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Abstract. Transformations of covariates are commonly applied in regression
analysis. When a parametric transformation family is used, the maximum
likelihood estimate of the transformation parameter is often sensitive to minor
perturbations of the data. Diagnostics are derived to assess the influence of
observations on the covariate transformation parameter in generalized linear
models. Three numerical examples are presented to illustrate the usefulness of
the proposed diagnostics.
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1. Introduction

Transformations of variables have often been applied to data in statistical
modelling. Parametric transformation families, such as the Box-Cox power trans-
formation, is commonly used. Various diagnostics have been proposed to assess
the sensitivity of the maximum likelihood estimate (MLE) of the transformation
parameter; see e.g. Cook and Wang (1983), Atkinson (1986, 1988), Wang (1987),
Tsai and Wu (1990). Most of these methods are concerned with transformation of
the response or simultaneous transformation (transform-both-sides model). Trans-
formation diagnostics for the covariates, however, have been studied to a lesser ex-
tent. Ezekiel and Fox (1959) introduced the partial residual plot. Box and Tidwell
(1962) suggested constructed variables and added variable plots to assist the se-
lection of suitable transformations for covariates. A review of such procedures can
be found in Cook and Weisberg (1982) and Chatterjee and Hadi (1988).

Traditionally, transformation diagnostics are derived using the case deletion
approach (Cook and Weisberg (1982), Wei and Shih (1994¢)). Since Cook (1986)
developed the local influence methodology as a general tool for assessing the effect
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of small departures from model assumptions, there is a large body of literature
dealing with response transformation and simultaneous transformations based on
this approach (Lawrance (1988), Hinkley and Wang (1988), Tsai and Wu (1992),
Shih (1993), Wei and Shih (1994b)). In contrast, limited diagnostics are available
for analyzing the transformation of covariates. Cook (1987) used a subset formula
from local influence to derive diagnostics for partially nonlinear models, which
include transformation of a single covariate as a special case. Wei and Hickernell
(1996) considered further extensions to several covariates based on profile likeli-
hood displacement and found that their diagnostics are related to those of Cook
(1987). Nevertheless, all of the above methods are devoted exclusively to the linear
regression setting.

The aim of this paper is to present influence diagnostics for assessing the ef-
fect of minor perturbations on the MLE of the covariate transformation parameters
in generalized linear models. Two separate approaches based on analysis of the
transformation parameter surface or profile likelihood displacement, and partial
influence, are proposed in the next section. Specific perturbation schemes are out-
lined in Section 3 to examine the different aspects of influence. Three illustrative
examples are provided in Section 4.

2. Profile likelihood displacement and local influence

We assume the responses ¥y = (y1,...,Yn)? have a density or mass function
of the form

fy(yi;8) = exp{[yi6; — b(6:)]/a(8) + c(vi, $)}

with 8; = k(n;), where 7; is the linear predictor and a(-), b(-), ¢(-) are known func-
tions. Without loss of generality the dispersion parameter ¢ is assumed known or
may be replaced by an estimate ¢ and write a = a(qb) which gives an exponential-
family density with natural parameter 8. The log-likelihood function is then

a! Z lyik(m:) — b{k(m:)}]-

Goodness-of-fit of a generalized linear model may often be improved by transform-
ing one or more covariates z of X = (z,2) = (Z1),--->Tp), Z1)>- -1 ¥(g))- Let
the linear predictor of the transformation model be

n=xb+ G(z,N,
where the n x g matrix G(z,A) = (g1(z1), A1), - - -, 9g(Z(g)> Aq)), and
gj(z(j)a ’\J) = <gj(z1j7 ’\j)v ) gj(znjv ’\j))T

represents a known, twice continuously differentiable transformation family in-
dexed by Aj (j =1,...,q). Here the parameter vector A is of special interest.

Let 6()), £\ be functions that maximise L(X;6,§) for fixed A and denote
the corresponding profile log-likelihood for A by L(A; 5(\), £(\)). To assess the
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global influence of individual cases on the MLE X of A, one can adopt the case
deletion approach of Cook and Weisberg (1982). The difference between A and
;\[i], the MLE of A without case i, can be measured through the profile likelihood
displacement

(2.1) LD; = 2[L(\) — L(A)]

where L(A) = L(X;8()),€(\)). For the special case of linear regression, Wei and
Hickernell (1996) obtained approximations to simplify computations of LD;. A
large value of LD; indicates that A is likely to be dependent on case i.

2.1 First and second order approach

Wu and Luo (1993a, 1993b) studied the perturbation-formed MLE surface of
a parameter of interest in regression. Unlike the likelihood displacement surface,
such a MLE surface does not necessarily have zero first derivative at the null point
of no perturbation, so that its slope as well as curvature can be used to examine
local influence. They referred to the maximum slope direction of the fixed surface
at the null point as the first order approach, whereas assessment of directions
corresponding to large normal curvatures is called the second order approach.

For the MLE surface of the transformation parameter A, we now introduce
small changes into our model through an n x 1 vector w € 2, where Q denotes
the open set of relevant perturbations. Suppose there is a null point wo in Q
representing no perturbation so that A,, = A. In the manner of Wu and Luo
(1993a) the MLE surface of A is the geometric influence graph formed by a(w) =
W7, Ay), where Ao is the estimate of A under perturbation w.

To find the direction of largest local change, we approximate the MLE surface

by its tangent plane at wp, which is determined by g‘—ﬁ% at wp. The direction of
largest local change is just the direction of maximum slope on this tangent plane
over . The derivations below are similar to those of Shih (1993, p. 414) for the
tranform-both-sides model. Write L(A | w) = L(A;8(A | w),€(A | w) | w) for the
profile log-likelihood corresponding to the perturbed model, where 5\ | w) and
£\ | w) are functions that maximise L(X;6,€ | w) for fixed A and w. Then Ao
satisfies the following equation:

AL(X;8,€ | w)

A =0

Differentiating with respect to w; yields

LA 8,€ |w) (a,\w) N ?L(N6,E|w) 0
ONOAT Ow; Buw; AT '
Therefore,
(22) A _ [PLINEE|w)| [ —0°L(A6,€|w)
' dwi OAIAT Bw;OAT '
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Let Lgl) and Lgl) be the derivatives of L(A;8,€ | w) with respect to A and (6,€)
respectively, with superscript (t) denoting the ¢-th derivative of the function. It
can be shown that

20 | w), €N |w)) 2 2) (7 (2)1-17 (2
+ ng) = ng)z - L(lz) [ng)] 1L§w)i~

82L(A;372 | w) — L(?)‘
&U,'

Buw; AT lwi

The partitions of L(?) are

L = -3 52,60 (2, NTETEGM (4, X) + S1; diag(¢)GP (2, A)

=1

L2 = Y (52 diag(©)GV (2, )z,
i=1
52,G(z;, TG (z;, A) diag(€) + S1; diag(G™ (2, X))
LY =LY
LY =" 824(m:, G(2:, M) (=i, G (2, N))
i=1
where @; = (z;1,...,Zip) denotes the i-th row of x,

% ’)‘ % ?)\
G(l)(Zi,/\)=<g1(f9;\1 1),.“,9q(~;§\ q)>
q

is a 1 x g vector,
0G(z;,A)
¢ A = ———
(22 = 5AanT

is a ¢ X g matrix,

S1; = yik ™ () — 6O (k(m:)) kD (),
52 = yik® (i) — {6 (ki) ()] + 60 (ki)™ (i)},

: 2r (A
while Lﬁ)i = %ﬁ&’l and Léi)z = aaj((;\(‘&’g)l‘:) are entries on the corresponding

columns of

O?L(X;6,€ |w)

9 Ay 8,8, = Z D051 E)
and further derived for various types of perturbations in Section 3. All of the
above quantities are evaluated at wy and .

. . . A

’{‘o compute the maximum slope direction at the null point, I, )
ate %&’r at wo and A. For second order local influence, the direction {),, which
corresponds to the maximum normal curvature of the MLE surface is the main

diagnostic quantity to study the combined effect on A According to matrix theory,

we evalu-
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the local maximum curvatures and the corresponding directions are the solution
of the generalized eigenvector equation

(2.4) (A—eB)l=0

where the matrices

L e [a:\,,,r (62L(,\;3,£|w)> [a&,}

SwdwT owT INONT ow™
and
a3, [93,1"
B=l+g0r [m}

are evaluated at wy. Alternatively, we can apply the subset formulation of Cook
(1987) to the profile likelihood displacement

(2.5) LD(w) = 2[L(A) — L(AL)].
An equivalent form to (2.4) is then

(26)  AQwibuL) {{L@)]—l - (8 [Lg§]_l>}AT<Aw;6w,e,.,).

If X is a scalar parameter (transformation of a single covariate, i.e. ¢ = 1), then

%’gﬁ becomes a scalar quantity so that lli\,ax is proportional to lé\lope =
(0Aw/0wT)T. Upon simplifying,

) 2 2) 17 (2)7-1 (2
) N RV )

2.2  Partial influence approach
Let the linear predictor before transformation of covariate z be given by

(2.8) 7 = B+ 27.
The model after transformation is
(2.9) 17 =xb+ G(z, A,

so that G(z,Ap) = z represents no transformation. A test of the hypothesis Ho:
A = XAy can be based on Dy — D, the reduction in deviance from model (2.8)
to model (2.9). It is important to judge whether any particular observation has
an undue impact on this test. Denote Dgp; and Dy for the deviances of (2.8)
and (2.9) respectively after deleting case ¢. In the manner of Lee (1988), a partial
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influence measure for the impact of case 7 on the transformation can be formulated
as

(2.10) d; = (Do — D) — (Dops) — D),

which represents the change in deviance due to the transformation of z when the
i-th observation is excluded.

Consider the log-likelihood L(A;6,€) of the transformation model (2.9). The
full MLE of A, 6, £ are denoted by A, 8, é respectively. Similarly, let Ly(8,7) be the
log-likelihood of model (2.8), with MLEs B and 4. Under minor perturbations, the
respective log-likelihood becomes L(A;8,€ | w) and Lo(B,7 | w), with associated
MLEs (;\,‘,,3‘,,,3“,) and (ﬁw,fyw). Suppose that L(X;8,€ | wo) = L(X;8,€) and
Lo(B,7 | wo) = Lo(B,y). The partial influence on the transformation due to
perturbation w can be assessed by

(2.11) dw) = 2{[Lo(B,4) —~ L(X;8,8)] — [Lo(BuAw) — LAus; 80, €)1}

Analogous to (2.10) in case-deletion, the log-likelihood displacement d(w) measures
the local effect on the transformation parameter with respect to the contours of
the unperturbed deviance reduction.

Let F = 1d(w). We obtain the normal curvature at F(wo) along the direction

las
c(l) = 2ITF®y,
F2 = BZL(XU;S‘U?éw) _ 62L0(Bw7;yw)
OwdwT OwowT
Applying the chain rule of differentiation yields
(2.12) F® = AMu; 80, 8,)[LP (X6,6)] AT (o3 60, EL)

~ V(B 1) LY B, VT (B )
where A(Ay;8u,€,) is defined in (2.3),

9%L
v(ﬂwa'Yw) = Wy

evaluated at wo, B, q, 5, é and A. Expressions for L(()Q)(,B, v) and V(B8,,7,) are
derived under the original generalized linear model (2.8), which can be found in
Thomas and Cook (1989). Let I¢_, be the direction cosines of maximum normal
curvature, which is the perturbation direction that produces the greatest local
change in X as measured by (2.11). Standard matrix theory shows that I%__ is just
the eigenvector associated with the largest eigenvalue of

A[L®@]1AT - V(L) VT

The most influential elements of the data on the transformation may be identified
by their large components of IZ,, . We also recommend to plot A, against the
perturbation scale for each local direction [ of interest. The characteristics of such
curves should be informative for further investigation on the relationship between
local and global influences.
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3. Perturbation schemes

A number of perturbation schemes have been suggested to examine the dif-
ferent aspects of influence (Cook (1987), Thomas and Cook (1989)). In the fol-
lowing, we consider relevant perturbation schemes and derive the corresponding
Ay bu,€,) quantity.

3.1 Perturbation of case weights

We define a vector of weights w = (w1, ...,wn)T, w; > 0, to perturb the contri-
bution of each case to the log-likelihood. The point representing no perturbation
iswo = (1,...,1)T. We obtain A(Ay;8,,&,) = (A¥) evaluated at wo and A, where

AY = S1i(m;, G(2,A), GV (2, ) diag(£)).

The case weight perturbation scheme actually generalizes case deletion, where w;
is limited to the values 0 or 1. Furthermore, if the deletion of the i-th case is of
interest (as revealed by lpnax), it may be considered as the perturbation located
in direction I from the null point, where J;; is the direction cosines with i-th
component —1 but zeros elsewhere (Wu and Luo (1993a, 1993b)). A plot of Ao
in the direction Ij;; can then monitor the global effects of downweighting the i-th
case.

3.2 Perturbation of individual covariates T

We modify an individual covariate, say the j-th column ;) of x, to z(; (w) =
x(;) + tw, as long as the covariate is not an indicator variable. Here, ¢ is the scaling
factor used to convert the generic perturbation w to the appropriate size and
units, and wy = (0,...,0)T represents no perturbation. It can be verified that
A(Ay;bw,€,) = (AT) where

8; being the regression coefficient associated with z(;) and u; denotes a 1 x g row
vector with j-th component 1 but zeros elsewhere.

3.3 Perturbation of individual transformed covariates z

We perturb the j-th transformed covariate z;) to z(;)(w) = 2(;) + tw. Again,
t is the appropriate scaling factor and wy = 0 indicates no perturbation. We find
that A(Ay;64,€,) = (A?), where

A? = (82:¢;,52:6;G (2, ) + SLGD (2,5, N,
52:£,GM (z;, \) diag(€) + S1:£,G® (255, M) u;)

with &; being the regression coefficient associated with z;), and G(l)(zij,,\) is the
j-th entry of G (z;, ), G? (25, \) is the (j,j)-th entry of G (z;, A).
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3.4 Perturbation of responses

We then consider altering the responses by taking y(w) = y + tw where
t = diag{[ab® (k(n:))]}/2}. As with other additive perturbations, wp = O gives the
unperturbed state. It follows that A(Ay;84,€,) = (AY), where

AY = kD () (@, G(2,N), GV (2, N) diag(€)).

Note that this perturbation scheme may not be meaningful for discrete response,
such as those in binary logistic regression.

4. Examples

4.1 Snow geese data

Consider the snow geese data as reported by Weisberg (1985) and further
analyzed in Wei and Hickernell (1996). The data set consists of observations on
the response y = true flock size as obtained by count from aerial photographs and
covariate r = visually estimated flock size for a sample of n = 45 flocks of snow
geese.

The original fitted regression model is

i = 26.65 + 0.883z;
(8.61) (0.08)

with standard errors of the coefficients enclosed in parentheses. In view of the
heteroscedasticity evident in the data, Wei and Hickernell (1996) proposed the
following covariate transformation model

A—1
y1=6+(le\ )€+€i.

Parameter estimates for § and £ are —35.759 (10.83) and 8.604 (0.63) respectively,
and A = 0.538.

Figure 1 shows the (re-scaled) partial influence measure d; and )A\M — X, based
on case deletions. Case 29 is the most influential observation, which is consistent
with the index plot of profile likelihood displacement LD; (Wei and Hickernell
(Fig. 2)). It affects the estimate of A significantly, 5\[29} = 1.38. Indeed, case 29 is
a leverage point recording the highest observer count of 500 birds.

We next examine the local effect of each case on A. Based on the partial influ-
ence approach, the direction cosines lr‘flax from perturbing case weight, response,
and transformed covariate are plotted against case index in Fig. 2. It is evident
that the greatest local change in A depends essentially on case 29. This result

is consistent with the ls;}ope vectors displayed in Fig. 3 under case weight and re-
A

sponse perturbation schemes. However, no cosine in L}, . appears to be outlying
with respect to perturbations of the transformed covariate. Since A is a scalar

parameter, télax o ls)iope. It is interesting to note that Wei and Hickernell had
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Fig. 1. Case deletion diagnostics (rescaled) d; and S\[i] — X for snow geese data.

Fig. 2. Direction cosines I ,, from local perturbations for snow geese data.
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Fig. 3. Direction cosines ls)iope from local perturbations for snow geese data.

to resort to an alternative perturbation scheme (proportional instead of additive)
before case 29 becomes discordant.

~ To confirm the indications of the proposed local influence diagnostics, we plot
Aw against the perturbation scale for each maximizing local direction 4., inFig. 4.
The effects of downweighting case 29 (in direction lg]) are almost the same as
those of simultaneously perturbing all case weights, except when the perturbation
scale approaches 1, where A increases rapidly as the contribution of case 29 is
downweighted to zero. It is worth noting that while the curve associated with
response perturbations has the greatest slope at the null state of no perturbation,
the analysis is quite insensitive to minor modifications in the covariate.

4.2 ESR data

We next illustrate the proposed diagnostics with data from Collett ((1991),
p. 8) relating the chronic disease state y; (0 = healthy; 1 = unhealthy) of 32
individuals, judged from the erythrocyte sedimentation rate (ESR) reading, to the
plasma fibrinogen level z; (in gm/¢). The fitted logistic regression model is

logit(i;) = —6.845 + 1.827x;
(2.764) (0.899)

with deviance 24.84 on 30 d.f. A constructed variable plot suggests cases 15 and
23 are outliers and that a non-linear transformation of x; is required; see Collett
((1991), p. 167). Collett then proceeded to include a quadratic term in the model.
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Fig. 4. A in directions of local influence for snow geese data.

Alternatively, we consider fitting the Box-Cox transformation model:

PR 2 —1
logit(fi;) = o + x:61 + ( : X )5.
The resulting reduction in deviance, 8.06, is significant at the 5% level. The
MLE for X is 6.81, while parameter estimates for 6y, 6; and £ are 20.731 (10.094),
—10.425 (5.095), 0.023 (0.013), respectively. Case deletion diagnostics (re-scaled)
LD; and ;\[i] S\ displayed in Fig. 5 identify case 15 only, but large values of d;
are found for case 15 and to a certain extent, case 23.

The direction cosines ls)iope and I¢,, from minor perturbations are plotted
against case index in Fig. 6. Results based on the first/second order approach
are consistent with those of the partial influence approach. Upon perturbing the
transformed covariate, case 15, followed by case 23, have components that are
separated from those of the other individuals. An inspection of the data reveals
that these two observations correspond to unhealthy patients with unusually low
fibrinogen counts, despite the plasma protein concentration tends to increase under
inflammatory disease conditions. Under perturbation of case weight, cases 5 and
14 emerge as influential on the transformation. We note that case 5 recorded
the highest fibrinogen level compared to other healthy individuals in the sample.
Meanwhile, case 14 has near average fibrinogen level among the unhealthy group,
yet its standardized deviance residual is the second largest (after case 15) on fitting
a quadratic logistic regression (Collett (1991), p. 168).
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To further assess the extent of the perturbation effects, we plot the actual Min
Figs. 7 and 8 for selected local directions  of interest, including those related to the
deletion of cases. The curve lj;5) associated with the downweighting of case 15 alone
has the greatest slope at the state of no perturbation, in addition to producing the
maximum global change in A. We also found that as the contributions of cases 15
and 23 are being reduced to zero (direction 5 23)), A approaches 1, representing
no transformation. Therefore, once these two observations are removed, there is
no evidence for covariate transformation. The net overall change due to covariate
perturbations is not dramatic since the impact exerted by case 15 apparently has
been compensated by the other cases. Besides, perturbations in this direction give
similar effects as those of simultaneously modifying all case weights. Figure 8 also
confirms that sensitivity of the transformation parameter depends considerably on
the weights attached to cases 5 and 14.

4.3 Tree data

To provide a numerical illustration of the diagnostics when A is a vector quan-
tity of interest, we consider the tree data from Ryan et al. ((1976), p. 278). The
data consist of measurements on tree volume y (in ft3), tree height z; (in ft), and
tree diameter z; (in inches) at 4.5ft above ground level for a sample of n = 31
black cherry trees. The following covariate transformation model,

Al )\2
-1 Tz —1
yi =6+ <_L/\1—_> &+ (1—2/\'2'—> & + €,
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Fig. 10. Direction cosines ls)iépe, ls’\lgp - and 12, from case weight perturbations for tree
data.

suggested by Wei and Hickernell (1996), will be adopted in our analysis.

The deviance of the fitted model is 188.247 with A = (2.583,1.738)7. Figure 9
gives (re-scaled) 5\[1‘]1 - A, 5\[1']2 — 5\2, and d;. In addition to having the most
extreme LD; values (see Wei and Hickernell (Fig. 8)), cases 17 and 18 induce
substantial changes in the transformation parameter estimates upon their deletion,
A7 = (2.71,-1.137)7T, As) = (2.325,6.25)T. Meanwhile, the partial influence
measure shows that the evidence for covariate transformation depends mainly on
case 31.

The local influence diagnostics under case weight perturbations are plotted in
Fig. 10. Cases 17 and 18 are clearly influential according to the first order diagnos-

tics ls’}(‘)pe and l:l‘gpe, whereas case 31 is also influential due to its large component
of 12

max- Lhese direction cosines provide different diagnostic information to that of
the IX,, vector (Wei and Hickernell (Fig. 9)). On the other hand, case 31 emerges

max
as the only influential observation under transformed covariate perturbations. It
should be remarked that while case 31 corresponds to the largest tree in the sam-
ple, cases 17 and 18 are medium sized trees but with distinctive height of 85 ft

and 86 ft respectively.
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