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Abstract. In this paper we introduce a Markov chain imbeddable vector
of multinomial type and a Markov chain imbeddable variable of returnable
type and discuss some of their properties. These concepts are extensions of
the Markov chain imbeddable random variable of binomial type which was
introduced and developed by Koutras and Alexandrou (1995, Ann. Inst. Statist.
Math., 47, 743-766). By using the results, we obtain the distributions and the
probability generating functions of numbers of occurrences of runs of a specified
length based on four different ways of counting in a sequence of multi-state
trials. Our results also yield the distribution of the waiting time problems.
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1. Introduction

In recent years exact discrete distribution theory related to run statistics has
been developed. There are various definitions of run. The four most important
and frequently used success runs are:

(a) En, the number of success runs of size exactly k until the n-th trial
(Mood (1940));

(b) Nk, the number of nonoverlapping consecutive k successes until the
n-th trial (Feller (1968));

(c) M, k, the number of overlapping consecutive k successes until the n-th
trial (Ling (1988));

(d) Gpnk, the number of success runs of size greater than or equal to &k until
the n-th trial.

The reliability of consecutive-k-out-of-n: F systems is closely related to these
run statistics (Aki (1985), Hirano (1986) and Philippou (1986)). The probability
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generating functions (pgfs) and the probability functions (pfs) of these run statis-
tics have been studied by many authors in many situations. Hirano (1986) and
Philippou and Makri (1986) derived the pf of the IV, ;. in independent case. Ling
(1988, 1989) studied the pf related to the M, ; in independent trials. Hirano et
al. (1991) obtained the pgfs and the pfs of M, ; and N, in independent case.
Aki and Hirano (1993) and Hirano and Aki (1993) obtained the pgfs and the pfs
of Ny, My and G, in a two-state Markov chain. Aki (1985) and Aki and
Hirano (1988) discussed the pgfs and the pfs of some distributions related to runs
in a binary sequence of order k. Schwager (1983) discussed the runs in v > 2
possible outcomes at each trial. Aki (1992) studied some waiting time problems
in {0,1,2,...}-valued random sequences. Uchida and Aki (1995) obtained the re-
currence relations of the pgfs of the sooner and later waiting time problems in a
two-state Markov chain. Ling and Low (1993) provided formulae for the waiting
time until the r-th occurrence of a run of indentical symbols. Philippou et al.
(1988) derived a multivariate negative binomial distribution of order k, by mean
of an urn scheme.

Recently, Fu and Koutras (1994) studied the distributions of the most com-
mon run statistics (En k, Nnk, Mnk, and Gp i) based on a finite Markov chain
imbedding technique. Because each of the transition probability matrices of the
most common run statistics (N, x, Mpx and G i) can be viewed as a bidiago-
nal matrix with non-zero blocks appearing only on the main diagonal and on the
diagonal next to it, Koutras and Alexandrou (1995) introduced a Markov chain
imbeddable variable of Binomial type (M.V.B.) and derived the recurrence rela-
tions of probability vectors. Using these relations, they obtained the distributions
of the Ny x, My and G, run statistics and scan statistics. Fu (1996) intro-
duced a “forward and backward principle” for the finite Markov chain imbedding
to study the exact and joint distributions of the runs and patterns in a sequence of
multi-state trials. Koutras and Alexandrou (1997) investigated the sooner waiting
time distributions in both linear and circular problems by using the Markov chain
imbedding method.

Fu and Koutras’ approach provides a unified procedure for the evaluation of
the distributions of runs, scans and patterns. A disadvantage of this approach is
that the dimension of the transition probability matrices increase with the number
n of trials. The evaluation is difficult at large sequences of trials. Koutras and
Alexandrou improved the Markov chain approach for Bernoulli trials. Because the
dimension of the probability vectors is independent of the number n of trials, the
evaluation of the distribution of M.V.B. is easily performed recursively at large
sequences of trials. However, we do not know whether the E, ; is M.V.B., since
it is difficult to create the proper Markov chain which does not move backwards.

In this paper, we extend the concept of the M.V.B. A Markov chain imbed-
dable vector of multinomial type is introduced to study the joint distributions of
the most common run statistics (E, N, M, and G) in a sequence of multi-state
trials. The evaluation of the joint distributions of run statistics is easily performed
recursively for multi-state trials. Further, we introduce the Markov chain imbed-
dable variable of returnable type, which enables the evaluation of the distribution
of Ey, . in a sequence of Bernoulli trials.
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In Section 2, we introduce the Markov chain imbeddable vector of multinomial
type, and give some basic results. In Section 3, we obtain the joint distributions for
Ny iy Mk and Gp . in a sequence of multi-state trials, by applying the results of
Section 2. A numerical example is given in Section 3. In Section 4, we introduce the
Markov chain imbeddable variable (vector) of returnable type. Using the results
of Section 4, we give the distribution for E, ; in a sequence of Bernoulli trials
and the joint distribution of F, s in a sequence of multi-state trials in Section 5.
A numerical example is also given. In Section 6, we discuss the waiting time
problems.

2. Markov chain imbeddable vector of multinomial type

In this section, we consider the run statistics of both identical and nonidentical
independent sequence of the multi-state trials. Let Y7,Y3,... be independent trials

with (m + 1) possible outcomes “0”, “1”,..., “m” in each trial. i.e. ¥7,Ys,...is a
sequence of {0,1,...,m}-valued random variable Assume that Pr(Y; = i) = pgl) ,
i=0,1,...,mfort=1,.. and(z_opt =1), (t=1,2,...).

We introduce the followmg notations:
1) N, @) s the number of nonoverlapping “i”-runs of length k; (¢ = 0,1,
ks
c,m);
(2) M, (") _is the number of overlapping “i”-runs of length k; (i = 0,1,...,m);
(3) G(’k is the number of “”-runs of length greater than or equal to k;,
(i=0,1,.. m)
(4) E ( .k, 18 the number of “”-runs of size exactly k; (i = 0,1,...,m), until
the n-th trlal

Example. Suppose we have a sequence of trials with possible outcomes “0”,
“17 «2” If the outcomes are “11220222011100111122”, then n = 20, m = 2 and

0 1 2 0 1 2
we have Nz(o)z 1 N2(0)2 = N2(0)2 = Méo)z = Mz(o)z 6, Méo)z =
0 1 2 0 1 2
Ggo)2 =1, Ggo)'z =3, G(o)2 = Eéo?2 =1, Eéo)z =1, Eéo)z =2 and N. 203 = 0’

N =2, Ny =1,

Clearly, whenm = 1, it becomes the Bernoulli trials case, which was discussed
by Fu and Koutras (1994) and Koutras and Alexandrou (1995).

For convenience, we use the random variable Xy' ) to represent “¢’-run statis-
tics Er(l),c , Ny(:;c , M(’L and G

Let X, = (X,(,O),X,(ll) yeen ,X,(lm)), (X,(f) is a non-negative integer valued ran-
dom variable). & = (z(@,2(M), ... (™) is a X,’s realization.

Let I{ = max {z® :Pr(X,(:) =z >0}, (¢ =0,1,...,m), and &, = (l(o)
1Y) ..,l%m)). So,Pr(X, =z)=0,forallz g{x:0<z < L,}.

Let e, = (0,0,...,0,1,0,...,0)1x(m+1), (the (k+1)-th element is 1, and other
elements are all 0), (k=0,1,...,m); 1 = (1,1,...,1), ((m+1) elements are all 1).

DEFINITION 2.1. The random vector X, is called a Markov chain imbed-
dable vector of multinomial type (M.V.M.), if
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(1) there exists a Markov chain {Z;,t > 0} defined on a state space (2,
(2) there exists a partition { U, : £ > 0} on the state space Q,

(3) for every z,
Pr(X, =) =Pr(Z, € U,)

and (4)
PI'(Zt S Ua:+:z:* | Zt—l € Uz) = O,
if *#0, or z*#e, (k=0,1,...,m).

From (4), follows that the Markov chain cannot move backwards or jump
directly to a higher state without visiting one of (m+ 1) neighboring states Uz, ,

(k=0,1,...,m).
Without loss of generality, we assume that the sets U, have the common
cardinality s = | U,| for every x, so we denote Uy = {Ug,1,Uz,2,...,Usz s}

We introduce s X s transition probability matrices

(21) At(w) = (Pr(Zt = U:c,j | Zy_y = Uz,i))sx.ﬁ
2.2)  B¥(x) = (Pr(Z; = Usterj | Zic1 = Usi))sxs, (k=0,1,...,m).

Clearly, (1) the entries of A;(x) control the within state one-step transitions,

(2) the entries of Bt(k)(:c) control the between states U, and Ugy., one-step
transitions.
We introduce the probability vectors of the t-th step Z; of the Markov chain

fi(@) = (Pr(Zs = Ups),...,Pr(Z, = U,,)), O0<z<k, (t=0,1,...,n),

where Il is I; = (ZEO),lgl),...,lgm)) and lgi) (¢ = 0,1,...,m) is the largest the
(2 + 1)-th element in subscripts « of partitions U, which include accessible state
of the t-th step Z; of the Markov chain, i.e.

zﬁi) = max{z® : Pr(Z, € Ui z9,.)) >0} (i=0,1,...,m).

When t = n, it is L, (from (3) of Definition 2.1). Let 7, be the initial probabilities
of the Markov chain {Z;,t > 0}, i.e. 7z = fo(z), 0 < ¢ < ly. In the applications
for run statistics, we have usually lo = 0. Then we have

THEOREM 2.1. The double sequence of probability vectors fi(xz), 0 < x < I,
t=0,1,...,n, satisfies

(2.3) fu(@) =fia(@)A@) + Y fi-r(@ — er) B (z — ex)I(z — e > 0),
k=0
o0<z<l), ((t=1,...,n),

where
1 i P istrue
0 other '

1(P) = {
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If X,, is a M. V.M., then the probability distribution function is given by

(2.4) Pr(X, = z) = fo(x)1'.

PROOF. The recurrence relations are immediate consequences of Chapman-
Kolmogorov equations, Definition 2.1 and the form of the matrices A;(x), Bt(k) (),
(k=0,1,...,m). And

Pr(X, = @) = Pr(Z, € Us) = Y _Pr(Z, € Uz;) = fal2)1".
i=1
This completes the proof.

The use of the nomenclature “multinomial type” is justified by the apparent
similarity of formula (2.3) to the following relations

m
Mt Do, - Pmi T, -, Tm) = Pt = 1;Pos -+ P Toy - -+ Ti — Ly, Tm) - i,
=0

where m(n;po, - - -, Pm; L0y - - -, Tm) = z—o!j'{!szgo ---pZm is the pf of the multino-
mial distribution.
In most of the applications, the matrices A(x), Bik)(z), (k=0,1,...,m) do
not depend on . In the following of this section, we discuss this special case.
We consider the probability generating function of X,

en(20, -y 2m) = Z Pr(X, = )25 2" - zp.

0<z<l,
Let 2 = (20,.-.,2m), and let 2% = 25° - - - zpm.

We define ¢,(2) = > g<g<y, fi(®)2® for the Markov chain, then ¢n(2) =
Po<a<t, fn(®)1'2% = e ()1

We introduce XE:; ={z:2® = y0< 2 < lgj),j =0,1,....k—- 1,k +
1,...,m},where0§y§l§k) and k=0,1,...,m.

THEOREM 2.2. If Ai(x), ng)(:c) do not depend on z, and Ai(x) = Ay,
Bt(k)(a:) = Bt(k), (k=0,1,...,m) for all x, we have

(2.5) 0(2) = 91 (2) (At + iszt““)) :

k=0
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PROOF. We have

e(2)= ) fi(z)z"

0<z<l;
=¥ [ft_l(a:)At +) fici(x — &) BP I(z — e > 0)] z*
0<z<l, k=0
= Y fia(@A+ Y [ 3 fi(z - e)BPI(@ - e > 0)21}
0<z<l, k=0 |0<z<l,
= I: Z ft_l(m)zm} Ay
0<z<l,

+ Z {zk [ Z Jii(z —ep)[(x — e > O)z‘”“e"} Bfk):l
k=0 0<z<I,

= | 3 fal@z® Awi[zk[ > ft-l(w)zz’] Bt"“)]
k=0

0<z<l¢ 0<z<l,—e;
= | 2 fa(@)2"| 4
0<z<l¢
m
k
D[ | 2 f@2" = 3 fealw)2®| BY
k=0 0<z<l zex®)

a®

Note that §; — l;_; is O or a finite sum of different e’s, (k = 0,1,...,m).
Ifl, - ,_; =0, we have

0(2) =g (DA+Y |a | Y fa@e®~ Y fii(z)z®| BY

k=0 0<z<l_; zex®
a®p
t—1
m m
— (k) k
=@, 1(2) [Ac+ szBt - Z 2k Z fio1(z)z® | B®
k=0 k=0 (k)
TEX k) |
t—1

Setting z = 1 and multiplying both sides by 1’, because ¢,(1)1’ = ;(1) =
>o<e<t, P1(Xe = ) = 1 and (4; + 3710, B¥H1' = 1/, and ¢, 1 (1)1 =1, we
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obtain

f: Z a:)B(k) 1 =0.
k=0

ex
u<")

Noting that each term of the summation is nonnegative, we get

S fa@BP =0 (k=0,...,m).

Hence if lgk) = té’f)l, (k=0,1,...,m), we have
(2.6) fii(z)B® =0, if ze€ X(‘l’f,l)

Generally, if §, = L,_; + E;=o e;;, we have

¢ (z) = > fio1(x)2" | A
0<e<l_1+3 ] g€,
Y s
k=0 0<e<l_1+3 7 o e€i; €k

= Z fio1(=z ZAH'Z Z fi—1(z)2® A,

0<z<l— 7=0 mex(t())

f
(9] +1)

+ (i—k i )Zi, Z fi1(z)z®| B&)

s=0 s=r+1 0<a <l 1+35 €, —ei,

‘Pt—1(z)At+Z Z fi-1(2)2% | A
i=0 | pex)

T
b))

T .
+ ZZis Z fi1(z)z® | B
s=0

0<z<l_1+3 7 o 45 €

+ Z Zi, Z fi-1(z)z® B(ls

s=r+1 05¢S‘t~1—3i3+25=0 €i;

425
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2| 2 @A
=0 | g
"

> fia(@)z"| B
| 0<z<l_1

r r
P a | X X fa@| B
s=0 j:O,j;és zEX 1(‘))
L (t21+1)
m [ .
+ Y a| Y fa@z| B
s=r+1 _OSsz_l—e,-s
m r )
Y a|Y X fa@E| B
s=r+1 7=0 zeX(' 5)
| @) 1)
™ T .
=‘Pt—1(Z)At+Z Z fe-1(x)z" Ay +Zzi,‘Pt—1(z)B§h)
=0 (i5)
J zGX(l(l )
r .
Tal ¥ % s st
s=0 7=0,5#s a:eX(l
(l(,)

From formula (2.6),

=0

Z fir(@)z® Bé’”

2 fior(z)2® | B

~ Yol Zzex(t(s) Jio 1(.'1:)2“3(’3 ]
alie
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Then by setting 2z = 1, and multiplying by 1’, we have

Yol D fia(@A +Z > Z fia(z) B
7=0 mGX(t $=0 | j=0,j#s EX iz)

1G59) (l(,>)

+ Y 1Y Y sa@B| =0

s=r+1 | =0 :BEX(i(ji)_)
(7
and every term is equal to O (because every term is nonnegative).
Hence we have

@(2) = 0,1 (2) (At £y sz§“) :

k=0

This completes the proof.

From this theorem, we have

(2.7) wn(z) = @y(2) H (At + z szt(k)> 1,

where

Z Jo(x)2z® = Z A

0<zx<lo 0<z<lp

It is worth mentioning that in most of the applications for N, i, G x and My &,
we have Iy = 0 and mo = (1,0, ...,0). In this case, we have p,(z) = (1,0,...,0).
Using Theorem 2.2, we can obtain the following marginal distribution of X,,.
Suppose {zl,...,ir} c {0,1,...,m}.
Let X = (x$ ..., X)), and let g(i-ir) = (z(0) . 2() be a

corresponding realization. Let l(“’ o) = (l(“) .,lgi')).

We introduce g, (z( ’“)) = 2 jglinnir} o<z i Fe(®): (¢ = 0,1,
M.
Let z; =1, j # i1,...,i, in formula (2.7), we have the probability generating
function of X"t

n X T :;
on(z1, .. Z.,-)—(po 21y % H A+ Z Bt( ) +ZzijB§ ) 1,
=1 kg{i1,ir} j=1
where o
Goltr. v 2r) = S gl

o<zt "")Slgil ,,,,, ir)
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And,

COROLLARY. We have

(28)  gi(xlrt)) = gy (xlri)) [ 4, + Z B
k@ {i1,.ir}

+ th_l(w(il ----- i) _ ej)Bt(ij)I(:l:(i”“"i’) —e; > 0),

and
(29) PI'(X,(Lil"“’ir) — m(il ..... i,.)) — gn(a:(zl ..... i,_))ll,
0< i1, ir) < L,(f‘ ,,,,, ir)'

The rest of the section will be used to the discussion of the homogeneous case,
ie. A(z) = A, B®(2) =B® (k=0,1,...,m), for all t and =.

THEOREM 2.3. IfAi(z) = A, B¥ (z) = B®) (k=0,1,...,m), and b = 0,
we have

n
E(XY)) =¢,(1) Y D"'BUIY,

=1
E(XM X))
n i—1 n—1i
— ‘P()(l) Z I:Z Ds—lB(a)Di—l—sB(b) + Di—lB(b) ZDswlB(a):l 1/’
=1 Ls=1 s=1
(a #b)
E(XP))
n i—1 n—i
:S"o(l)z [Z Ds-1pU) pi-1-s | pi-1gG) ZDS—I n Di—lJ B
i=1 [s=1 s=1

And their generating functions are

> ; w .
Myor(w) =D, BXP ™ = 7= @) - wD) BT,
n=1

Mx @ x o (w)

o0
=Y EX@XPr

n=1
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2
Y o(1)(I = wD)" [B@(I — wD)"'B® + BO(I — wD) ' B@)|1,
- w

(a #0)

X(;))z w) ZE( X(])

= ’_"’w%u)(f — wD) 'BWw(I -~ wD)"'BY + 11’

where D = A—I—EZ;OB(’“), (j,a,b=0,1,...,m).

These formulas are complicated. But, noting the most run statistics satisfy
the condition of the theorem, and we have that ¢,(1) = (1,0,...,0), and it is easy
to apply these formulas.

PRrROOF. Taking the derivative in ¢(z) with respect to z; and setting the
z =1, and using (A + Y1 ,B®)1’ =1’ and
d e i1 n—i
—(A+2B)" = > (A+2zB)"'B(A+zB)

i=1

we can obtain these results.
Indeed, we have,

. o 0
E(X9) = 5;‘071(7') lz=1= Y
J J

Yo(2) (A + isz(k)> 1’]

k=0

_ (%%(z) |z:1) <A+ isz“C))nl’ =1

k=0

9 (k) :

+ (1) o2 A+szB 1
z=1

Z TMg (A + Z B(k)) 1

0<z<ly k=0

k=0
n m i—1 m n—i
+ (1) Z (A + Z B(k)> B (A + Z B(k)) 1
k=0

z=1

n

i=1 k=0
n

Z ZEsz]., +(P0(1) ZDi—lB(j)ll — ‘Po(l) ZDi~1B(j)1f,

0<z<lp i=1 i=1

and

My (w EE(X(J) " =(1)

DI

oo

Z i Di—l,wn

B!

= (1) BY)1!
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o0 . [e o]
1> [D (z o)
i=1 n=t

o0

When a # b (0 < a,b < m), we have

BU Y/

BU1 =

%(1) ——po(1)[l —wD] ' BOY"

B(XPXP)
2

92 E: m "
= —_— = _ (k') !
87,95, 77 (%) =1 (azaazb""’(z) "“1) (‘“ kzzoB ) !
8 - i—1 a 8 - i—1 b
(5mle) ot P B ¢ (o) o) 050

i=1 i=1

LA n—i
+p(1) ) [Z De~'Bpi-i=sp®) 4 pi-1p®) )" p=-1 B(“)} 1
=1

s=1

n i—1 n—i
=@(1)> [Z D*-1B) pi=1=p®) 4 pi-1p®) )" ps-1 B(“)] v,

s=1 s=1

and
oo
M x(a) x5 (w) = Z E(qua)Xr(zb))wn
n=1
o0 n i—1 ‘
= (1) l:z w” [Z Z Ds-1Bla) pi-1-s g(®)
n=1 i=1 s=1
n n—i
+ Z Z Di—lB(b)Ds—lB(a)]] 1
=1 s=1
where
oo n i—1
Z Z Ds—lB(a)Di—l—s,wn
n=1i=1 s=1

n

Ds—lB(a)Di—l—swn

M
M:

n=1s=11=
00 snl :+ © n n—s
- Z Z Ds—lB(a)D(i—s)—l,wn — Z Z Z Ds—lB(a)Dr—lwn
n=1s=1 (1—s)=1 n=1s=1r=1 .

M
NE

n—s 0o 00 n—s
Ds—lB(a) (Z Dr—lwn) — Z ZDs—lB(a) (Z Dr—lwn>

1 r=1 s=1n=s r=1

3
i
-

s

o0 n—s

D*"1B@ (ZZDT ! ) ZDS gl (Z > Dt ")

n=gr=1 r=1n=r+s

pﬂﬂg

[
Il
—
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o0 1 nla) 00 . oo 00 1 nta) 00 ) wrFs
= D*~*B'¢ D™~ wh || = D*~*B'¢ D™ —
w2 oo o0
— Z (Ds—lB(a) ZDr—lwr—ljl ws—l)
1-w s=1 r=1
w2 o0 o0
— — (Z Ds—lws—1> B(a) (Z Dr—lwr—l)
s=1 r=1
— w? -1 p(a) -1
—1_w(I-—wD) B (I —wD)™".
Similarly, we have
c© n n—t 2
S S Y Dit'B®Dpelyn = 1“’ —(I—wD)'BY(I —wD)™".

n=1 i=1 1

[
N

Hence we get

Mx @ x o (w)

2
Y (1) — wD) B (I —wD)'B® + BO(I —wD) ' B@]1".

1—w

82
Similarly, we can deduce the E((X,(,’)) ) and M x )2 (w).
This completes the proof.

We introduce the double vector generating function ®(zq, 21, ..., 2Zm,w) =
S0 020, .- Zm)w, for homogeneous case, then ®(z,w) = @o(2)[] — w(A +
ST B (Because B(z,w) = Yroleo(2)(A + TitozxB®)wt] =
©o(2)[Ciso(w(A + 320%, 2B = o (2)[I —w(A+ 20, zB®)71)

3. Joint distributions of NT(:}C M,(f%c and Gs)ki runs

B

Suppose we are given a sequence of trials Y7,Ys, ..., with possible outcomes
o7 417, “m”, and Pr(Y; = 1) = p{, (4 =0,1,...,m), t > L.

Let us denote by x; the number of “i”-runs of length k; up to the ¢-th trial
(i = 0,1,...,m). Let y* be the number of trailing “”, i.e. the number of last

consecutive “i” counting backwards. Clearly, only one of yg3,¥%7,...,¥s, is not
equal to 0.

) n,ko? n,kﬂ'"’Nr(LT,rlzzn)
Let IS = [&], and y; = y; — [Z—]kz, (i=0,1,...,m).
We can give'a Markov chain {Zt = (20, T1, -, Tm; Y0, Y1, -+, Ym) | £ > 0}
The state space is

3.1 Non-overlapping runs (N, © N

Q= {(T0,Z1,- -+ Tm; Y0 Y1y - Ym) | 0 < 2 <IP,0 < yy <k — 1,
i=0,1,...,m}.
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Define U, = {(%;%0,¥1,---,Ym) | 0 < ¥ < k; — 1,4 = 0,1,...,m}, then Q =
Uo<z<t, Us-

Using lexicographical order, we let U, = {(z;0,...,0),(z;0,...,1),...,
(z;0,...,km — 1),(z;0,...,1,0),(x;0,...,2,0),...,(z;0,...,km—1 — 1,0),...
(x;1,0,...,0),...,(z;ko — 1,0,...,0)} = {Ug1,Uszz2,...,Uzs}, where s =
S olki — 1) + 1.

With this set up, the random vector (NT(LO,ZO, Nr(tl,zl ,e
nition 2.1, with ’ ’

LN 7(1",3': ) satisfies Defi-

(3.1) Pr(Z, = (x;0,...,y +1,0,...,0) | Zy_1 = (2;0,...,9;,0,...,0)) = p\”
0<y;i<k;—2, 0<Z<i<m,
4)
(32) Pr(Zi=(2;0,..., 1 ...,0)| Zsc1 = (230, ..,5s,...,0)) = p¥
0<y;<k—-1, 0Zi,j<m, i#}j,
(3.3) Pr(Z, = (x+e;0,...,0) | Zi_1 = (x;0,...,k —1,0,...,0)) = p
0<i<m.

Matrices A;(x), ng)(a:) (k =0,1,...,m) can be given by formulas (3.1), (3.2)
and (3.3) as formulas (2.1) and (2.2).

As an illustration, let m = 2, kg = 2, ky = 2, k2 = 3, then we have s = (2 +
2+3)-2=5, and U; = {(;0,0,0),(x;0,0,1),(x;0,0,2), (=;0,1,0),(x;1,0,0)},
with

(;0,0,0) (x;0,0,1) (;0,0,2) («;0,1,0) (x;1,0,0)
1

2
0 p @ (1 %z;
0 0 p P p
Ay(z) = o 0 0 ) o |
b b
O N
0 ¥ 0 pi” 0
/(m + 62,0,0,0) (707071) (7Oa0a2) (a0,190) (v17070)
0 0 0 0 0
2.\ _ 0 0 0 0
Bt (23) - pgz) 0 0 0 0 ’
0 0 0 0 0
\ 0 0 0 0 0
(iB + 6170a070) (307()’ 1) (70a0a2) (a07170) (1170’0)
0 0 0 0 0
1 0 0 0 0 0
B, () = 0 0 0 0 0 ’
Y 0 0 0 0
K 0 0 0 0 0
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0 0 0 0 0

0 0 0 0 0

B¥(z) = 0 0 0 0 0
0 0 0 0 0

¥ 0 0 0 0

Therefore the probability function of the random vector (Nt(?c)o, Nt(§c)1 - Nt(?,),. )
can be successively evaluated for all t by making use of Theorem 2.1.

Clearly, A;(x) = Ay, B(k)(a:) B(k) (k=10,1,...,m), so Theorem 2.2 can
be used. Further, in the i.i.d. case or the Markov cham dependent trial case, we
have Ai(x) = B(k) B®) (k=0,...,m), Theorem 2.3 can be used.

3.2 Overlapping runs (M(O) MY ,MT(:ZL)

n,ko? " n,ky?

Let le) =n—k; +1, and

y; if yr<ki—1
S S BT

Then, we have

Q={(z;90,¥1,-- - Ym) | 0L < b, -1 <y; <k; —1,i=0,1,...,m}

U u.,

0<z<l,
where U, = {(Z;y0,¥1,---,ym) | =1 < y < ki i = 0,1,...,m} =
{(z;0,...,0),(x;0,...,1),...,(x;0,...,km — )(a: -1),(x;0,...,1,0),
(x;0,...,2,0),...,(;0,...,kn_1 —1,0),(,0,..., 10) (a:;lO ,0),.

(x;k0—1,0,...,0),(x,-1,0,...,0)} = {Ug,1,Us.2, - - Um,s} ands = Zmok +1
We have

Pr(Z; = (2;0,...,4 + 1,0,...,0) | Zy_1 = («;0,...,%,0,...,0)) = p{”
0<y; <k;—2, 0<i<m,
)
Pr(Zs = (@;0,..., 1 e 0,0) | Zoct = (230, .., ps, .., 0)) = p
-1<y;<ki—1, 0<4,5<m, i#j,

O]
Pr(Z, = (x + €;0,..., ~1,...,0) | Zeot = (230,.... ki — 1,0,...,0)) = pi¥
0<i<m,z1,
)] (%)
Pr(Z = (z + €;0,..., ~1)...,0) | Ze_1 = (;0,...,~T...,0)) = pi¥

0<i<m.
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For the above illustration, we have s = 8, and U, = {(;0,0,0),(x;0,0,1),
(x;0,0,2),(z;0,0,-1),(=;0,1,0),(x,0,-1,0), (x;1,0,0), (x; —1,0,0)}, with

((000) (001) (002) (00—1) (010) (0—10) (100) (~100))
o p? 0 o p p) 0
0 0o p® 0 (D) P
0 0 0 0 t(” 0 (") 0
Az)=] o 0 0 0 §” 0 p(") o |,
o 2 o 0 0 0 p¥ 0
o 2 o 0 0 0 (°> 0
o P o 0 M 0 0 0
\ 0 (2) 0 0 “) 0 0 o )
( (000) (001) (002) (00— 1) (010) (0-10) (100) (~100)
0
0
o
B (z) = <2> ,
0
0
0
\ 0
/(000) (001) (002) (00—1) (010) (0—10) (100) (~100)
0
0
0
B (z) = 0,
(1)
2
0
\ 0
/(000) (001) (002) (00—1) (010) (0—10) (100) (—100)
0
0
0
B (z) = 0
0
%
Y2
\ o
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3.3 Runs of length at least k;, (G} ,GC),,.. ., GUL )

) n,ko’
Let 15 = [%‘%], and

v; if yr<ki—1
S B B " Y

The state space is

Qz{(m;yo,yl,...,ym)|0§a:§ln,—lgyiSki—l,z’zo,l,...,m}

= U U,,

0<z<l,

where U, = {(%;%0,¥1,---»¥m) | =1 Sy < ki— 1,0 = 0,1,...,m}, and s =
S oki+ 1. And we have

Pr(Zt=(:c;0,...,yi+1,0,...,0) | Zi—1 :(w?O,---,yi,O,-..,O))ngi)
0<y; <k;—2, 0<i<m,
)
Pr(Z = (2:0,..., 1)y 0) | Zecy = (20, 4y, 0) = p
—1<yi<ki—1, 0<4,j<m, i#}],
(1)

Pr(Z = (x + €30,..., ~Tr...,0) | Zeoy = (%;0,..., ki — 1,0,...,0)) = p{"
0<i<m,
and
(0 (0
Pr(Zs = (0,0, =Ty ,0) | Zeet = (230,..., =T}, 0)) = p{’
0<i<m.

3.4 Numerical example
We consider the distribution of (Néog) , Nélg ) N5(23) ) in a sequence of three-state

trials of length n = 5. For outcomes “0”, “17, “2”7, we assume that the ¢t-th trial’s
probability is p® = 75, pi = 3, p® =1 p{” — p".

Using Theorem 2.2, where A; and ng) (k = 0,1,2) are given in Subsection
3.1, we get ps(z0,21,22) = 0.0138922 + 0.017082¢21 + 0.041362022 + 0.190172 +
0.0051622 + 0.0209521 22 + 0.115932; + 0.2371329 + 0.35832. Hence Table 1 gives
the exact joint distribution of (Ns(oz) , N5(12) ) N5(2:,3)

Let z; = 1 and z3 = 1, we have @5(20,21 = 1,22 = 1) = 0.0138922 +
0.2486420 +0.73749. The marginal distribution of N{) is Pr(N{% = 2) = 0.01389,

Pr(N{) = 1) = 0.24864, and Pr(N{9 = 0) = 0.73749. This is the example of Fu

and Koutras (1994).
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Table 1. The exact joint distribution of (Ns(?zz ) Nélg , Nézz) ).

X1=0 X1=1 X1=2
Xo=0 X2=0 0.35832 0.11593 0.00516

X2 =1 0.23713 0.02095 0.73749
Xo=1 X2=0 0.19017 0.01708

X2 =1 0.04136 0.24864
Xo=2 X;=0 0.01389

X2=1 0.01389

4. Markov chain imbeddable variable of returnable type

In this section, we prove that Markov chains which can move backwards to
the neighboring state possess the similar property.

Let X, be a nonnegative integer valued random variable, and I, = max{z :
Pr(X, = z) > 0}.

DEFINITION 4.1. The nonnegative integer valued random variable X, is
called a Markov chain imbeddable variable of returnable type(M.V.R.), if

(1) there exists a Markov chain {Z;,¢ > 0} defined on a finite state space (2,

(2) there exists a partition {U,,z = 0,1,...} on the state space ,

(3) for every x =0,1,..., we have

Pr(X,=2)=Pr(Z,€U,;), z=0,1,...
and (4)
Pr(Z, €Uy | 241 €U,) =0, if y#z—1,z,2+1.

Without loss of generality, we assume U, (z = 0,1,...) have the same cardi-
nality s = |U.|, and denote U, = {uz1,uz2,. .., Uss}-
We introduce the probability vectors
fi(@) = (Pr(Z; = um ), Pr(Zy = ug2), ..., Pr(Z; = ugs)),
x=0,1,...,l;, t>0,

where [; is the largest subscript of partitions U, which include accessible state of
the t-th step Z; of the Markov chain, i.e.

¢ = max{z : Pr(Z; € U,;) > 0},

when t = n, it is [,. Let m, be the initial probabilities of the Markov chain
{Z:,t > 0}, ie. mp = fo(z), (x=0,1,...,1).
We introduce s X s transition probability matrices
At(x) = (Pr(Zt = Ugy | Zy1 = uwi))sxs’
Bt(iv) = (Pr(Zt = Ug41,5 1 Zy 1= uzi))sxs:
Ct(x) = (Pr(Zt = Ug-1,5 ' Zt—l = uwi))sxs-
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Clearly, (1) the entries of A;(z) control the within state one-step transitions,
(2) the entries of By(x) control the one-step transitions from state U, to state
Uz+1, (3) Ce(z) control the return transitions from U, to U, _1.

Using the Chapman-Kolmogorov equations, we have

THEOREM 4.1. The probability vectors fi(z), 0 < z < l;, t = 0,1,...,n,
satisfy

(A1) filz) = fi-r(2)Ae(z) + fim1(z — 1) Bz — 1) + fi-1(z + 1)2Ce(z + 1)
(x=0,1,...,0l;), (t=12,...,n),

and
fily) =0, y<0 or y>1Il, (t=12,...,n),

and folz) =7,, (x =0,1,...,1o).
The probability distribution function of a M.V.R. X,, is given by

(4.2) Pr(X, =z)=f.(2)1', (z=0,1,...,1,).

We consider the probability generating function of X,

[ L, I
on(z) = ZPr(Xn =1x)2° = an(:t)l'zz = (an(x)zz) 1.
z=0 =0 z=0

We define @, (z) = Z:fs’zoft(:c)zI for the Markov chain, then ¢,(2) = ¢, (2)1".

THEOREM 4.2. If Ay(z) = Ay, Bi(z) = By, Ce(z) = Cy for allz =0,1,...,
(i.e. the transition probabilities do not depend on x), we have

(4.3) 0, (2) =, 1(2)(As+ 2By + 271Cy), t=1,2,...,

where @y (z) = E?:o My 2.

PRrOOF.
I
@i(2) =D filz)z"
=0

I
=Y [fi1(@As + fi1(® = 1)Bi + fior(z + 1)Ci) 2"

z=0
le le—1 le+1
= th_l(l‘)AtZz + Z ﬁ_l(I)BtZz+l + Z ft_l(Z)Cth_l.
=0 =0 z=1

Because Iy = max{z : Pr(Z; € U;) > 0}, we have fi(z) = 0, z > [; and
0<lpy<lh <---<l, Wegetl,— 11 € {0,1}, since the Markov chain cannot
jump directly to a higher state without visiting its next state.
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(1) If Iy = 1l;_q, we have

lt—l lt—l

() = Zﬁ_l(x)z“’ A+ th—l(x)zz—ft—l(lt—l)zl“‘ 2B,
=0

=0

le—1
+ (Zﬁ_l(:c)zz —fi1(0)2° + fia (L1 + l)Ctzl‘"l) z7cy
=0

=@, 1(2)(A¢ + 2By + 271Ct) — fim1(ly—1)2 T B, — £21(0)271C; + 0.

Setting z = 1 and multiplying both sides by 1/, because of ¢,(1)1" = ¢4(1) =
EfleO Pr(X;=2z)=1,and (A: + B: + C1)1' =1, p,_,(1)1’ = 1, we obtain

(fic1(le—1)Be + fi—1(0)C)1’ = 0.

Because every term in the left hand side of the above formula is nonnegative, we
get
ft—l(lt—l)Bt =0 and ft_l(O)Ct =0.

Hence we have
@, (2) = ¢,_1(2)(Ar + 2By + 271 Cy).

(2) Ifly =1;_1 + 1, we have

le—1 le—1
p(z) = (th—l(x)zx + fi-1(le-1 + l)zl°‘1+1) A + (th_l(:c)zz) 2By
z=0

z=0

le—1 9
+ (th-l(x)zx — £i-1(0)2° + th_l(lt_.1 + i)zl"l‘"i) e,
z=0 i=1
= ‘pt—l(At + 2B + Z_1Ct) +ft—1(lt_1 + 1)th~1+1At
— [i-1(0)271Cy + fim1 (lo1 + 1)2" 1 Co + fma (L1 + 2)24 Gy

= ‘Pt—l(z)(At + ZBt + z'lCt) +0-— ft_l(O)Z——lCt +0+ 0,

where fi_1(l;—1 +1) = 0, fi—1(l;—1 + 2) = 0 and the term f;_;(0)C; = 0 by the
same argument as (1).
Therefore, we get

¢(2) =1 (2)(Ae + 2B, +271Cy),  t2>0.
This completes the proof.

Remark. The f;_1(z)C; is the backwards transition probability vector from
Uz to Uz_1, and the f;_; (z) B, is the transition probability vector from U, to U, ;1.
Because the random variable X, is nonnegative and l; = max{z : Pr(Z, € U,) > 0}
is its upper end point, these transition can not occur when z = 0 or z = l;_; (at



JOINT DISTRIBUTIONS OF RUNS 439

l; = l;_). This is an intrinsic reason for f;_1(0)Cy = 0 and f;_1(lt-1)B: = 0 (at
Iy = l;_1). By the reason, Theorem 2.3 can be viewed intuitively.

In fact, Theorem 4.2 can be recognized by the following reason. The coefficient
vector f;_1(x) of 2% of p,_, (#) reflects the probability vector of {Z;—1 € U}. Given
{Z;_, € U,}, there are three possible transitions: to Uz, Uy+1 and Uz—;. Given
{Z,_1 € U}, the probability vector of {Z; € U} is f;—1(z)A:, which is a part of
coefficient of 2% of ¢,(z); the probability vector of {Z; € Uz41} is fi-1(z) By, which
is a part of coefficient of z2(**1) of ¢,(2); the probability vector of {Z; € Uz—1}
is f,_1Cy, which is a part of 2~ of ¢,(2). Given {Z;_ € U,}, the probability
generating function of Z; is (f;—1(z)2%)(A; + 2By + 271Cy). Hence on condition
that A;, B;,C; do not depend on z, we have ¢,(2) = ¢,_1(2)(A¢ + 2B; + 271 Cy).
(Theorem 2.2 and Theorem 4.2 can be recognized by a similar reason.)

From this theorem, we have

(4.4) ©n(2) = py(2) H(At + 2B+ 271Cy)Y,

t=1

where

lo lo
0o(2) =Y folw)z® = D maz™.
r=1 =0

COROLLARY. If X, is a Markov chain imbeddable variable of Binomial type
(M.V.B.), we have C; =0,t=1,2,..., and

P (2) =p,_1(2)(As +2By), t=>0.

This is Theorem 2.2 of Koutras and Alexandrou (1995).

It is convenient for evaluating the distribution of run statistics by using The-
orem 4.2. Koutras and Alexandrou (1995) discussed the Ny x, Mpk, G, and
scan statistics. We will discuss the E, ; runs in Section 5.

Similar to Theorem 2.3, we have

THEOREM 4.3. If Ai(z) = A, Bi(z) = B, Ci(z) = C, for allz =0,1,...,1,
(t=0,1,...,n), and lp = 0, we have

E(Xn) =¢o(1) Y_D'"H(B-O)1,

i=1

n i—1
E(X2) =¢y(1)>_ [>_ DY (B-C)D"'*(B-C)
i=1 Ls=1
+D"Y(B - 0) gDs—l(B -C)+ DY B+0O)|1.

s=1
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And their generating functions are

Mx(w) = 3 E(Xa)u" = -——po(1)(I - wD) ™ (B~ O)1,

Mx2(w) =Y E(X2)w"
n=1

1—w

where D = A+ B+ C.

¢o(1)(I - wD)™[2w(B - C)(I — wD)"}(B - C) + (B + C)|1,

Clearly, we can extend these results of this section to random vector. Similarly
as the notations and methods in Section 2, we have the following definition and
theorems.

DEFINITION 4.1'. The random vector X,, is called a Markov chain imbed-

dable vector of returnable type (M.V.R.), if
(1) there exists a Markov chain {Z;,t > 0} defined on a state space (,
(2) there exists a partition { U, : £ > 0} on the state space Q,

(3) for every z,
Pr(X, = z) =Pr(Z, € Uy)

and (4)
Pr(Z, € Upygr | Zt-1 € Uy) =0, if x*#0, or z* # te,
(k=0,1,...,m).

Let

Alx) = (Pr(Z: = Us,j | Zi—1 = Us,i)),
B () = (Pr(zs = Upsepj | Ze-1 = Us ),
Cz(k)(-’”) = Pr(Zs =Uz—e,j | Zt-1 =Usz;)), (k=0,1,...,m).

We have

THEOREM 4.1’. The probability vectors fi(z), 0 < x < L, t =0,1,...,n,
satisfy

(@) = fir1(2)Au(@) + Y foor(z — &) B (z — ex)

k=0

+> fialz+e)CP(z+e) (O<z<b), (t=1,...,n),
k=0
and

fi(x) =0, if z¢{x:0<x <UL}
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The probability distribution function of a M.V.R. X,, is given by
(4.5) Pr(X, = z) = f,(x)1.

THEOREM 4.2'. If Ay(z) = Ay, B (x) = B® | and ¥ (z) = ) for all
z, (k=0,1,...,m), we have

m m
(4.6) e (z) =¢,_1(2) (At + Z szt(k) + Z z,:lCt(k)) , t=1,2....

k=0 k=0

Using these theorems, we obtain the joint distribution of (E,(:)k,z = 0,1,
...,m) in the next section.

5. Distributions of E, x and (Ef;)kt i=0,1,...,m)

5.1 Success runs of length ezactly k, E, &

Let E.; be the number of success runs of size exactly £ until the ¢-th trial,
in a sequence of Bernoulli trials. We regard the value 0 as success and the value
1 as failure.

Let us denote by z the number of “0” runs of length exactly &£ up to the ¢-th
trial. Let y* be the number of trailing “0” (i.e. the number of last consecutive “0”
counting backwards, y* = 0 if the ¢-th trial is “17).

Let [, = [2t1], and
y* if y*<k-1
y:{—l if y*>k .

= k1
-2 it y*=k

Then we can give a Markov chain {Z; = (z,y) : t = 0,1,...}. The state space
is L
Q={(z,y)|0<z<lp,-2<y<k-1}=JU.,
z=0
where U, = {(z,y) | -2 < y < k -1} = {(z,0),(z,1),...,(z,k — 1),(z,-2),
(z,—1)}, and s =k + 2.

The state (0, —2) is an additional hypothetical state (inaccessible), in order
to make the cardinality of Uy equal to |U;| = k + 2. Because the additional state
(0, —2), we have f;_1(0)C¢ = 0. And the Markov chain can not be transferred to
a negative state.

With this set up, the random variable E}, ; satisfies Definition 4.1, with

(5.1) Pr(Z; = (z,y+1)| Ze-1=(z,9)) =p, O0<y<k-2
(5.2) Pr(Z; = (z,-1) | Zi—1 = (z,-1)) = p,

(5.3) Pr(Z; = (z,0) | Zt-1 = (z,y)) =1—-p;, —2<y<k-2
(5.4) Pr(Z;=(z+1,-2)| Zi—1 = (z,k = 1)) = ps,

(5.5) Pr(Z,=(z-1,-1) | Z¢-1 = (z,-2)) = ps.
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The transition matrices A;, B; and C; can be obtained by these formulas.
As an illustration, we consider Es 5. In the example, n =5, k =2 and I5 = 2,
and U, = {(z,0),(z,1),(z,-2),(z,-1)}, (x =0,1,2), and s = 4. We have

(z,0) (z,1) (z,-2) (z,-1)

qt Pt 0 0
A= @ 0 0 0 )
qt 0 0 0
q 0 0 Dt
(,0) (z,1) (z,-2) (z,-1)
0 0 0 0
B; = 0 0 Dt 0 s
0 0 0 0 )
\ 0 0 0 0
(I’O) (Z’l) (1‘,—2) (.2),—1)
0 0 0 0
0 0 0 Dt
\ 0 0 0 0

The initial probabilities are wg = (1,0,0,0), and 7, = O, for all z # 0. Us-
ing Theorem 4.2, ¢,(2z) = (1,0,0,0), ¢;(2) = (q1,1,0,0), vo(2) = (q1g2 +

P192, q1P2, 2P1P2,0), - . ..
For a sequence of Bernoulli trials of length n = 5, in which the ¢-th trial’s

probability of success is p; = (t-|1-_1) (t =1,2,...,5), we have p5(2) = p5(2)1’ =
0.7931 + 0.20282 + 0.004222. The result agrees with Fu and Koutras (1994).

5.2  Runs of length exactly k;, (E,(Sio, e Eﬁ",’iﬂ)

Let I$) = [2L], and

y; if yr<ki—1
yi=( -1 if y'>k
—2 if yi=k

The state space is

Q={($,y0,y1,,ym)|0§$§lm_2fyz§kz—1,1=0;1y‘,m}

= U U:m

0<z<l,

where U, = {(z;y0,¥1,---»Ym) | 2 < y; < k;—1,i = 0,1,...,m}, and s =
Z;io(ki-i-l)—#l. And we have

Pr(Z, = (%;0,...,5: +1,0,...,0) | Zy_1 = (2;0,...,4;,0,...,0)) = p{”
0<y; <k;i—2, 0<i<m,
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(® @
Pr(Z = (230,..., <1)...,0) | Zet = (:0,..., - 1,...,0)) = p{"
0<i<m,
()
Pr(Z = (0,..., 1 yeens0) | Zect = (0., 9. .,0)) = B
-2<y; <ki—-2, 0Z<4,j<m, i#j
(%)

Pr(Z = (o + €0, ..., ~2,...,0) | Zs—y = (2;0,. ..,k — 1,0,...,0)) = p{”
0<i<m,
and
(3) @ -
Pr(Z = (@ — €0,..., ~T)...,0) | Zoy = (:0,...,722,...,0) = p
0<i<m.

As an illustration, we consider the distribution of E(O), E(l), E?) in a se-
5,22 45,20 £53
quence of three-state trials of length n = 5. For outcomes “0”, “1”7, “2”, we assume
. o 1
that the t-th trial’s probability is p§°) = ﬁ—l—, pg ) = t1+2’ p§2) =1- p§°) - pgl).

Using Theroem 4.3, we get

2 2
A + E Zk.ng) + Z Zk—lcgk) =

k=0 k=0
©o0) o p® o o o Y o o Y o 0
©01) o o pP o o M o R 0
2 0 0o o0 zpP o M o o 9 o 0
©-2 0 0 0 o P P o o % o 0
©@-1 0 0 0 0 PP pM o o Y o 0
©w) o P o 0 0 0o zptM o Y o 0 ,
©0-20 o pi¥ o 0 0 0 o M K9 o 0
©0-10 o p{? o 0 0 0 0 P A S ) 0
0y o p{¥ o 0 o oM o 0 0 zp® 0
(-200) o p{¥ o 0 o Y o 0 0 0 z5'p®
(-100) 0 p{? o0 0 o M o 0 0 0 p{®
and @y(20,21,22) = Yo<a<t, Fo?0 21 %3° = Wo = (1,0,...,0), where A; and

Bt(k),Ct(k), (k = 0,1,2) can be given from the above formulas. Hence we have
s(20,21,2) = ol20, 21, 22) Ty (A + Taog 2Bl + Tpigzh VCLNL =
0.0416722+0.0140472021 +0.0413592922+0.1473702 +0.00158727 +0.02095221 22+
0.0967442; + 0.1294302 + 0.544336. Hence Table 2 gives the exact joint distribu-
tion of (Eéoz) , EE(,lQ), Eézg)

Let z; = 1 and 25 = 1, we have @5(20,21 = 1,22 = 1) = 0.0041672% +
0.202776z0 + 0.793049. This is the example of Subsection 5.1.
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Table 2. The exact joint distribution of (Eé?%, Eélz), Eézg)

X1=0 X1=1 X1 =2
Xo=0 Xo=0 0.544336 0.096744 0.001587

X2 =1 0.129430 0.020952 0.793049
Xo=1 Xo=0 0.147370 0.014047

X2 =1 0.041359 0.202776
Xo=2 Xz2=0 0.004167

Xg = 0.004167

6. Waiting time problems

In Sections 3 and 5, we established some proper Markov chains {Z; : ¢t > 0}.
Actually, with these set up, these run statistics X,, (n = 1,2,...) can be imbedded
into the same Markov chain. Because this reason, we can also use our approach
to find the waiting time distribution.

For convenience, we only consider the sequence with outcomes “0” and “1”,
i.e. m =1 case. Let E,, (F,,) denote the event that zo (z;) “0”-runs (“1”-runs)
of length ko (k1) occur. We discuss the waiting time problems of E,, and Fg,
(Uchida and Aki (1995)).

For example, we consider the sooner waiting time Wg of E;, and F;, in
nonoverlapping run case. Because

11-—1

Ws =t} = | {Ze-1 = (=0 — 1,5); (ko — 1,0))} N {Z, = ((z0,); (0,0))}]
j=0
zo—1
U U [{Ze1 = (G = 1); (0, k1 — 1))} N {Z: = ((G,21); (0,0))}],
7=0

we can obtain the probability function of the sooner waiting time Wg,
- 1

Pr(Ws=t)= Y _ fi-1((xo—1,5))po - (0,0,...,0,1)
j=0

zo—1 (k1)

+ Y Sl - D)o - (0.0, 1,00

=0
The probability generating function of Wy is
Yoz (W) = Y Pr(Ws =t) - o
t=0
z1—1 oo

= Y > fiall®o - 1,5))w™-(0,..., 1) (wpo)

=0 t=0
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(k1)
zo—1 oo
. _ ~ =
+ Z th—l((_?axl - 1))wt L (07 tety 1 jexe 7O)l : (wpl)

=0 t=0

First, we consider the function

X xT
W (20,21, w E E fi(zo, 1 Zoozllw = E :‘Pt Zo,Zl)w

Z0,T1 t=0
o0
= @o(20,21) - O At + 2B + 21 B!,
t=0

when i.i.d. case,

lI’(z()y Zl,UJ) = ‘P(Z(),ZI,UJ)
=(1,0,...,0) - [I —w(A + 2B® 4 2, B)]~?
_ <1 — (a0 —1)(a1 — 1) ao(wp1) ao(wpr)® !

A b A Ittty A b
a1 (wpo) a1 (wpo)ko~1
A 2 A b

where ag = Y% (wpo), a1 = Sh oY wpr)f and A = 1 - (a0 — 1)(a1 — 1) —
z0a1(wpo)ke — z1a0(wp1)*t
So, we have

z1—-1 a (wpo)"“"l
V0,1 (W) = (Wpo) Z the coefficient of 22°~'2] of —R
=0
zo—1 k1—-1
a
+ (wp1) Z the coefficient of 23272~ of o(pr1)
=0

THEOREM 6.1. The prabability generating function of the sooner waiting
time Wy is

ai (wpo)ko ]wo z1—1 (-’EO -1+ J) [ (lo(wp1)"‘ J
0

"/}:m,m (w) = [1 _ (ao _ 1)((],1 — 1) o o — 1 1- (aO - 1)(0'1 - 1)

ao(wp1)* } =

+ [1— (@ - D@ - 1) |
zo—1 B : a1 (wpo)* j
2 (mlﬂvl i-1H> [1 - (ao(*zi(;zal — 1)] '

=0
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Similarly, we can discuss the Markov chain dependent trial case. We can also
obtain the distribution and the probability generating function of the later waiting
time Wy, because of

We =t} = |J {Z-1 = (=0 - 1,5); (ko — 1,00)} N {Z: = ((20,5); (0,0))}]
Jj=z1
0 U s = (G, = 1050k = D} {2 = (G 0,00

We can discuss the M-run and the G-run, because we have
(1) overlapping run,

(Ws =t} = U {Z, = ((zo,7); (~1,0))} U U {Z: = ((4,21);(0,-1))},
=0 =0
W=t} = U {2 = (@005 (-1} u U {2 = (G.); (0, -1}

(2) run of length k& or more,

(We =1} = U[{z — (50,3 (1,00} A {Zecs = (20 — 1,7); (ko ~ 1,0)}]

0 U[{z — (G205 0~} 1 {Zecs = (71 — 15 0,k — D),
Wy = 1) = Q {Ze = (20,3) (=100} 0 {Zecs = (@ — 1,5); (ko — 1, O)}]

0 U 1= G 0,10 1 s = (G~ 150,81 = D))
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