with 8, an interior point of the line segment joining § and 0,. The strong
consistency of 6, (Theorem 2.1), (R2) and (R5) imply that as n — oo, E*(H(6,)),
Var*(H} (6,)), E*(Hz,(8,)) + (J5(80))ke and Var® (er(t? )) all converge to zero
from which it immediately follows that both H} (6,) and Hp,(8,) + (J5(80))ke
converge in bootstrap probability to zero as n — oo. Condition (R4) is sufficient
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to show that H l:em(én) is bounded in bootstrap probability. To complete the proof
of (i), proceed as in Chanda (1954).
For u € R" an arbitrary vector of unit norm, define for j = 1,...,n;; i =

1,...,p

Zy =T ST 8,V log £ (Y, 6,)
a€A?

~E* Z 6aVglog fi(a) ()/i;'(a)’én)
acAyf

Zrits-++sZnin, are (conditionally) independent random variables with mean zero.

With 6 > 0 from condition (R6), we have that, for n large enough

(E*(Iz:n'1|2+6))l/(2+6) < 277,:1/22 Z |6al{E*(H(a)()/i’;(a)))}l/@'{’&)
k=1a€A?

which is O(n; Y %). Furthermore, using (R5), as n — 00,

niE*(Z;:?l) - Z Z 6a6a'E00

a€A a’ €A

dlog £ (Y, 80) dlog £ (V™), 6,)
o0y, 90, '

By an application of the Lyapunov form of the Central Limit Theorem for trian-
gular arrays for each i = 1,...,p, we get that

(3.3) nY2H? (6,) converges weakly to N'(0, K5(6o))

where H}, () is the 1 x r vector with elements H}(6).
Evaluating (3.2) at 6}, gives

(3-4) H3(0n) = (J50n) + G*(8,,65)) (65, — 6r)

where J7(9) is the 7 x r matrix with elements —H;,(8) and G*(6*,6) the r x r
matrix with elements Y, _, (0m — 03,)H},,,.(6)/2 (8 is some interior point of the
line segment joining # and 6*). From the proof of (i) it follows that,

(3.5) J}(8,) — Js(8) in bootstrap probability
and
(3.6) G*(6%,8,) — 0 in bootstrap probability.

J51(8o) exists by condition (R3) such that n!/ 2(6x — 6,) converges weakly to
N(0,X5(6)). An application of well-known properties of transformed sequences
and Pélya’s theorem (see e.g. Theorems 1.7 and 1.5.3 in Serfling (1980)) completes
the proof. O
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Theorem 3.1 can be used to construct approximate confidence regions for 6p.
Indeed, choosing e.g. g(u1,...,ur) = |ull = (1=, u2)!/2, Theorem 3.1 implies
that the confidence region

RS = {0 € R : [0, - 0] <n /¢,
where c}, , denotes the (1 —a)-th quantile of the (simulated) bootstrap approxima-
tion, has a coverage probability converging to 1 — a. Also “studentized” versions
of Theorem 3.1 can be formulated and used to construct confidence regions (per-
centile t-regions). For the coverage probability of such regions, one would expect
a convergence rate at least as high as that of the confidence region based on the
normal approximation.

4. Bootstrap pseudolikelihood tests

Recall the testing problem Hy : § € ©p versus H; : § € ©\Og where
6 = (61,...,6,) belongs to O if and only if ; = --- = 6; = 0. Critical points
and p-values are calculated under the null hypothesis Ho. Hence, the bootstrap
samples should reflect the data generating mechanism under Ho. Therefore, the
sampling mechanism used in the previous section is modified as follows: define

P ,K; to be n; independent random variables according to the density func-

tion f;(y, n) where, as in Theorem 2.2, 0° is the maximum pseudolikelihood
estimator over ©y. Based on this bootstrap sample, 0* denotes the maximum
pseudolikelihood estimator, %, denotes the first ¢ components of this maximum
pseudolikelihood estimator and é,*f represents the maximum pseudolikelihood es-
timator over ©g. Further, denote Wy, S} and —2log A}, the robust Wald, robust
score and the pseudolikelihood ratio test statistic based on the bootstrap sample:
Wy = n(03,)T(Z3(03) o) 205, Sn = nHA (O T (T3 (02°)” Neo(Z5(05°)ee) " -
(J3(0r°)~ l)LLH* (02°) and —2log A = (logPL* (62) — log PL%(0%°)). Here
£3(9), J; () and K;(0) are equal to 35(0), Js(8) and K;(0) respectively, but
with the original sample {Y;;} replaced by the bootstrap sample {Y;}}.

The next theorem states that the bootstrap procedure is con31stent in esti-
mating the null distribution of W, S, and —2log A,. Hereafter Pp, will denote
the probability under the null hypothesis Hy.

THEOREM 4.1. Assume conditions (R1)—(R6). Then, for almost all sample
paths (Yi1,Yie,...), i = 1,...,p, we have, as n — oo and n;/n — A; for all
i1=1,...,p,

i) supye |P*{W; <t} — P, {W, < t}| = o(1),
i1) supyeg |P*{S;, < t} — Pao{Sa < t}] = o(1),
iii) sup,cg |P*{~2log A}, <t} — Py, {—2log A, < t}| = o(1).

PrROOF. From the proof of Theorem 3.1 we have that, under the null hy-
pothesis Ho, n1/2(8} — 82) converges weakly to (0, Xs(6)), where now the first
t elements of the true parameter p equal 0. A one-term expansion shows that
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(3 (B))ke = (I3 (65))ke + By 167, — 63 and (K3 (81))ke = (K (B2)we + RillO —
82| Using (R4) it is easy to see that

E*(|Ry) < rz 37 16 E (B (Y,

i=1 a€A]
* n; * * *(a
E*(|R%,)) <2r2 SN (ballbw | BF (Y, Y )).
aEA°a€A°

Similar arguments as in the proof of Theorem 3.1 lead to the asymptotic x? dis-
tribution of W.

The proof of (ii) and (iii) is based on the same arguments as the proof of
Theorem 3 in Rotnitzky and Jewell (1990). Assume Hp holds. Then, both 8%
and 0*° are consistent estimators which have asymptotically a normal distribution
(by Theorem 3.1). Using the notation introduced in the proof of Theorem 3.1, an
expansion of log PL7 (-) leads to,

(4.1)  logPL}(6:) — log PLX(8°)
=n(6;, — 67)TH:(63) - g(é’* —02)TI5(67)(6;, - 67) + 0" (1)

Here and in the remainder of the proof, 0*(a,) denotes a sequence of random
variables of appropriate dimension tending to zero faster than a, in bootstrap
probability.

From (3.4) and (3.6) it follows that
(4.2) H:(07) = T3 (0705, - 9°) +o*(n71/2).
Inserting (4.2) in (4.1) and using (3.5), we get
(4.3)  2(log PL}(6}) — log PL%(82)) = n(0 — 6°)T J5(60) (6% — 02) + 0*(1).
Identity (3.4) and results (3.5) and (3.6), applied on 6X° and (};, lead to
(4.4) nr(62) = Trr(00)(05% — 05 ) + 0" (n™/%)
and (4.2) reformulated for the last r — ¢ elements becomes
(45)  Hnp(62) = Tre(60)(Gnr — B31) + JrR(00) (B35 — O3R) + 0% (n7V/2).

The analogue of (4.3) for the estimator 83° is

(4.6) 2(log PL2(82°) — log PLX(6°))
= n(0r% — 038)" JrR(00) (B3% — 635) + 0*(1).
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Subtracting (4.6) from (4.3), isolating (025 — ° ») from expressions (4.4) and (4.5)
and inserting this, leads to '

2(log PL},(8;) — log L (63°)) = n(frp, — 05.0) "1 (60) (Brp = Orip) + 0" (V).

Theorem 3.1 and classical properties of quadratic forms yield the result (iii).
From (4.2) we obtain that

(4.7) On — 050 = (J3(65) LMo (67)

+(J3(63) 7 LRHR(67) + 0% (n7H2).
Theorem 3.1 implies that /n(X} (é;))zy 2 @z, — 62,) converges in distribution
to a t-variate standard normal random variable. The result for the robust score
statistic now follows by replacing 62 in Hx(62), Jx(02) and £};(6;) by its v/n
consistent bootstrap estimator 6;°. O

In Section 5 a limited simulation study illustrates the finite sample behaviour
of the bootstrap tests for clustered binary data.

5. Simulation study and final remarks

Developmental toxicity experiments are designed to assess the potential ad-
verse effects of drugs or other exposures on developing fetuses of pregnant rodents
(dams). A typical study includes a control group and some dosed groups. Expo-
sure usually occurs early in gestation, the dams are sacrificed prior to term and
the uterine contents examined for malformations. Denote m,, a = 1,...,a the
possible litter sizes and dg, 8 = 1,...,b the possible dose levels. This leads to
p = a x b different “associated” populations. For simplicity, we use a single index
i =1,...,p to enumerate these different populations. A litter (cluster) j from
population 4 has a specific size m; and was given a certain dose d;. The number of
population i litters is n; and the total number of litters is n. Next to the malforma-
tion probability, clustered binary data models all include one or more parameters
to describe the association between the outcomes Y;; = (Yij1,. .. , Yijm,) of litter j
in population i, where Y; ;i indicates whether the k-th fetus in litter j is abnormal.

The conditional model of Molenberghs and Ryan (1999) (abbreviated as MR)
assumes Yjjx = 1 when the k-th fetus in litter j is abnormal and —1 otherwise.
This coding provides a parametrisation which more naturally leads to desirable
properties when the role of success and failure is reversed and when cluster size
is variable (Cox and Wermuth (1994)). Let Yig-l) denote the total number of
malformed fetuses in litter j. The MR probability function of Y;; is

F(yij3 6, 9) = exp{éiy§}’ - d’z'yz(]l')(mi - yﬁ’) - A},

with A a normalizing constant and (&;,%;)7 = X0 where X; is a design matrix
based on dose d; associated with cluster j and @ the coefficient vector. The pa-
rameter & can be interpreted as a main effect and 1; as a parameter measuring
the intra-litter association.
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Instead of the joint probability f(y:;;&,%:), Geys et al. (1997, 1999) (abbre-
viated as GMR) consider the following product of the m; conditional probabilities:

m; my

ijh 1 =Yij
H FWije | yije, € # k; &, ¥i) = H p!i/jskpijfy ’
k=1 k=1

where p; ;s is the conditional probability of an additional success, i.e.

P(yijr =1| yfjl ) _ 1 successes & m; — yfjl ) failures)

__explé — i(mi — 297 + 1))
1+ explé — vi(mi — 25 + 1)]

and p;;; the conditional probability of an additional failure, i.e.

P(yijr = -1 yg) successes & m; — yg;) — 1 failures)

_exp[~& +hi(m; - 2.%(;) - 1)]
1+ exp[—&; + ¥;(m; — 2?/1(]1-) - 1)]

The contribution of the j-th cluster (j = 1,...,n;) to the log pseudolikelihood is
then given by yz(; ) log(pijs) + (m; — yz(Jl )) log(pijz)-

We performed a limited simulation study in order to illustrate the finite sample
behaviour of the parametric bootstrap procedure. We used one control group (dose
0) and three active groups (doses 0.25, 0.5 and 1). We experimented with an equal
number of NC = 5, 15 or 30 clusters assigned to each dose group. The number
m; of fetuses per litter is assumed to follow a local linear smoothed version of the
relative frequency distribution given in Table 1 of Kupper et al. (1986), which is
considered representative of that encountered in actual experimental situations.
Realistic parameter values 8 were used. We consider two cases. In case 1 data are
generated and fitted with

1 d; 0
Xi:<0 0 1) and 6T = (610 611 6)

and the hypothesis of interest is Hyp : 817 = 0 (no dose effect on malformation
probability). In case 2 we consider

Xi=<(1) té, (1) i) and 7 =(010 611 620 62),
and Hp : 611 = 021 = 0 (constant malformation probability and constant intra-
litter association).

The pseudolikelihood ratio test can be modified such that it has an ap-
proximate x? distribution. Similarly to Geys et al. (1999), we used the modi-
fied test —2log A, /& with & the mean of the eigenvalues oy (see also Rotnitzky
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Table 1. GMR model. Case 1 with 819 = —2.5. Simulated type I errors (as %),
significance level 0.05.

Bootstrap tests x? tests

60 NC PLR W(H;) W(Ho) S PLR(H) W(H;) PLR(Ho) W(Ho) S

0.1 5 6.0 4.2 5.1 4.8 13.6* 9.6* 5.4 11.1*  3.5*
30 49 5.1 4.7 4.9 6.6 5.9 5.2 5.5 4.9

025 15 5.6 4.0 5.9 4.7 18.5* 14.0* 5.8 12.7*  3.0*
30 6.5 4.9 6.3 6.5* 11.5* 9.3* 7.5% 10.1* 6.6

*denotes the proportion of significant tests (at 5%) which differs significantly from 5%.

Table 2. GMR model. Case 1 with 819 = —2.5, 629 = 0.1. Simulated rejection proba-
bilities (as %), significance level 0.05. Size adjusted values between brackets.

Bootstrap tests x2 tests

017, NC PLR W(H;) W(Ho) S PLR(H;) W(H,) PLR(Ho) W(Hy) S

05 5 84 7.8 5.3 7.5 15.6 13.1 7.0 10.2 7.2
(79) (85 (52) (49  (5.8) (7.8) (6.8) (4.0)  (8.2)

1.0 229 198 111 185 16.2 28.7 19.7 209  19.6
(21.1) (21.9) (11.1) (19.0) (125) (18.9)  (18.9) (8.8) (22.4)

05 30 265 27.6 201 252 29.8 30.0 25.2 233 26.1
(26.4) (27.1) (21.5) (25.2) (27.4)  (28.6)  (24.5)  (21.2) (26.3)

1.0 88.5 883 828 858 89.4 89.3 86.0 85.0  86.5

(88.6) (87.7) (84.4) (85.9) (87.6)  (88.5)  (85.6)  (83.6) (86.7)

and Jewell (1990)). In analogy with the Wald test where the covariance matrix
S5(80) = (J5(80)) "2 K5(60)(Js(60)) " can be estimated under Hy (using 35(62))
or under H; (using 35(f,)), the eigenvalues aj can be estimated under Hy or
under H;. This leads to five classical x? tests: W(Hy), W(H;), S, PLR(H)) and
PLR(H,). There are four bootstrap analogues. All tests have similar first order
asymptotic behaviour under Hj.

For each situation, 1000 datasets were generated and on each dataset the
p-values of the different test statistics were computed based on their limiting x?2
distribution and on the simulated bootstrap distribution, using 1000 bootstrap
samples.

Tables 1 and 2 show results for case 1 using the GMR approach. A global in-
spection of Table 1 clearly shows the superiority of the bootstrap tests in attaining
the 5% level. Many x? tests show inflated type I errors which are nicely corrected
by their corresponding bootstrap alternatives. Table 2 shows observed and size
adjusted power estimates for two alternative values of 6;;. Apparently, the boot-
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Table 3. GMR model. Case 2 with 810 = —2.5. Simulated type I errors (as %),
significance level 0.05.

Bootstrap tests x? tests

620 NC PLR W(H;) W(Ho) S PLR(H;) W(H;) PLR(Ho) W(Ho) S

0.1 5 6.3 4.8 5.2 4.9 8.1* 12.7* 2.3* 15.9* 1.3*
15 3.1* 5.3 5.1 5.9 2.8* 11.7* 0.7* 10.1* 4.9
30 5.2 3.5* 4.7 5.8 1.3* 9.6 0.4* 7.5 54

025 15 6.1 5.3 6.2 3.7 24.4* 28.6* 8.2 17.5*  0.5*
30 5.9 4.9 4.2 6.2 13.1* 19.5* 3.1* 11.5* 2.1*

*denotes the proportion of significant tests (at 5%) which differs significantly from 5%.

Table 4. MR model. Case 1 with 819 = —2.5. Simulated type I errors (as %), signifi-
cance level 0.05.

Bootstrap tests x?2 tests

60 NC LR W(H;) W(Hy) S LR W(H) W(Hg) S

0.1 5 5.5 5.1 4.0 45 52 10.1* 10.2* 3.9
15 5.6 5.8 5.4 54 6.1 6.9% 7.3* 53
30 38 43 4.2 42 39 4.6 4.8 4.5
025 15 6.1 6.6 7.8% 3.3 42 110" 11.4* 43
30 5.6 5.1 4.5 48 5.8 9.2* 8.3 46

*denotes the proportion of significant tests which differs signifi-
cantly from 5%.

strap tests have, compared with their classical counterparts, comparable power
characteristics. As a global conclusion, the bootstrap PLR and W(H;) and the
x2-score tests seem to be the best choices, whereas the x2-W(H,) and PLR(H,)
tests are the least favourable.

For case 2, Table 3 exhibits the same patterns, but even more pronounced.
Also the x2-PLR(H,) and score tests have size problems while the other x? tests
take unacceptably high type I errors, especially in the case where sample informa-
tion is lowest: a high intra-litter association #33 = 0.25 and only 15 clusters per
dose level. We also compared the power estimates and found similar conclusions
as in case 1. .

Finally, for case 1, Table 4 shows some results for the full likelihood MR model.
Recall that, since the joint distribution is correctly specified, no eigenvalues have
to be estimated and hence there is only one likelihood ratio test. All test statistics
except the robust x? Wald tests, have very comparable simulated type I errors. By
using the bootstrap, the poor behaviour of the Wald tests is nicely corrected. We
also noticed no substantial differences in power for the corresponding bootstrap
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and x? tests.

The main conclusion of this limited simulation study is that the bootstrap
tests automatically correct for the likelihood misspecification and they seem to be
superior to their classical counterparts. In fact, some improvements in size are
quite spectacular. Comparing the x? tests, the robust score test is clearly the
preferable one.

Simulations were restricted here to the case of clustered univariate binary
data. It would be interesting to see to which extent the x2 type PLR test fails
in reaching the prescribed significance level and how the parametric bootstrap
succeeds in correcting this for the multivariate case of several malformation in-
dicators. Another interesting problem in this general setting is how to define a
nonparametric bootstrap method reflecting a specific null hypothesis. One might
expect such a method to be more robust to distributional assumptions.
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