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Abstract. We study the extent to which the property of semistability of
a random vector in R¢ is determined by semistability of its marginals, and
the place of semistable laws within the family of type G and sub-stable laws.
Similarities and differences between stable and semistable laws are discussed.

Key words and phrases: Semistable distribution, type G distribution, in-
finitely divisible distribution, stable distribution.

1. [Introduction

The law u of a non-Gaussian random vector X in R¢ (or even in a more
general space) is called semistable if it is infinitely divisible and there exist r,b €
(0,1) U (1,00) and ¢ € R¢ such that

(1.1) p*" = p(b) * b,

where for positive r, u*” stands for the r-th convolution power of u, x means the
convolution of two measures, and §, is the point mass at ¢. If u is semistable,
then X is also called semistable, and we often say that X satisfies (1.1). One
can alternatively define the semistability of X by requiring existence of i.i.d. ran-

dom vectors ZW_ Z@ _in R? vectors ¢, ¢@ ... in R? and positive numbers
ai,as, ... such that
(1.2) a(ZD .. 2y 4 W = X

as k — oo for a sequence {ng,k > 1} such that ny — oo and ngy1/nx — 1/r or
r as k — 00, according as 0 < r < 1 or r > 1, where = means the convergence
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in law. It is also known that there exists an a € (0,2) depending only on X such
that b in (1.1) is expressed as b = r~1/, namely

(1.3) w = p(rH) x 8.

Thus « is a characteristic of X and is called the index of X.

Suppose X is semistable with index a (SS(a) for short). Let I" be the collec-
tion of all € (0, 00) for which X satisfies (1.3) for some ¢ in R?. Following Rajput
and Rama-Murthy (1987), for a fixed r € I'\ {1}, we say that X is r-semistable
index o (r-SS(«) for short). It follows directly from (1.1) that if X is r;-SS(a)
for some r; € R\ {1}, ¢ = 1,2, then X is r172-SS(a), and hence I is a closed
multiplicative subgroup of (0, 0c). We refer the reader to Chung et al. (1982) and
Rajput and Rama-Murthy (1987) for these and other facts on semistable laws. We
will be using a somewhat unorthodox terminology that X is I'-semistable index
o, whose meaning is, however, obvious.

A T-semistable index o random vector X for which I' = (0, 00) (this follows
automatically if I' contains a sequence of r’s approaching 1) is a-stable. Since
a-stable random vectors, 0 < a < 2, are often viewed as heavy tailed analogs of
Gaussian random vectors, the dependence structure of a-stable random vectors
and processes has been extensively studied. See, for instance, Samorodnitsky and
Taqqu (1994) and Janicki and Weron (1994) for two recent books on the subject.
The tails of semistable random variables are similar (even though not necessarily
strictly comparable) to those of stable random variables, and since the family of a-
stable laws is, from many points of view, a small subset of the family of all SS(a)
laws, the latter offer higher flexibility in stochastic modeling than the former.
This fact points to potential uses of semistable laws in applied probability. The
first step in realizing such potential is to understand the probabilistic structures
of semistable laws. This step has not been, so far, taken. Rather, much of the
works on semistable laws have been concentrated on more abstract properties of
the latter, like the structure of their support (Rajput et al. (1994)) or the tail
properties of the norm (Louie and Rajput (1979), Rajput (1997)).

In this paper we study certain probabilistic aspects of semistable laws. We
concentrate on two issues, that are of interest in clarifying the place of semistable
laws among all the infinitely divisible laws. In the next section we study the extent
to which the property of semistability of a random vector in R¢ is determined by
the property of semistability of its marginals, and in Section 3 we clarify which
of the semistable random variables in R are of type G, and which of them are, in
fact, sub-stable.

We finish this introductory section by recalling a few basic facts about semi-
stable random vectors. Let X be an r-SS(a) random vector in R¢, 0 < r < 1,
0 < a < 2. The Lévy measure v of X has then the scaling property

(1.4) Py =v(r V%), n=+1,42,....

Conversely, any infinitely divisible random vector X whose Lévy measure has
the scaling property (1.4) is r-SS(@). An immediate conclusion from (1.4) is the
well known fact that a non-degenerate I'-semistable index « real-valued random
variable X with T # {1} has a finite p-th moment, p > 0, if and only if p < a.
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An r-85(a) random vector X is called strictly r-SS(a) if ¢ = 0 in (1.3). It

is obvious that a symmetric r-SS(a) random vector X (ie. X 4 _X) is strictly
r-SS(a). Furthermore, the notion of strictness applies equally well to the notion of
I'-semistability, in the sense that if r; € " for ¢ = 1,2 are numbers different from
1, and X is strictly r;-semistable index «, then it is also strictly ro-semistable
index a. As before, we refer the reader to, for instance, Rajput and Rama-Murthy
(1987).

2. What can we say about a random vector whose marginals are all semistable?

Let X be a random vector in R¢. If it is 7-SS(a) (that is, if it satisfies
(1.3)) then it is easy to see that for every vy € R? the real-valued random variable
(a marginal of X) Yy = (7, X) (where (, ) is the inner product in R¢) satisfies
(1.3) as well, and so is 7-SS(c) (in R'). If the converse is true, then one can use
it as an alternative definition of semistability in a multidimensional space. This
approach (through one-dimensional projections) is a well known way to define a
multivariate Gaussian vector, and it was stated by Dudley and Kanter (1974) that
the same was true for a-stable random vectors. However, their argument turned
out to be valid only for a € (1,2), or, alternatively, under the assumption of strict
stability. Indeed, Marcus (1983) gave an example of a non-stable random vector
in 2 whose marginals were all a-stable, with an a € (0,1). It follows from the
result of Giné and Hahn (1983) that the random vector constructed in Marcus
(1983) is not even infinitely divisible and, hence, not $S(a). Therefore, the SS(a)
property of the marginals does not imply the SS(a) property of X if 0 < a <1,
the statement on p. 141 of Rajput and Rama-Murthy (1987) notwithstanding. On
the other hand, Samorodnitsky and Taqqu (1991) showed that the statement of
Dudley and Kanter (1974) was true for @ = 1. The main result of this section,
Theorem 1 below, shows that the situation in the SS(a) case is similar to that in
the a-stable case.

THEOREM 1. Let X be a random vector in R¢, such that for every y € R¢
the marginal Yoy = (v, X) is T'.y-semistable index a(7y) for some T'y # {1} and
0 < a(y) < 2. Assume that T = Nycpaly # {1}. Then the index a(y) does not
depend on . That is, there is an o € (0,2) such that a(y) = a for ally € R4
such that Yo is not degenerate (i.e. not constant). Moreover,

(i) If 1 < o < 2, then the vector X is I'-semistable inder o (with ' =
MNyenaly)-

(ii) In the case 0 < a < 1 the conclusion of part (i) remains true if, addi-
tionally, one of the following two conditions holds.

(a) For every vy € R4, the marginal Y, = (7, X) is strictly r-semistable
for some r € T,.

(b) For every 7(1) € R¢ and '7(2) € R4, the random vector (Y7(1),Y7(2))
in R2 is infinitely divisible. This is true, in particular, if the random vector X 1is

infinitely divisible.

PROOF. Suppose, there are ) € ®¢ and 72 € R? such that Y, and Yo
are non-degenerate, and 0 < a(y)) < a(y®) < 2 (say). Let p be any nonzero
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number, and let y(p) = pyV) + 4. Then PY,) + Yoz = Yy(p) is I'y(p)-semistable
index a(y(p)). Observe that for every p € [a(y()), a(7(?)), we have

ElY‘Y(P)'p = Elpy»y(l) + Y,Y(z) Ip = 00,

because E|Y ) |P = oo and E|Y 2 |P < oo. Therefore, Yy,) is non-degenerate and,

further, a(y(p)) < a(y™"). Let now {p,} be a sequence of (say) positive numbers
that converge to 0. Let Y, = Yy, ) and a(n) = a(y(ps)), n > 1. Observe that
Yn = Yy as n — oo. Therefore, v, = v, where v, is the Lévy measure of Y,
n > 1 and v is the Lévy measure of Y. Choose an 7 < 1 in I'. Then every Y,

is r-semistable index a(n), while Y, is r-semistable index a(y(?).

Choose an a > 0 such that for all m > 0 the point rm/ "‘(7(2))0, is a continuity
point of v. Choose an € > 0 so small that

1
(2.1) l+e<—.
T
Then there is an ng such that for all n > ng we have
vn((a,00)) < (1 + €)v((a, 00)).

Choose, further, an m > 0 so big that m/a(y")) > (m + 1)/a(y?). We have by
(1.4), for all n > ny,

Ua((r D20 00)) < 1 (I >0 a, 00)) < vy (™4™, 00))

=71 "vp((a,00)) < (1 + €)r "v((a,o0)).
Letting n — 00, we conclude that
(/0P o0)) < (1 + €)r~™v((a, ).
On the other hand, once again by (1.4) we have
y((rm /=0, 00)) = 1"y ((a, 00)),

and so we must have
(1 +6)T‘_m > ,r—(m+1),

which contradicts the choice (2.1) for e. Therefore, the index (%) does not depend
on 7.

To proceed, we need the next lemma which provides a simple estimate we will
need in the sequel. Let X be an 7-SS(a) real-valued random variable. Letting v,
as before, denote its Lévy measure, one has

(2.2) EeX =exp {/

—00

oo

(€% — 1 — iz1(|z] < 1))v(dz) + iec}, feR,
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for some ¢ € R, where 1(A) is the indicator function of A.

LEMMA 1. Let {X(t),t > 0} be a Lévy process in the sense that it has in-
dependent and stationary increments, and X(0) = 0 a.s. Suppose that X := X (1)
is r-SS(a), and its characteristic function has the form in (2.2). Fiz 0 < r < 1.
Then, if o # 1, for each k = £1,%2,... we have

,r.k(a—l)/a -1

Ty (M mo) + (L= L X,

(2.3) ke X (%) +

where & means the equality in law, and

1/

my = /Tl zv(dz), m_= /_:T zv(dzx).

1/
Ifa=1, then
(2.4) r R X(rF) + k(my +m_) dx

Moreover, if o # 1,

,r.k(l—a)/a -1

T rmaya (e o)+ (L= e 5 X

(2.5) n~YeX(n) +

as k — oo along the sequence n = [r~F]. If a = 1, then along the same sequence
we have

(2.6) n X (n) —k(my +m_) = X.

PrROOF. We have for every k > 1 (say), using (1.4)
(2.7)  Eexp{ifr~*/ X (r*)}
o0
= exp{rk/ (ewr_k/a”” —1—ifr~*2z1(|z| < 1))v(dz)
— 00
+ i¢9r"k(1_°‘)/°‘c}
k [T irr/a - n—k/ —k/
=expsr / (" T —1—ifr " x1(jr " z| < 1))v(dx)
o0
_ jgr—k(-a)/a / 21/ < |z| < 1)v(dz)

[e o]

+ i9r_k(1_°‘)/ac}
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= exp{/_Oo (€% — 1 —if21(|z| < 1))v(dz)

k~1
— igr=R=a)/a 3 pmseD/a(m 4 m_)
j=0

+ i0r"k(1"°‘)/°‘c}.

The statements (2.3) and (2.4) are now obvious, and the case k < —1 is completely
analogous.
Similarly, for every n > 1

Eeien_l/"‘X(n)
% ionte no—1 n 1-1/
= exp n/ (e "7 1 —ign Vo1 (Jz| < 1))v(dz) + ibn' "% b

—0C

Let now n = [r %] for k = 1,2,.... It is straightforward to check that for any
# € R we have

n/ (ew"_l/% —1—ifn~Yoz1(|z| < 1))v(dz)

_ T_k/ (ewrk/"z —1—- ie’f‘k/al‘l(l-’ﬂ] < 1))1/(d3:) — 0
—00

as k — oo. Therefore, as k — oo, we have

Eewn-l/‘*xm)

~ exp {'f'_k/ (eierk/az _ 1 _ ’Lerk/awl(ll‘l S 1))[/((11:) + ierk(l—a)/ac} ,
-0

and (2.5) and (2.6) of Lemma 1 now follow from (2.3) and (2.4). O

We now go back to the proof of Theorem 1. Pick and fix any r € ' N (0, 1),
and recall that for every v € 8%, Y, = (v, X) is r-SS(c). Regarding c in (2.2) and
m4 and m_ defined in Lemma 1 as parameters of an infinitely divisible random
variable, we denote by c¢(7), m4(y) and m_(y) the corresponding parameters of
Y,, and set

o P

m () + m-(7) if a=1,

if a#l

v € R4, Further, for y = ej, the j-th coordinate vector, we denote 3(e;) by 3;,
j: 17-'-ad' Letﬂ: (/617"'7/311)'
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With n = [r~*], k = 1,2,..., we consider a subsequence of normalized partial
sums

(2.8) Sk — #(X(l) + o+ X)) = e (a)B,

where X, X® . arei.id. copies of X, and

k(1—a)/c .
T -1 if a#1

2.9 crla) =

(2.9 @={ LT

k=0,+1,+2,.... It follows from Lemma 1 that all of the d coordinates of the

sequence (S(¥) k > 1) converge weakly as k — 0o, and so the whole sequence is
tight. Therefore, for every y € R4, the sequence ((y, S®),k > 1) is tight as well.
Here

(210) (. 8®) =~ S Y0 — a(@)(B),
j=1

where Y,,(l), Y.;z), ... are i.i.d. copies of Y,. However, another application of Lemma
1 shows that the sequence

(2.11)

LS v —a(e)Bn), k> 1,
=1

nl/o '
J

converges weakly, and so is tight as well. Now suppose 1 < a < 2. Then, since
cx(a) — 0o as k — 0o, the only way the sequences (2.10) and (2.11) can be tight
simultaneously is

(2.12) B() = (B,7),

and since the above argument works for every ¥ € R¢, the relation (2.12) must
hold for all such 4. However, (2.10), (2.12) and Lemma 1 imply that for every
4 € R4 the sequence ((, S()), k > 1) converges weakly to Y,, and so

(2.13) S = X

as k — oo, which is the same as

n

ZX(j) —cp(a)f= X.

j=1

1
nl/o

Therefore, the random vector X satisfies (1.2) with ng = [r~*] and so is r-SS(a).
Thus the proof of part (i) is complete.

If 0 < a < 1, then ¢,(a) — —1 as k — 00, and so the above argument does
not work. However, to make it work one only needs to establish (2.12). It is easy
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to check that a one-dimensional r-SS(«) random variable X with characteristic
function given by (2.2) is strictly 7-SS(«) if and only if 8 = 0, where

my +m_
6: l—r(a'—l)/a
my +m_ if a=1.

+c if a#l

Therefore, if for every 4 € R¢ the marginal Y, = (v, X) is strictly 7-SS(a) for
some 7 € I'N (0,1), then B(y) = 0 for all v € R¢, which establishes (trivially)
(2.12) and, hence, the r-semistability index a property of X, no matter what o
is. This shows part (ii) of the theorem.

Consider now the situation described in part (ii), (b). Fix, once again, an
r € T'N(0,1), and fix arbitrary 9 € ®R¢ and 4® € R4, Consider the two-
dimensional random vector ¥ = (Y,Y(l),Y.y(Q)),‘ which is, by assumption, infinitely
divisible. Define

Yo =r MY (%) —cp(@)f,  k=12,...,

with B = (8(y(D), B(y?)) € R2. Here Y (t) denotes an R2-valued Lévy process

with Y (1) 4 Y. Such a Lévy process exists because Y is infinitely divisible.
Observe from (2.3) that the two coordinates of the sequence Y7, Y2,... have fixed
r-SS(a) distributions, and so the whole sequence is tight. Therefore, the same is
true for the sequence {( Yk, t),k = 1,2,...} for every t = (¢1,t2) € R?. However,

(2.14) (Yi, t) =752, Ly gy (T%) — c_i(@)(B,t),  k=1,2,...,

where {Y; 1) 44, (t)} is again an R'-valued Lévy process with Y; ) 44,2 (1) 4

Y4 41,4 - On the other hand, once again from (2.3) the sequence

(2.15) TR Y, ) gy (TF) — c_i(@) Bty +4?P),  k=1,2,...

has a fixed r-SS(a) distribution, and so is tight as well. However, if 0 < o < 1,
then c_g(a) — 0o as k — 00, and so the only way the two sequences, (2.14) and
(2.15), can be tight at the same time is when

(2.16) Bty +t2y?) = (B,t) = t1.8(YV) + t28(r?).

However, this shows that (2.16) must hold for all (1) and ¥ € R and all real
t1,t2. Hence (2.12) holds, and hence X is r-SS(a). This completes the proof of
the theorem. O

We would like to mention that we do not know whether the assumption
MNyenel'y # {1} in Theorem 1 is superfluous or not, that is, if this fact is al-
ready implied by the assumption that for every 4 € R¢ the marginal Y, = (v, X)
is I'y-semistable index a(y) for some I'y # {1} and 0 < a(y) < 2.
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3. Which m-SS(«) random variables are of type G and which are sub-stable?
Recall that a real-valued random variable X is said to be of type G if
(3.1) xsi2z

where Z is a standard normal random variable independent of a nonnegative in-
finitely divisible random variable S. A similar definition is used in multidimen-
sional (including infinite dimensional) settings. Here X is a random vector and Z
a centered Gaussian random vector in the appropriate space. A type G random
variable is itself infinitely divisible, and is a variance mixture of Gaussian random
variables. One important example of type G random variables is symmetric -
stable (SaS for short) random variables. Moreover, the type G property extends
to SaS processes; see Samorodnitsky and Taqqu (1994). Hence, SaS processes are
covariance mixtures of (centered) Gaussian processes, and many properties of the
former have been understood via (conditional) reduction to the properties of the
latter; some examples can be found in Marcus and Pisier (1984), Talagrand (1988),
Rosiniski et al. (1993) and Adler et al. (1993). The approach of the latter paper
was applied to a larger class of type G infinitely divisible processes in Marcus and
Shen (1997). The power of this approach alone makes it important to understand
which semistable random variables and vectors are of type G. This will also serve
to clarify, further, the structure of semistable laws. Type G processes were in-
troduced by Marcus (1987), and we refer the reader to Rosinski (1991) for more
information on type G random variables and processes.

A notion parallel to that of a type G random variable is that of a sub-stable
random variable. A random variable X is said to be sub-8-stable, 0 < 8 < 2, if

(3.2) x <58z,

where this time Zg is a standard symmetric S-stable random variable independent
of a nonnegative infinitely divisible random variable S. That is,

(3.3) Eet%%s — e"'olﬁ, 0 € R,

with a similar definition in a multidimensional case. We mentioned above that
symmetric stable random variables are of type G. Moreover, in that case the
variance mixing random variable in (3.1) is positive stable, and one can use this
fact to conclude immediately that any sub-stable random variable is also of type
G. Let us denote by Z(5) the collection of all distributions of sub-3-stable random
variables, 0 < 8 < 2. Every symmetric a-stable random variable with 0 < a < 2
is sub-S-stable for every 8 € (o, 2]. That is, a standard SaS random variable Z,,
0 < a < 2, can be represented in the form

d
(3.4) Zo = (25,5)"° 25

for every 3 € (a,2]. Here Z7, . is a positive strictly a/3-stable random variable,

/B
whose Laplace transform is given by
(3.5) Ee %35 = e_"a/ﬁ, u>0.
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This shows that
E(B1) CE(B2) for 0<fr<Br<2.

Clearly, =(2) is the collection of type G random variables. In this section we study
not only the question, whether or not r-SS5(a) random variables are of type G,
but also whether or not they belong to other families Z(5). We refer the reader
to Samorodnitsky and Taqqu (1994) for more information on the sub-stability
property of symmetric stable random variables.

Let us introduce some notation. Denote by SS(a,r) the collection of all
distributions of symmetric r-SS(a) real-valued random variables, 0 < a < 2,
0 <r <1, and by S(a) C §S(a,r) the collection of all distributions of symmetric
a-stable real-valued random variables, 0 < a < 2. It follows then from (3.4) that

(3.6) S(a) CE(B), all a<p<2

We are interested in the common parts of Z(5) and SS(a,r) \ S(a), a < < 2.

The following Theorem 2 is the main result of this section. Throughout,
0 < r < 1 is fixed. This result shows that among non-stable symmetric r-SS(a)
random variables there are both those inside Z(3) and outside of it. Furthermore,
(3.6) cannot be extended to any part of SS(a,r) other than S(a). Part of the
information provided in Theorem 2 can also be found in Theorem 2.4 of Rajput
and Rama-Murthy (1984).

THEOREM 2. (i) Let 0 < a < 3 < 2, and let S:/ﬂ be a positive strictly -

SS(a/B) random variable, independent of a symmetric B3-stable random variable
Zg. Then

(3.7) X = (8,025

is a symmetric r-SS(a) random variable. Moreover, X is not SaS unless S:/ 5 i
a positive strictly a/B-stable random variable. That is,

(3.8) 2(8) N (SS(ey7) \ S(@)) # 9.

(ii) If 0 < a < B < 2, and a symmetric r-SS(a) random variable X is sub-3-
stable, then the random variable S in (3.2) must be a positive strictly r-SS(a/B)
random variable. Furthermore, for every 0 < a < 3 < 2 there are r-SS(a) random
variables that are not sub-B-stable. That is,

(3.9 SS(a, )N (2(B))¢ # 0.
Moreover, for any a < 1 < (B2 < 2 the inclusion

(3.10) E(B1)NSS(a,r) C E(B2) NSS(a,r)
is proper, and

(3.11) ﬂ EPB)NSS(a,r)) = S(a).

a<f<2
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PROOF. Let H denote the law of a symmetric 3-stable random variable Zg,
0 < B < 2, satisfying (3.3) and let n denote a multiple of the Lévy measure of

S:/ﬁ, 0 < a < B<2,such that

o0
Ee S = exp {—/ (1- e"“z)n(dz)} ,
0
u > 0. Observe that for every z > 0 and real ¢
o0
1— ez = 2/ (1 — cos(02/Py))H(dy).
0
Therefore, for X defined by (3.7) we have
(3.12)  Eei®X = Be™1¥1"50s = exp{-— / (1- e‘w'ﬁz)n(dz)}
0

= exp {—2 /000 n(dz) /000(1 - cos(Ozl/ﬁy))H(dy)} .

We see immediately that X is a symmetric infinitely divisible random variable
with Lévy measure v given by

(3.13) v(A) = (n®H){(z,y),z>0,y€§R:z1/ﬂy€A},

A a Borel set.
Since S:/ﬁ is an r-SS(a/B) random variable, its Lévy measure 7 satisfies

(1.4). That is,
n(r=?/*A) = r(4)

for every Borel set A. Therefore, for every such A

vy = [ " ny e8I A%) H (dy)

— o0

_y / "y AP H(dy) = ru(A).

— 00

That is v satisfies (1.4) and, hence, X is symmetric 7-SS(c). The first part of (i)
is proved.

In the opposite direction, suppose now that a symmetric r-SS(a) random
variable X is sub-3-stable, in the form (3.2), 0 < a < 8 < 2, and let v be the Lévy
measure of X. We have, as in (3.12),

(3.14) Ee 5 = exp {—2 /00(1 - cos(ul/ﬁx))u(dx)} ,
0
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u > 0. Since X is r-SS(a), the Lévy measure v satisfies (1.4). Therefore, for every
u>0

[e o]
Ee v’/ exp {_2/ (1- Cos(ul/ﬁrl/az))y(dz)}
0

= exp {-—27‘ /000(1 - COS(UI/B:B))I/(CLZ‘)} = (Be™ v,

That is, S must be a positive strictly r-SS(a/8) random variable. The first part
of (ii) is proved. To show the second part of (i), observe that the above argument
also implies that if X is SaS, then S must be a positive strictly r-SS(a/3) random
variable for all 0 < r < 1, and hence it is a positive strictly a/g-stable random
variable. Therefore, if S;'/ 5 in (3.7) is non-stable, then X is not SaS.

We have now proved (i) and the first part of (ii) of the theorem. To prove
the remaining statements of (ii) of the theorem, it is enough to note that the law
H of 83 is absolutely continuous with respect to the Lebesgue measure on R, and
we immediately see from (3.13) that the Lévy measure of any symmetric 7-SS(a)
random variable X that is sub-(-stable for some # > « is absolutely continuous
as well. Therefore, any symmetric 7-SS(a) random variable whose Lévy measure
is not absolutely continuous, cannot be sub-3-stable for any 8 > «.

Moreover, let us denote by SS*(a, r) the collection of (the laws of) all positive
strictly 7-SS(a) random variables, 0 < a@ < 1, 0 < r < 1. It follows from part
(i) of the theorem that for every random variable S} whose law is in SS*(a, ),
independent of a symmetric S-stable random variable Z3, the product

(3.15) X = (8HYPz,

is a symmetric 7-SS(af) random variable. For a ; € (0,8) denote by SS*(a;
B, B1,r) the subset of SS*(«, ) consisting of the laws of such S} that the product
in (3.15) is sub-f;-stable. Observe that if the law of S is in SS*(a; 3, 51, 7) then
we can alternatively represent X in (3.15) as

d d
(3.16) X S (835" 0 20, = (St55,) 7125, 19)" 25,

where we are using our usual notation, and all random variables in a product
are independent. Now, it follows from (3.14) that the law of X in (3.7) uniquely
determines the law of the factor S:/ﬁ. Hence, (3.15) and (3.16) imply that

+ d ot B/B1 7+
(3.17) Sa_(Saﬁ/ﬂl) 1Zﬁl/ﬁ-

We have then

exp {_/ (1- e‘”z)fl(dz)} = Ee~u5% = Ee~* " San s,
[1]

= exp {- /000(1 - e“"gl/ﬁz)m(dz)}
= exp {/000 m(dz) /000(1 - e“”zﬁmly)Q(dy)} ;
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where 7 and 7, are (multiples of) the Lévy measures of S} and S:ﬂ /6, accordingly,
and Q is the law of Zg'l /8" Therefore, we conclude that

(3.18) n(A) =m @ Q{(z,y),2 > 0,y > 0: 2°/Pry € A}.

This is a description of the Lévy measures of the laws in SS*(a; 3, 81,7). Since
it follows as above that, in particular, any law in SS*(a; 8, 51,7) must have an
absolutely continuous Lévy measure, we conclude that SS* (o 3, 81, r) is a proper
subset of SS*(a, 7).

Let a < 81 < B2 < 2, and let the law of X be in E(82) N SS(a, 7). Then X
has a representation

X =(SF

a/ﬂz)l/ﬁzzﬂw

with S:/ 5, being a positive strictly r-SS(a/f2) random variable. Since for X
above to be also a sub-f;-stable random variable we must have the law of S;L/ 3, 1O

be in SS*(a/B2; B2, 61, 7), which has been proved to be a proper subset of all laws
of positive strictly r-SS(a/f2) random variables, we conclude that Z(8,)NSS(a, )
is a proper subset of Z(32) N SS(a, ).

It remains to prove (3.11). Assume that an r-SS(a) random variable X is sub-
B-stable for all 3 € («, 2], and consider the family of corresponding positive strictly
r-SS(a/B) random variables that make (3.7) hold (in distribution) for 3 € (a, 2].
This family is, obviously, tight. Its all possible limiting points, as 3 | «, have to be
nonnegative r-SS(1) random variables, hence nonnegative constants. Therefore,
taking weak limits along an appropriate subsequence of 8 | o we conclude that X
is equal in distribution to a constant multiple of Z, and, hence, the law of X is in
S(a).

This completes the proof of the theorem. O

Remark 1. From the argument used in the proof of Theorem 2 we see, for
example, that an 7-SS(a) random variable X with Lévy measure given by

[e ¢}

V= Z ™ (bpnsa + 6_pnsa),

n=-—00
is not sub-f#-stable for any 8 > a.

Remark 2. One can give a somewhat more complete description of type G,
r-SS(a) random variables than that given in Theorem 2. It follows from (3.13)
that the Lévy measure v of such random variables has a derivative of the form

dv(z)
dr

= g(?),

where g is a completely monotone function that can be represented in the form

1 L /(22) —
g(y):_\/g_;/o e~ ¥/(22), 1/2n(dz),
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where 7 is the Lévy measure of a positive strictly 7-SS(a/2) random variable. See
also Rosinski (1991).

Remark 3. It follows immediately from Theorems 1 and 2 that for 0 <
a < 3 < 2, a positive strictly r-SS(a/8) random variable S;’/ P independent of a
symmetric 3-stable random vector Zg, the random vector

X = (S:/ﬂ)l/ﬁzﬂ

is a symmetric 7-SS(a) random vector. In a similar way, starting with appropriate
centered Gaussian or symmetric stable processes one can construct families of
symmetric 7-SS(a) processes that have features one would like to model, e.g.
stationarity, self-similarity, etc.
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