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Abstract. Sensitivity of a posterior quantity p(f, P) to the choice of the
sampling distribution f and prior P is considered. Sensitivity is measured
by the range of p(f, P) when f and P vary in nonparametric classes I/ and
I'F respectively. Direct and iterative methods are described which obtain the
range of p(f, P) over f € 'Y when prior P is fixed, and also the overall range
over f € I'Y and P € T¥. When multiple i.i.d. observations Xi,..., X are
observed from f, the posterior quantity p(f, P) is not a ratio-linear function
of f. A method of steepest descent is proposed to obtain the range of p(f, P).
Several examples illustrate applications of these methods.

Key words and phrases: Bayesian robustness, Gateaux derivative, model ro-
bustness, model selection, predictive distribution, prior robustness, steepest
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1. Introduction

Bayesian analysis requires specifications of two models; the sampling distri-
bution f(z | #) and the prior P(#). When considering the effect of one’s modeling
assumptions, perturbations of both f(z | 8) and P(#) should be taken into ac-
count. Robust Bayesian analysis has, so far, concentrated more on imprecisions
of the prior P(f). There are several reasons for this emphasis. See Pericchi and
Pérez (1994) for an exposition. In this article, we focus on sensitivity of Bayesian
analysis w.r.t. the sampling distribution and also joint perturbations of the prior
and the sampling distribution.

The literature on sampling model determination and robustness in Bayesian
analysis includes Smith (1983), Gelfand et al. (1992), Pericchi and Pérez (1994)
and others. These works explored the methods and effects of choosing a particular
sampling distribution from a finitely many available choices. However, in many
situations, these finitely many choices, or even the functional forms of the sampling
density are hard to determine. We focus on nonparametric classes of sampling
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distributions, as considered in Lavine (1991), Bayarri and Berger (1993), Ghosh
and Dey (1994), and Dey et al. (1997).

Formally, let © be the parameter space. We assume O is a connected subset
of ®. Let f(z | 6) denote the sampling density of an one-dimensional random
variable z and P(6) denote the prior distribution on 6. For observed data X from
fC18),let m(X | f,P) = [o f(X | 6)dP(f) be the marginal w.rt. f(X | )
and P(6). The posterior measare P(A | X, f,P) = WIA f(X | 6)dP(6)
is denoted by P(- | X, f, P). Similarly, n(-), n(- | X, f,n) respectively denote the
prior or posterior density functions (cdfs). We use p(X, f, P) (p(X, f,n)) to denote
a posterior quantity w.r.t. prior P () and sampling distribution f(X | ).

In the following, we present our posterior sensitivity analysis under the as-
sumption that the class of densities f(z | #) have a location structure, i.e.,
f(x | 6) = f(x— (08— 6) | o) (for a fixed y € ©) = f(z — 6) (where, w.lg.,
we assume fp = 0 and with abuse of notation). The methods that we describe,
however, are clearly applicable in wider generalities. We make this simplifying
assumption to keep our presentation clear and our notations simple.

We reflect our uncertainty about the functional form of the sampling density
by assuming that f(-) vary in a class I'Y. Through the location structure, this
generates I‘f; classes for f(z ] 6), T} = {f(z|6) = f(z —0),f e}

We should point out here that an alternative way to model the uncertainty
about the functional form of the sampling density f will be to treat f as an
infinite dimensional parameter and to put a prior on f. This latter approach will
impose a nonparametric Bayesian structure on the problem. We follow the former
route which retains the simplicity of the parametric Bayesian structure. The two
approaches differ in the sense that whereas the former is a robustness investigation,
the latter is more of a model elaboration or model extension.

We further consider sensitivity of posterior results to joint perturbations of
the sampling density and the prior. Here, in addition to f € I'f, we also model
the uncertainty about the prior choice by letting the prior P vary in a class I'?.
The robustness of a posterior quantity p(f, P) is measured by finding its range
over these classes.

Lavine (1991) also considered posterior sensitivity by varying the sampling
distribution f(X | @) and the prior P(f) simultaneously. He allowed P to vary in
a class T and for each fixed 6, f(X | ) is allowed to vary in a class I'*. This, for
example, may allow a single f(X | #) to have a normal functional form for § = 6,
and a Cauchy functional form for a different 8, say 8 = 5. In our model this is not
allowed, f cannot have two different functional forms for two different 6 values.

The important achievement of this article is that we consider multiple i.i.d.
observations Xi,..., Xy from the density f(z | ). Let X = (X1,...,X%) and
let the joint density be f(X | §) = f(X; | 0)--- f(Xk | ). If we assume that
each marginal f(X; | ) belongs to a nonparametric class, the resulting class
for the joint density f(X | 6) becomes very difficult to work with and has not
been extensively explored. One important exception is Bayarri and Berger (1993)
where the sampling density f(z | 6) is assumed to be of the form f,(z | ) =
w(z)vy(0)g(z | 8) and the weight function w(z) is allowed to vary. This structure
leads to marked simplicity in the analysis.
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In our sensitivity study, we do not assume any specific functional forms for the
sampling density except for the assumption that it has a location structure. We
first focus on sampling model robustness alone assuming the prior P(6) to be fixed.
Let p(X, f, P) be our posterior quantity of interest based on the sampling density
f(z | 0) and observed data X = (Xi,..., X;). Section 3 describes an iterative
method for finding inf ;crs p(X, f, P) and supsers (X, f, P). This method is a
modified steepest descent algorithm. It iterates between (i) finding the steepest
direction of descent and (ii) doing a line minimization along that direction. The
implementation of this algorithm is discussed in detail in three different examples.
Example 1 considers a setup where the range of p(X, f, P) can be obtained by a
known non-iterative method. We compare the performances of our steepest descent
method with the non-iterative method. Examples 2 and 3 consider Darwin’s data
with 15 observations. We consider model selection among the normal scale mixture
family by maximizing the marginal density of X (Example 2) or the “pseudo-
marginal density” of X (Example 3).

Finally, in Section 4, we consider joint variations of the prior P and the sam-
pling density f when multiple i.i.d. observations X = (Xq, ..., X%) are observed
from f. We briefly describe techniques for finding the range of the posterior quan-
tity p(X, f, P) over f € I'f and P e I'P.

2. Preliminaries and the case of one observation

So far, we have discussed about the sampling density class T/ and the prior

class I'" in general terms. Some specific choices for these classes are:
(i) 1 = {all distributions on R}.

(ii) T2 = {all distributions on R which are symmetric about a point M}.

(iii) I's = {all distribution on ® unimodal about M }

(iv) T'y = {all distribution on R symmetric and unimodal about M }

(v) I's = {all normal scale mixture distributions on ® with cdfs F9) =
Ji0.00) @(55H)dG ()}

(vi) I's = {e-contamination class} = {p = (1 — €)po + ;¢ € Q} where Q
equals I'; of any of the previous (i)—(v).

(vii) I'7 = {Density ratio class} = {density p(n) : L() < ap(n) < U (n) for
some a > 0}.

(viii) T's = {Distribution band} = {cdf F(n) : F1(n) < F(n) < Fy (m), F, and

Fy are two fixed cdfs}.
All these classes can be used as choices for I'P whereas I';;i=3,...,7 can be used
as choices for I'f. In Bayesian robustness literature, each of I'y,...,I's has been
used as a choice for prior class I'P. See Berger (1994) for an extensive review.
On the other hand, the literature on Bayesian robustness studies of the sampling
density is not very extensive. Lavine (1991) used the class T'; to investigate sen-
sitivity of likelihood in Bayesian analysis. In frequentist robustness, however, the
focus is specifically on the robustness of the sampling density. Many of the classes
from the above list have been used in such studies. Tukey (1960) introduced the
e-contamination class I's in a frequentist sensitivity study. Also see Huber (1981)
in this context. Basu and DasGupta (1995b) used I's, I'y, I's and T's as choices for
sampling density classes.
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We have listed above a collection of eight classes. One may ask that in a
specific robustness investigation, which classes from I'y, ... ,I's one should choose
as choices for I'f and TP. In general, this question has no definite answer. The
choices of T'f and TP depend on the extent of knowledge of the user about the
sampling density and the prior. The choice I'* = I'y implies that the user has no
knowledge about the prior. However, such a completely non-informative choice will
generally result in excessively wide ranges of posterior quantities. If symmetry and
unimodality of the prior or the likelihood are assured, one should use the classes
T, or 's. Among these two, I's only allows distributions which have heavier tails
than normal, whereas I'4 allows both heavier as well as lighter tails. The class I'g
models a different scenario. It suggests that the user is only 100(1 — )% sure that
po is the correct choice and 100e% uncertain. Each of the above eight classes thus
models a different degree of uncertainty. In a specific robustness investigation, the
user needs to choose a specific I'Y and a specific T'P based on the specific setup
and the user’s knowledge about the specific problem.

Remark. As Lavine (1991) pointed out, when we have only one observation
X, the selection of either of I's,...,I's as a choice of T'f may lead to trivial answers.
These classes do not bound densities away from oco. I's, T'y and I's allow f(6) to
go to 0o at § = M. These phenomena translate to T'¢ when any of I's,...,I's is
used as a choice of Q. In some cases, it may lead to trivial posterior extrema, for
example, the supremum of a posterior probability may equal 1 and so on.

It is easy to see that the listed classes I';, ¢ = 1,...,8 are convex. Moreover,
for T;, % =1,...,6, their extreme point classes ;, ¢ =1,...,6 are also known and
are listed below. Notice that each of the &; classes below is driven by one real
parameter.

(i) & = {all degenerate distributions on R}.

(i) & = {Py(0) = 0.5I{pr—v}(0) + 0.5I{a140} (6), v > 0}.

(iii) & = {U, : z € R}, where U, = Uniform[M,M + 2] if z > 0, =
Uniform[M — z, M] if z < 0 and Up(6) = I{ar}(6).

(iv) & = {U? : z > 0}, where U} = Uniform[M — z,M + z] if 2 > 0 and
U3(6) = Iany 6).

(v) & = {Fu(6) = B(2), 5> 0},

(vi) & ={p:p=(1—¢)po+eq;q € Q"} where Q" is the corresponding &;

of (i)~(v).
Suppose our posterior quantity of interest is p(X, f,P). We reflect our uncer-
tainties about the sampling density f(z | 8) and the P by assuming f € rf and
P € T'P. We assume I'? is one of the above T[; classes, i =1,...,8 and I'f is one
of T;, i =3,...,7. We measure the sensitivity of p(X, f, P) by its range, namely
p= SUPgferf,PerP p(X7 [ P) and P = inffel"f,PeFP p(Xv /s P)

In this section, we briefly outline the method for finding the range of o(X, f,P)
in the easy case when only one observation X is observed from the density f(z |
6). The discussion on one observation brings out the difficulty which arises in
the multiple observations case. The multiple observations case is discussed in
Sections 3 and 4.
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We focus on finding supsers pere p(X, f, P). The infimum case is similar.
Suppose further that p(X, f, P) is ratio-linear, ie., p(X, f,P) = {fg h(0)f(X —
0)dP(6)}/{ g f(X —0)dP(6)} for real-valued function h(f). Examples of such are
posterior mean, posterior probability of a fixed set C' and more.

If p(X, f,P) is ratio-linear, the linearization technique (see, for example,
Basu and DasGupta (1995a)) can often be used to reduce the evaluation
supsers perp P(X, f, P) to two simpler steps: (i) for a fixed A € R, find p(\) =
supperp Supsers f(h(6)—A)f(X —6)dP(6), and (ii) do an univariate optimization
over A or solve an equation in A. Step (ii) is easy to obtain (analytically and/or
numerically).

For step (i), let p(X,f,P,A) = [(h(6) — N\)f(X — 6)dP(f). Note that
(X, f,P,\) is a linear function of f(-) and P(-). Hence, this is a linear opti-
mization problem. It then can be argued that suppcrr supsers p(X, f, P,A) =
suppeep SUpsees P(X, f, P, A) if I'f=r;,i=3,...,6and P =T,,j=1,...,6
and £f and £F are the corresponding extreme point classes. This reduction hap-
pens due to the convex structure of the I'; classes. In fact, a similar reduction
happens if I'f = T'; or if ' = I'; or I's. We refrain from the details of the
reduction argument and refer the reader to Basu (1994).

We mentioned earlier that each of the extreme point classes is driven by at
most one real parameter. Hence the final optimization over the extreme point
classes £f and £ is a relatively easy job.

We should mention here that the underlying mechanism behind the reduction
of the optimization problem above is the famous Krein-Milman theorem. For
each of I'y, ..., I's, the corresponding extreme point class £; has the property that
I'; is the closed convex hull of €. This is proved in Basu (1996). The reduction
of the optimization sup pepp supsers (X, f, P, A) = suppegp supsees p(X, f, P, A)
follows from this result and the fact that p(X, f, P, ) is a linear function of f(-)
and P(-). This discussion also points out that the reduction of the optimization
problem is not specific only to the classes we listed, but will also hold for any class
I" which is a closed convex hull of its extreme points. We listed those classes which
are popular in robustness studies.

3. More than one observation: sensitivity to the sampling distribution

3.1 The method

The discussion of Section 2 focused on the case of a single observation X
from the sampling density. In this section, we consider the more practical case
when we observe multiple i.i.d. observations X = (Xj,..., Xx) from the sampling
distribution f(x | ) = f(z — ) (having the location structure). This yields the
joint density f(X | 8) = f(X1—6)--- f(Xy —0). We reflect our uncertainty about
f by assuming that f(-) is an arbitrary choice from the class T'/. In this section,
we focus only on sampling model robustness and assume that prior P(-) is fixed.

Let p(X, f, P) be a posterior quantity based on f(X | §) and P(6). Even
if p(X, f, P) is the posterior expectation of a function h(@), ie., p(X, f,P) =
{J h(O)f(X1-0) - f(Xk—0)dP(0)}/{[ f(X1-0) - f(Xe—0)dP(0)}, p(X, f, P)
is not ratio-linear in f; the linearization technique of Section 2 does not apply and
new methods are needed. A new iterative method is described below.
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We assume that f(z | 8) = f(z—0) and f(-) € I'f whereI'f =T;,i=3,...,6.
In the following, we propose an iterative method for finding inf ;s p(X, f, P) and
supscrs p(X, f, P) which uses the Gateaux derivative of the function p(X, f, P).
This method is widely applicable in the sense that it is valid for ratio-linear as well
as other posterior quantities p(X, f, P). Gateaux derivative (in statistical context)
is generally defined on the linear space A of all signed measures. However, since
our focus is on a convex subset I'/ C A, we follow Huber (1981) to define Gateaux
derivative on a convex set I' C A (see also Basu (1996)).

DEFINITION 1. The functional p(X,-, P) : T' — R is called Gateaux differ-
entiable at f € I' if 3 a linear functional Gpy : A — R such that 1|p(X, (1 —¢t)f +
tg,P) — p(X,f,P)—tGps(g— f)] > 0ast > 0forall gel.

The Gateaux derivative Gps(g— f) is thus simply %p(X, (1—t)f+tg, P)|t=o-
The next result connects the concepts of Gateaux derivative and local extrema.

THEOREM 1. LetT' be a conver subset of A. Assume p(X, f, P), as a func-
tion of f, is well defined on T, the closure of T' in weak convergence topology.
Suppose infrer p(X, f, P) (supser p(X, f, P)) is attained at fr € T (fs € D).
If p(X,-, P) is weakly continuous and Gdteaux differentiable at fi (at fs) then

infger Gps, (9 — f1) = 0 (supyer Gpys(g — fs) = 0).

Remark. This result also appears, though in different forms, in Luenberger
(1968) and Srinivasan and Truszczynska (1990).

PrOOF. Take g € T'. Since I' is convex, (1 — t)fr +tg € T and p(X, (1 —
t)fr + tg, P), as a function of 0 < ¢t < 1, has a minimum at ¢ = 0. Hence
Gps, (g — f1) = limgyo +{p(X, (1 — t) f1 + tg, P) — p(X, f1, P)} > 0. Next, take a
sequence {gn}n>1 C I such that g, — f; weakly. Then Gpy, (g9, — fr) — 0 by
weak continuity of p(X,-, P). This completes the proof. O

From now on, we will concentrate on the infimum problem. The supremum
problem is similar. Theorem 1 gives us a necessary condition for a local infimum.
The method to be described below tries to find a f; where this condition is met.
Thus, as with many other numerical methods, our method is not guaranteed to
converge to the global infimum.

Suppose I'f is convex and closed. Notice that this is true if IV =T, i =
3,...,6. Further, assume that Gp(-) is weakly continuous Vf € I'/.

[0] We start from an initial guess f.. Then, we iterate through the following
steps.

[1] We find the direction in which p(-) has the fastest rate of decrease by
finding inf crs Gpy, (9 — f4)-

Notice that Gpy, (g — f«) is linear in g, i.e., for g1,92 € T, Gps, (1 — a)g1 +
ags— f«) = (1—a)Gpy. (g1 — f«) +aGpy, (g2 — f+). Suppose I'f has extreme points
&f. Then infycprr Gpy, (g9 — fo) = infycer Gpy. (9 — f«) (see Theorem 3 of Basu
(1996)). For IV =T}, i = 3,...,6, the extreme points class £/ is driven by one
real parameter. Thus, minimization over £/ is often a relatively easy job.
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[2] If inf,err Gpy, (g — fi) = 0, we stop iteration. p(X,-, P) is then non-
decreasing in every direction g from f,. Thus, f. is our final answer from this
iteration run and is a candidate for a local minimum. We may go back to step [0],
start from a different initial guess and finally compare the answers from different
runs. '
3] Suppose infyers Gpr, (g = fx) = Gps. (g« — f+) < 0 (g« exists since I'/ is
closed and Gpy, (-) is continuous). Then p(X, -, P) has the fastest rate of decrease
from f, in the direction g,.

[4] Now, we look in the direction g, and do a line minimization. Let f, =
(1 —t)fu +tgs, 0 <t < 1. We find ming<¢<1 p(X, ft, P) = p(X, fi., P). Thisis a
univariate minimization on a bounded set and can often be done easily.

[5] f:. is our new guess for the minimal f;. We put f, = f;, and go back to

step [1].
A huge literature exists on the general performance and convergence of the steepest
descent method. It is known that this steepest descent method is not very efficient
in the sense that it may take many small steps to converge to a minimum even
in well behaved problems. In Euclidean or Hilbert spaces, many faster algorithms
exist, such as the conjugate gradient method. Since our space is only convex, we
cannot avail ourselves of such faster methods. In the next section, we look at the
performance of our method in several examples.

3.2 Applications

In this section, we look at three examples. Example 1 deals with one
observation from the sampling density and examines a situation where the range
of the posterior quantity can be obtained by a known non-iterative method. We
illustrate the steps of the steepest descent method in this example and compare
its performance to the non-iterative method. Examples 2 and 3 consider Darwin’s
data where we have multiple observations and other methods fail to obtain the
range.

Ezample 1. Suppose we observe one observation X from the sampling den-
sity f(z | ) = f(z — 6) and 0 has a fixed prior P(6). We model our uncer-
tainty about f by assuming that f € I'f = the e-contamination class I's = {f =
(1—¢)fo+eq:qe Q}). We assume fy is symmetric, unimodal about 0 and the
contaminating class @ = I's = {all normal scale mixture distributions with median
at 0}.

Our posterior quantity of interest is the posterior variance V (X, f,P) =
ma(X | f,P)/m(X | f,P) — {mu(X | f,P)/m(X | f, P)}* where m;(X | f,P) =
JOf(X = 6)dP(6) and m(X | f,P) = mo(X | f,P). V(X,f,P) is nonlinear
in f. However, if we fix the value of the posterior mean u(X, f, P) = my(X |
£, P)/m(X | f,P), then V(X, f, P) is a linear function of f and the method of
Sivaganesan and Berger (1989) can be applied to obtain the ranges of V(X, f, P)
for each fixed value of u(X, f, P). Finally, we can vary u(X, f, P) on its range to
find the overall range of V(X, f, P).

For example, let fo(-) = ﬁ‘ﬁ(ﬁ) and P(-) be the N(0,1) distribution.
For these choices of fo and P, we evaluate inf;cps V(X, f, P) by the Sivaganesan
and Berger (1989) method. These values are listed in Table 1.
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On the other hand, we can treat V(X, f, P) as a nonlinear function of f on
the convex set I'/ and apply our steepest descent method. The extreme point class
of I is € = {£(-) = (1 - &) fo(") + £26(2) : o > 0}.

We start by choosing f. = fi = (1 — €)fo + eq1 where ¢;(-) = a—lld)(d—1
for some o1 > 0. After the end of the n-th iteration cycle, we have f,(-) =
fa) = (L= e)fo(-) + €7, iqi(-) where a; > 0, 30", a; = 1, and ¢;() =
Uliqﬁ(;':), i=1,...,n. Let Vo = V(X, fo, P) (the posterior variance under f,) and
po = u(X, fo, P) (the posterior mean under fo). Similarly, let V; = V(X,¢;, P),
pi = w(X,q;, P),i> 1.

We next proceed to the (n + 1)-th iteration cycle. The Gateaux derivative of
the posterior variance, namely GV'(-), is obtained in Basu (1996). Using this result,
we have GVy (g — fn) = {m(X | fn, P)?ma(X | 9, P) — 2my(X | fn, P)m(X |
fr, PYmi(X | ¢, P) + (2m1(X | fa, P)* — ma(X | fo, PYM(X | fr, P))m(X |
g, P)}/m(X | fa,P)? for any g € TY. Let a = m(X | fn,P)?, b = —2m (X |
fr, PYM(X | fa, P), ¢ = 2my(X | fn, P)2 — ma(X | fo, PYm(X | fn,P), and
assume prior P = N(0,1). Since g = (1 — €)fo + €qny1 With gny1(-) = 2o(2),
we have mi(X | g,P) = (1 — eymi(X | fo, P) + em;(X | qn+1,2P) and T(X |
fn, P*GV; (g — fn) = (1 — €)constant + T o( \/T)Q(_H){CL(T{+1 + (_TQ)%:IF) +
;bz%& + ¢} which is a function of 72 > 0. Finding inf,ces GVy, (g — fn) is now an
easy job.

Suppose 7 = 0,41 is obtained as the infimum attaining choice and let the
corresponding g = (1 — €)fo + €¢n41 (with abuse of notation). Our next job
is to evaluate V(X, (1 — t)f, + tg, P) and then minimize over 0 < ¢t < 1. Let
Bo=1-¢ B =1 —tea;, i =1,...,n, and B,41 = te be the weights of fj,
and qi,...,¢n4+1 in (1 —t) f, + tg. In the posterior, these weights get updated to
Yo = Bom(X | fo, PY{Bom(X | fo, P) + 5272 Bim(X | ;) P} and ; = Bim (X |
gi, P)/{Bom(X | fo, P)-I-Z:.L:ll Bim(X | q;, P)},i=1,...,n+1, and the posterior
variance V(X, (1 —t)fn +tg,P) = Sitd 7 Vi + Z?:OI Yip? — (Z:’:DI Yipi)%. Thus,
evaluating V (X, (1—t) f,+tg, P) and obtaining ming<;<; V(X, (1—t) fn+tg, P) =
V(X,(1 — t.) fa + t.g, P) are also not hard. Once t, is obtained, the minimal f,
gets updated to fu(-) = fnt1(-) = (L —€)fo(") +e 2071 (1 — t)igqi(-) + etania ().
The algorithm then proceeds to the next (n + 2)-th iteration cycle.

For fo(-) = \/%41(\/7—2) and P = N(0,1), we also use the steepest descent
method to obtain the infimum of the posterior variance, inf;crs V(X, f, P). Our
initial guess is fi(-) = (1 —€)fo(") + 5¢(5;) with oy = 1. In all the cases, the
iterations converge in 1 or at most 2 steps. The values are listed in Table 1.
Caution is needed in the implementation, since the end points ¢ = 0 and ¢ =
are local extreme points and the descent method shows a tendency to converge to
them.

As seen in Table 1, the non-iterative method and the steepest descent method
give almost identical results. The implementation of the steepest descent method,
however, is more involved. The real power of the descent method is revealed when
we have multiple observations as in the next two examples.

Ezample 2. Here and in Example 3, we consider Darwin’s data (see Table 2)
on the differences (in eights of an inch) of heights of 15 pairs of cross- and self-
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Table 2. Darwin’s data on differences of heights.

X; —-67 —48 6 8 14 16 23 24 28 29 41 49 56 60 75

fertilized plants (see Andrews and Herzberg (1985)). These data were analyzed by
Box and Tiao (1973) and Pericchi and Pérez (1994). The latter authors assumed
that the fifteen observations Xj, ..., X15 are i.i.d. from a sampling density f(- |
6,0). They assumed a prior 7(¢,0) = 1/0 on (,0) and studied the performances
of five different choices of the sampling distribution f : N(6,02?), Cauchy(8, 0?),
Uniform(#— /30,0 ++/30), Left Exponential, and Right Exponential. Their calcu-
lations showed that the marginal m(X | f,7) = fﬂ}il f(Xi | 6,0)n(0,0)dbdo is
maximized (among the five choices) and equals 2.451 x 10732 when f = N(6, a?).

We reexamine this data and assume Xj,..., X35 are i.i.d. from a location
density f(z — ). We allow a much wider choice for f and assume that f is a
generic member of the nonparametric class I'Y = I's = {all normal scale mixture
distributions with median at 0}. This choice of I's is due to simplicity in calcula-
tions, we could have easily used any of I's, I'y or I'g as a choice for /. Let n(6)
be the prior on 8. For f € T/, let m(X | f,7m) = [TIE, f(Xi — 6)dr(0) where
k = 15. We maximize this marginal: choose f. € I'/ such that m(X | f,,7) =
max;eps m(X | f,m). Some statisticians use m(X | f«, ™) as a model selection
criterion (for example, from a Bayes factor viewpoint).

To apply the steepest ascent method to the nonlinear function m(X | f,m) of
f € T/, we start from an initial guess fi(-) = a%d)(;;) € &f for some a1 > 0. After
the end of the n-th iteration, we have fu(-) = fn(-) = 2=, 2:4(;;) where oy 2 0,
S" ,a; = 1and o; > 0. For the (n + 1)-th iteration cycle, we first evaluate
Gmy, (9~ fa) = Zm(X | (1= Ofa +tg,mle=0 = FUTLL{Q - OFalXi =
0) + tg(X; — 0)}dm(8))emo = by [ 9(Xi — 0) [T 4 Fu(Xi — )d(8) — km(fn, ).
For g() = 1¢(2) € &f, Gmy, (9 — fn) is a function of 7 > 0 and its maximum
value can be obtained numerically. Once the maximum attaining 7 = 041 and
the corresponding g is obtained, we go to step [4] of the ascent method. Now,
Lm(X | (1= 1) fn+t,m) = Sty [(9(Xi =0) = fulXi = O) T (1 = ) /n(X; -
8) + tg(X; — 6)}dn(0) which is a (k — 1) degree polynomial p(t) in ¢. Thus,
maxo<i<1 (X | (1 —t)fn +tg,m) = m(X | (1 — t.)fn +tsg, ™) Where 0 <1, <1
is a root of p(t) or t, = 1. We now update fn to foy1(-) = 2 (L —t)52e(5) +
af.+ -( Un’ﬂ) and proceed to the (n + 2)-th iteration cycle.

In the numerical example, we assume a noninformative prior m(f) = 1 and
start our steepest ascent algorithm with the initial guess o, = 38 (based on the
data standard deviation 37.74). For our numerical work, we bound the domain of
o to [0.01,00) (¢ — O causes several numerical problems). After 49 iterations, the
ascent algorithm converges (Gateaux derivative = 0) to the sampling distribution

,51)(:1:) = [ $(£)dG1 (o) where an approximate description of the 50 point mixing
distribution G; is given in Table 3. For this f,El), we obtain m(X | f,fl),w) =
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Table 3. Mixing distribution G1 in Example 2 (¢ values within a 0.5 interval are

grouped).
o 0.01 4.71 10.53 12.33 13.12 13.73 14.23 (14.5,15] (15,15.5]
Prob. .003 .020 .032 .021 021 .021 .021 .041 .076

o (15.5,16] 38 (485,49] (49,49.5] 49.92 51.71 5473  55.23
Prob.  .167  .132  .179 170 028 027 015  .026

1.246 x 1073!. The maximum m(X | f,n) value obtained by Pericchi and Pérez

(1994) was 2.451 x 10732, Thus, in terms of Bayes factors, f,ﬁl) is preferred 5.1
times higher than the best model of Pericchi and Pérez (1994). Instead of the
mixing prior = 1/0 of Pericchi and Pérez (1994) which concentrates mass around
0, our analysis suggests that the data prefer a more dispersed mixing distribution
G+ “centered” around 38.0.

A referee pointed out that Pericchi and Pérez (1994) used prior on both
6 and o (m(f,0) = 1/0) whereas we only use prior 7(6) = 1 on the location
parameter . We redid the Pericchi and Pérez (1994) computations with prior
only on the location parameter #. Consider the Pericchi and Pérez (1994) case
when the sampling density f = fy = N(#,02). For the prior 7(f) = 1, we obtain
m(X | o, fn,7) = fl_[:; fn(X; | 8,0)dn(0). We then maximize this marginal
over o, i.e., m(X | fn,7) = max,>om(X | o, fy,7). These calculations are
repeated for each of the five sampling distribution choices of Pericchi and Pérez
(1994). The overall maximum over the five choices is again attained at f = N(8, 02)
and this maximum value is m(X | fa,m) = 5.113 x 10732, In comparison, the
maximum obtained by our method is m(X | £, x) = 1.246 x 10~3! which is
more than 2.4 times higher.

In Fig. 1 we show a dotplot of Darwin’s data along with the initial, interme-
diate and the final normal scale mixture density obtained by our algorithm. All
three densities are centered at the data average X = 20.933. The solid curve shows
the initial normal density with o; = 38. The normal scale mixture density ob-
tained after the 16th iteration is shown in the picture with small and thick dashes,
whereas the large and light dashes represent the final density obtained at the 49th
iteration. These latter two densities are completely indistinguishable at the reso-
lution of the figure. The value of m(X | f,7) increased from 1.119 x 103! at the
16th iteration to 1.246 x 103! at the final iteration. The painful slowness and
small steps of the steepest ascent algorithm also becomes visible in this example.
From the 16th iteration onwards (¢ = 16/2 = 8), the algorithm keeps on iterating
between o9; € (48.5,49.5] and 09,41 € (15,16] until it converges in the 50th iter-
ation (i = 25). It is reasonable to guess that there are optimal m, € (48.5,49.5]
and 72 € (15,16] such that 016 = 71 and 017 = 7o would have led to a quick
convergence, but the algorithm fails to take this quick step.

What is learned about Darwin’s data from this analysis? At a first glance, an
empirical Bayes analysis may plan to use a normal sampling model with standard
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Fig. 1. Dotplot of Darwin’s data and plots of the initial f1, intermediate fis and final
,Sl) sampling densities in Example 2. f; = solid curve, fig = short thick dashes,
= long light dashes. The latter two densities are indistinguishable.

deviation = 38 (based on the data standard deviation 37.74). However, in the
Bayesian model we consider, our analysis and Fig. 1 show that the data favor a
different sampling density which is sharper than the normal density in the center
and almost similar to the normal density in the tail.

Example 3. Here we again consider Darwin’s data. However, here we max-
imize the pseudo-marginal or the predictive marginal.

To distinguish between observed data and running variables, we use upper
case letters (e.g. X) to denote observed realization of random variables (data),
whereas lower case letters (e.g. z) are used to denote random variables or running
variables. Let X = (Xi,...,Xk) be the observed data vector (k = 15). Also,
let X(;) denote the (k — 1) x 1 data vector with i-th observation X; deleted. Let
f(X-0)= Hf=1 f(X;—0) and f(X(iy—0) = [1,..; f(X;—0) be the joint likelihood
of X and X(; respectively. Let mi(X | f, ) = [ f(X —6)dn(8) and mi_1(X) |
f,m) = [ f(Xu — 0)dn(9). With these notations, the posterior distribution of 6
given only X(;) is dn(8 | X(;), f,m) = f(Xu) — 0)dm(6)/mi_1(Xu) | f,7). The
cross validated predictive density of the random variable z; given the remaining
(k—1) observed data X, is then f(z; | X4y, f,7) = [ f(z:—0)dn(0 | X(), f,7) =
mk(Y ! f,w)/mk_l(X(i) | f, 71') where Y = (Xl, “e. ,Xi_l,(l,‘,',Xi+1, - ,Xk)T. A
check of this predictive density f(z; | X(;), f,7) with the observed X; indicates
how compatible X; is to the rest of the data X(;) (in view of the model). Several
model selection criteria have been suggested based on this predictive distribution.
We consider the “pseudo-marginal density” D(f) = ]_[i.c=1 f(Xi | X, f,m) (a
modification of the marginal density m(X | f,n) from the predictive viewpoint)
which has been suggested as a model selection crietrion by Gelfand et al. (1992),
and Geisser and Eddy (1979). We plan to select f. € I/ for which D(f.) =
maxscps D(f). Our focus here is not comparing the relative merits of different
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Table 4. Mixing distribution G2 in Example 3.

o 0.0l 446 1051 1214 38 46.11 51.05 51.18 53.08 55.41
Prob. 0.01 006 0.5 007 044 002 010 001 0.04 0.10

model selection criteria but to see how our steepest ascent method works in a
complicated setup.

Since D(f) > 0, maximizing D(f) is equivalent to maximizing log D(f) =
klogmi(X | f,m) — Zle logmy—1(X() | f,7). The Gateaux derivative equals
Glog D(g — f) = kGmui(g — £, X)/mi(X | fim) = S 1{Gmi-1(g — f, X))/
mi—1(Xg) | f,7)}. The Géteaux derivative Gmy(g—f, X) of the marginal my (X |
f,m) is obtained in Example 2 whereas Gmy_1(9—f, X(s)) is same as Gm (g—-f, X)
with k replaced by (k — 1) and X replaced by X()-. Thus, the implementation
of steepest ascent method here only needs minor modifications to the algorithm
already used in Example 2.

In the numerical example, we again assume prior n(6) = 1 and start our
algorithm from the initial guess oy = 38. After 9 iterations, the ascent algorithm
converges to the normal scale mixture distribution f,(=2)(m) = [ ¢(£)dG2(o) where
the 10-point mixing distribution G2 is described in Table 4. The value of the
“predictive marginal” is D( £y = 2.45 x 10733, Notice the similarity between
f£2) and f,sl) or between G in Table 4 and G in Table 3. Thus, maximizing the
marginal and maximizing the “predictive marginal” obtain (somewhat) similar
models for Darwin’s data.

4. Joint perturbations of the prior and the sampling distribution

We briefly mention here the technique for considering joint perturbations of
the prior P and the sampling distribution f when multiple observations X =
(X1,...,Xk) are observed from f (-). The technique is basically a combination
of the methods of Sections 2 and 3. Assume f(z | 8) = f(z — 6) and f and P
are generic members of the classes I'f and T'P. Let p(X, f, P) be our posterior
quantity of interest and we want to find its range, i.e., infscrs pere P(X, f, P)
and supscrs, perr p(X, f, P). We only describe the supremum problem.

Suppose p(X,f,P) = p(h,X,f, P} = E(h() | X,f,P). Also, suppose
rf =T, i=3,...,6 and [P =Ty, j = 1,...,7. Then, for each fixed f € TV,
finding sup pepp p(h, X, f, P) can be reduced to maximization over P € EF by
the techniques of Section 2 (EF is also described in Section 2). €F is at most
one-dimensional. Next, for a fixed P € &P, we can find supgeps ph, X,f,P) =
p(h, X, P) by the steepest ascent method described in Section 3. What remains
is a maximization over £, i.e., at most a one-dimensional maximization.

If p(X, f, P) is not ratio-linear, the situation is more difficult. However, we
can always use the steepest ascent method whenever we know the extreme point
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class £ of . Assume I/ =T,i=3,...,6 and TP = Ij,7=1,...,6. A possible
strategy in this case is the following:
(i) Start from an initial guess about the sampling distribution f = f,. Use
the steepest ascent method to obtain maxpere p(X, fu, P) = p(X, f«, Ps) (say).
(ii) Now, fix prior P = Pg, and use the steepest ascent method to obtain

maxyers p(X, f, Ps) = p(X, fs, Ps) (say).

(iii) Put f, = fs and go back to step (i) until no significant increase of
p(X, f, P) is obtained.
The implementations of these algorithms will be along the lines of Examples 1-3,
though we have not tried them in any example.

5. Closing remarks

In this article, we hope to achieve two competing Bayesian robustness goals;
a sampling model sensitivity study of posterior quantities by letting the sampling
distribution vary in a nonparametric class and a joint sensitivity study w.r.t. the
sampling distribution and the prior. Most previous works in this area dealt only
with one observation X from the sampling distribution f(z | 8). We have been
successful in dealing with multiple i.i.d. observations X1,...,Xg. The iterative
steepest descent method that we develop is very powerful, its scope appears to go
much beyond our specific goals. The use of this method in obtaining ranges of non-
linear posterior quantities is already illustrated in Example 1, further applications
remain to be explored.
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