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Abstract. Some results for stopped random walks are extended to the
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1. Introduction

The origin of the present paper is a problem from the theory of chromatogra-
phy (Gut and Ahlberg (1981)) and subsequent results emerging from that problem
(Gut and Janson (1983) and Gut (1988), in particular Chapter IV). We begin with
a very short description of the concept chromatography; some further details are
given in Section 6 (and in Gut and Ahlberg (1981), Gut and Janson (1983) and
Gut (1988), Section IV.3).

The basis for chromatographic separation is the distribution of a sample of
molecules between a stationary phase and a mobile phase which percolates through
the stationary bed. The sample is injected onto the column and is transported
along the column oscillating between the phases, causing separation of the com-
pounds because of their different patterns of behaviour. The main results in the
source(s) cited above are limiting results for the relative time spent in the mobile
phase and, hence, assuming that the velocity is constant in that phase, results for
the (longitudinal) distance a molecule has travelled during a given time interval.

The main feature of the present paper is that the results allow us to split the
mobile phase into several layers, which makes the model more realistic. Another
application that is briefly mentioned is replacement policies within the theory of
reliability, for which our results permit more general “components” than those
who just work or do not in that we allow for different states of deterioration.

369



370 GEROLD ALSMEYER AND ALLAN GUT

Section 2 is devoted to some preliminaries on Markov renewal theory, after
which Section 3 contains the statements of our two main results. Proofs are given
in Sections 4 and 5, respectively. The applications are given in Section 6. A final
section contains some remarks.

2. Preliminaries on Markov renewal theory

We begin by describing the standard setup of Markov renewal theory; for
further details, see e.g. Alsmeyer (1994). Let (S, ), (¥,2) be measurable spaces
with countably generated o-fields &, 9), respectively, B the Borel o-field on R and
P:Sx(6®B®Y)— [0,1] a transition kernel. Let further (M,, Xy, Y,)n>0 be
an associated Markov chain, defined on a probability space (2,2, P), with state
space S X R x 9), that is

(2.1) P(Mpi1 € A, Xn41 € B, Y1 € C | Mn, X, Yy)
=P(M,, AxBxC) as.

foralln >0and A€ &, Be€B,C €9. Thus (M, 41, Xn+1, Ynt+1) depends on the

past only through M,,. It is easily seen that (M,),>o forms a Markov chain with

state space S and transition kernel P*(s, A) def P(s,A x R x Y). Given (M;);>0,

the (X,,Y,), n > 0, are conditionally independent with
(22) P(Xn € B,Y,eC | (Mj)jZO) = Q(Mn_l,Mn,B X C) a.s.

forallm > 1, B€ B, C € 9 and a kernel Q : S2 x (B® Q) — [0,1]. Let
throughout a canonical model be given with probability measures P, ,, s € S,
z € R, y € R, on (Q,) such that P, (Mo = 8,Xo = 2,Yo = y) = 1. If A
denotes any distribution on & x R x ), put Py(-) = foRx.y Py 2.4 (-)A(ds, dz, dy)
in which case (M, Xo, Yo) has initial distribution A under P). Expectation under
P, is denoted by E). For a distribution ¢ on S only, we write P; and E¢ for
probabilities and expectations that are independent of the initial distribution of
(Xo,Yp). Finally, P and E are used for probabilities and expectations, respectively,
that do not depend on the initial distribution at all.

Markov renewal theory deals with certain asymptotic properties of the Markov
random walk (My,Sp)n>0, where S, = Xg + --- + X, for n > 0, and related
processes. In the following we only deal with the most interesting, proper renewal
case, i.e. we assume that the X; are positive; more formally:

AssuMPTION 1. P(z,8 x (0,00)) =1forallz € S.
Now, let N(¢t) = sup{n > 0:S, <t}. We can then define
(2.3) Zo=My and Z;=Mpy for t>0,

which is a pure jump process starting at My and moving from M,_; to M, at
S,. Consequently, X,, denotes its sojourn time at M,_;. Under these conditions
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we call (My, Sn)n>0 @ Markov renewal process and (Zt)>0 the associated semi-
Markov process (SMP) with embedded chain (Mp)n>0 and jump epochs (Sn)n>o-
The additional sequence (Y;,)»>0 is a sequence of marks or rewards, which in most
applications are real-valued, i.e. (¥,9) = (R, B).

Two further assumptions will always be valid throughout this article.

ASSUMPTION 2. (Mj,, Sy)n>0 is non-ezplosive, which means that N(t) < oo
P,-as. forallt>0and z € S.

ASSUMPTION 3. (My)n>0 is Harris recurrent, that is, if P, (z, -) denotes the
n-step transition kernel of (My)n>0, then there exists a set ® € &, some r > 1,
a > 0 and a probability measure ¢ on R such that P;(M, € R i.o.) =1 for all
z €8 and

(2.4) Pi(z,A) > ap(4d) forall z€ R and A€ 6.

The Harris recurrence of (M, ),>0 induces a regenerative structure on the full
sequence (My, Xn,Yn)n>0, possibly after redefining it on an enlarged probability
space. Namely, there exists a filtration F, and a strictly increasing sequence
0 = 09,01,02,... of (under each Ps ;) a.s. finite F,-times, called regeneration

times, such that:

2.5) Under each Ps ., Tn def 0, — 0n—1 are independent for n > 1 and even
Y

identically distributed for n > 2 with distribution { = P,(01 € -) and ¢
as in (2.4). Hence (04 )n>0 forms an ordinary zero-delayed renewal process
under F,.

(2.6) (Mpn,Xn,Yn)n>o0 is Markov-adapted to (Fr)n>o0, ie.
o((My, Xk, Y )o<k<n) C Fn for each n > 0 and P((Mpy1, Xnt1,Yn41) € - |
Fp) =P(M,,) as.

(2.7) Under each P, ;y, the cycles or blocks Cn def (Mg, Xk, Yi)on<k<onss aT€
one-dependent for n > 0 and stationary for n > 2 with distribution
P,(Cy € -). Consequently, stationarity of the full cycle sequence holds
under P,, with 7 defined as 7 = P,((M,,, X0, Ys,) € ).

The construction of (¢, )n>0, which has become standard by now, will not be de-
scribed here. It only involves the chain (M, )»>0 and additional coin tossing events.
We refer the reader to Athreya and Ney (1978) and Asmussen (1987). Notice, how-
ever, that the cycles Co, C1, . . . are in general not independent, only one-dependent,
as stated in (2.7). For exceptional cases see Athreya et al. (1978) and Alsmeyer

(1994). Notice further that the given dependence structure of (M, Xn, Yn)n>o0

implies stationarity of the cycles Cy, only for n > 2 under arbitrary Psz,y, while

for the cycles

def
(2.8) C',IYI = (Mk)an§k<an+1

of the driving chain this is true for all n > 1.
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Next, with 7 as in (2.7), we define

o1—1

(2.9) E=E, | Y Lymyx,ved |
—~

which is the unique (up to a multiplicative constant) o-finite stationary measure
of the chain (M, Xy, Yn)n>o0. Its first marginal &3y = £(- x [0,00) X ) then clearly
defines a stationary measure of (M,),>o and satisfies

o1—1

(2.10) Em=E, | Y ey
j=0

If the stationary mean cycle length E, 01 = E, 0, is finite, (My, X5, Yn)n>0 as well

as (Mp)n>o0 are called ergodic, and &* def &/Eno1, &3y def &m/Eynon, respectively,

denote their unique stationary distributions.

With M = M(S xR x ),6 ® B ® 2)) denoting the space of real-valued,
measurable functions on & x R x J we next introduce the operators X, : M —
M(Q,A), defined through

(2.11) Enfzif(MﬁX]"Y})’ n 2> 0.
=0

Our purpose is to prove a number of limit theorems for Xy ;) f and Zp) f, as
t — oo, under suitable assumptions on f and (My, X,,Y,)n>0. Here T(t) =
N(t)+1=inf{n > 0:S, > t}. In case where S consists of one state only, the
chain (Mp)n>0 thus being deterministic, (S,)n>0 reduces to an ordinary renewal
process with (Y,)n>0 being an associated sequence of general rewards. Limit
results for ;) f and X1 f have then been derived in Gut and Janson (1983),
see also Gut (1988), Section IV.2, and in Alsmeyer (1988) for this case.

It is tempting to conjecture that extensions to the present situation are easily
achieved by utilizing the regenerative structure of the sequence (M, X,, Yy )n>0.
However, this is complicated by the one-dependence of the occurring cycles Cy, C;,
C>,.... Renewal theorems for such sequences are largely due to Janson (1983) and
will be a major tool for proving the subsequent results.

3. Results

For n > 0 we define

n—1
(3.1) An=S8s.,1-1— Son, ie. Y A;j=S8,1],
J=1
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and, given any f € M,

G'n+1—1

n-1
B,= Y f(M;,X;Y;), ie. Y B;=%,,f],
(3.2) i=on =

Ont1—1

By= Y If(M;,X;Y))l.

Jj=on

Notice that (A, By, B} )n>0 forms a stationary one-dependent sequence under P,.
Define ps = E Ao = ESs, -1 and up = E, By provided the latter quantity exists.
It follows that

pa=[ [ [ se(ds,do,dy) = BeXo,
S J[0,00) JY

(3.3)
pB:/S/[O’oo)/yf(s7x,y)f(d3,dx,dy)=E5f(M0,X07Y0),

where £ is the stationary measure in (2.9). Finally, put pp/a def ﬁﬁi which thus is
an integral ratio and obviously invariant under replacement of £ by any multiple
of it; in particular,

E¢- f(Mo, Xo,Yo)
4 =
(3.4) KEB/A e Xo

if (Mp)n>0 and, hence, (My, Xy, Yn)n>o is ergodic.

THEOREM 1. Let f € M be such that up < 0o.
(i) Then, ast — oo,

the limit being 0 if pa = oo.
(ii) If E,|AolP < oo and E,|B§|P < oo for some p € (1,2), then, ast — oo,

Erwyf — upyat 0 as
ti/p -

(iii) If E,A3 < oo, E,B§? < 00 and

7v? ¥ Var, (uaBo — ppAo) + 2 Covy(aBo — pp Ao, naB1 — ppAr) > 0,

then, ast — oo,

Erwyf — wp/at 4, N(0,1)
yua 2t/ ’
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(iv) Under the assumptions of (iii) we have

) Erwyf —wBat  + v s

V2tloglogt (-) ’ui/z

(v) All four assertions hold equally true for En) f.

lim sup (lim inf
t—o0 t—oo

Remark 3.1. Note that v2 also equals lim,_, oo % Var, (1aWy —pnpUn) where

U, def Ao+ ---+A,_1 and W, def By + -+ B,_1 for n > 1, see Janson (1983).

Remark 3.2. In the special case when S is degenerate and f(M;, X;,Y;) =
Y;, 1) f reduces to the quantity V7 in Gut and Janson (1983) and our results
to those of Gut and Janson (1983). The results there, however, are valid for
random walks (S,,)r>0 on R, such that the mean of the increments is positive, i.e.
without Assumption 1.

In our second result we establish asymptotics for the mean and variance of
Erwf as t — oo. The proofs consist essentially of a proper blend of the cor-
responding proofs in Gut and Janson (1983) (see also Gut (1988), Section IV.2)
and Janson (1983). An important ingredient are asymptotics for 7(t) from Janson
(1983).

THEOREM 2. Let f € M be such that up < co.
(i) Then, ast — oo,

E Zrw f = ppyat + o(t).

(i) Suppose that E,A3 < oo, E,B§? < oo and set v3 < Var, 4o +

2Covy(Ao, A1), 73 % Var, By + 2Cov,(Bo, B1), A % Cov, (4o, Bo) +

Covy (A1, Bo) + Covy,(Ag, B). Note that, for v? as defined above, we have
v = uAE + 1A — 2Dnans.
Then, as t — 00,

E, X7 f = up/at + o(t'/%)
MaTE + EYA —2Dpaks T

Var ET f=
T A w3

(iii) All assertions hold equally true for Xy f-

Remark 3.3. In the special case where S is degenerate (A, )r>0 and (Bn)n>0
are independent, and v4 = Var, Ao, 74 = Var, By and A = Cov, (Ao, Bo). If, in
addition, f(M;, X;,Y;) =Yj, then Sp;) f, again, reduces to the quantity V; () in
Gut and Janson (1983) and our results (essentially) to those of Gut and Janson
(1983), Theorem 3, see also Gut (1988), Theorem IV.2.4 (recall Remark 3.2).
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Second order approximations for this situation have been obtained in Alsmeyer
(1988).

Remark 3.4. As stated Theorem 2 only holds under P, as defined in (2.7);
n the stationary cycle debut distribution. In order to make it hold under arbitrary
P, the first cycle variable Bj has to be sufficiently integrable under this measure.

4. Proof of Theorem 1

Since the first block variables Ay and By are fixed random variables not de-
pending on t, it follows immediately that it is sufficient to prove the theorem under
P,, under which (A, By, B;,)n>0 forms a stationary one-dependent sequence.

(i) Define 7(t) =inf{n >1: 8, -1 >t} =inf{n>1: A4+ -+ Ap_1 >t}
for t > 0 and observe that

(4.1) Wey-1 — Bry-1 < Zryf < Wry-1+ Bry-1»

where Wy = 0 and W,, = Bg+ - --+ By for n > 1. Now, by the stationarity and
one-dependence of (A, Bn, B} )n>0 under P, together with the assumption that
pp < oo (which also gives pg- < co) we have the following analogs to the i.i.d.
case:

Sg' —1 Wn B:L—l
4.2 —r _— , 0 d
(4.2) T = pa, -~ kB e an
1
T—t) —_ — P,,—a.s.,
t pa

see Janson (1983), Theorem 2.1(i) for the final convergence. Consequently, by
introducing the overshoot R; of Wty — E1(t)f we obtain, using (4.1), 7(t) T o0
a.s. and (4.2), that

(43) IRtl = |WT(t) - ET(t)fl < B:(t)—l = O(t) Pn-a.s. as t — 00,

and, finally, that

Lrwyf Wi 1) Ry
= . - P,-as.
t T(t) t t II‘B/A n a.s.,

which is the desired result.
(ii) If E,|Ao|? < oo and E,|Bg|P < oo, the Marcinkiewicz law of large num-
bers yields

T(t) —t/pa

W, — pupn B:L—l — B
ti/p

nl/P - O’ nl/P - 0’

—0 Pjas,

see Janson (1983), Theorem 2.1(iii) for the final convergence. It follows that
St f — pe/at _ We) —us7(t) 7(0)'? Ry
ti/p - T(t)1/p ti/p ti/p

+ P‘B(T(?l/; t/1na) 50

P,-as.
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(iii) Here E,A% < oo and E,(B§)? < oo. Since (Bn — pip/aAn)n>0 forms a
centered, stationary one-dependent sequence under P, the central limit theorem
for its associated random walk (W, — up/4Ss,-1)n>0 gives

Wy — B/ASs,.-1
Y2 g

with 72 as defined in Theorem 1(iii). Furthermore, by stationarity and the as-
sumption that E,A2 < oo, we have

(4.5) > Py(An_y > nt/?) =" Py(Ag > n'/?) < o0,

n>1 n>1

(4.4) % N(0,1),

whence n~1/24,,_; — 0 P,-a.s. Combined with t~17(t) — u,' P,-a.s., this further
yields

S, -1 — t A —
I (t) T(t)-1
(4.6) 0< 172 < /2 —0 Ppas.

Since

(@.7) Erwyf — up/at _ We(ty — 4B/ASe, -1 + 18/A(Ss,1y—-1—1)
g P2 Yz P2 yug* 6172

Anscombe’s theorem applied to the first term in the right-hand side of (4.7), and
(4.6) to the second one, finally yield the desired conclusion for Xpf. As for
Anscombe’s theorem for sums of i.i.d. sequences, see Gut (1988), Theorem 1.3.1.
A version for m-dependent random variables is easily obtained by noting that the
so called Anscombe condition (see Anscombe (1952)) is equivalent to the validity
of Kolmogorov’s inequality, which in turn holds for m-dependent sequences.

(iv) The proof follows the pattern of (iii). The essential modifications are
that for Anscombe’s theorem we now exploit Horvath (1986), Theorem 2.3 (cf.
also Example 3 there) in order to conclude that

Wrt) — BB/aASo,0-1 _ + 7

(4.8) h?iscgp (htrggxf) 2tloglogt ~ (=) ﬁ Fy-as.
and that

Sy n—1—1
(4.9) #5457, -1 ~ 0 —0 Pjas.

Vtloglogt

to conclude that the overshoot is asymptoticallay negligible (cf. (4.6)). A decom-
position like (4.7) finishes the proof.
(v) The analogous results for ¥y f are obtained via the relation

(4.10) [Zrey f — Enw fl = |f Mz, X1y, Yeey)| < Brgy-1

and the fact that, by arguments like those that produced (4.5) and (4.6), we con-
clude that, for any p > 1, the assumption E,|Bj|? < oo implies that
t“l/pB:(t)_l — 0 P,-a.s. as t — 00.



MARKOV RENEWAL PROCESSES 377

5. Proof of Theorem 2

(i) We first observe (Janson (1983), Lemma 2.1) that E,7(t) < oo, (Janson
(1983), Theorem 2.3) that W ;) throughout has moments of sufficiently high order
for our arguments to hold, (Janson (1983), Theorem 2.2(i)) that

t
(5.1) E,r(t)= — +o(t) as t— oo,
ha
and (Janson (1983), Theorem 1.1) that
(5.2) EWeo 41 = (ET(t) +1) - pp.

The first conclusion now follows from the fact that
(5.3) 1Zr@)f = Wry1l < By + |Briyl < Bi 1 + By

and Janson (1983), Theorem 2.2(iii), Corollary 1.1(ii), together with (5.1).
(ii) The first point is that under the present assumptions we have (Janson
(1983), Theorem 2.2)

t
E,7(t) = — +o(t'?) as t— o0
7
6.4 p
Var,(r(t) + 1) = 5t +o(t) as t— oo.
Ha
Moreover, by Janson (1983), Corollary 1.1(vii) and (i) above we have, as t — oo,

(5.5) E,(Wrgy+1 — (7(t) + Dug)? = (Epr(t)+1)- v+ o(tl/z)

,72
= 1Bt 4 o(t!/?),
HA

and, by setting U, = Ag+ -+ + An_1, forn > 1,
(5.6) E,(Urty41 — (7(t) + Dpa)? = (EpT(t)+1) 2+ o(t1/2)

,72
= 1Ay + 0(t1/2).
HaA

By using the relation zy = ((z + y)? — (z — y)?) and (5.2) (cf. Gut and Janson
(1983)) it follows that

(5.7)  Covy(Urty41 — (7(t) + Lppa, Werty41 — (7(t) + Dup)
= (E,7(t) + 1) - A + o(t'/?) = 4, +o(tt?)  as t— oo.
ha
Next we observe that, by Janson (1983), Theorem 2.2(ii) and Corollary 1.1(i),
together with (i) above, we have

(5.8)  Vary Ur(yy1 = Vary(Urye1 — t) < Ep(Ury 41 — t)°
<2E,(Uyry — )% + 2E,,A3(t)+1 =o(t) as t— oo.
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An application of Cauchy-Schwarz’ inequality and (5.5) therefore shows that

(5.9) | Covy(Ur(ty41: Wr(ty+1 — (1(t) + 1))
< \/Var,, Urty+1 - Varg(Wr(sy+1 — (7(¢) + 1)iB)

=o(t) as t— oo,

which, together with (5.7), yields

(5.10)  pa COV,,(T(t) +1, W.,.(t)+1 —(r(t) + )ug)

=—(E,r(t)+1)-A+o(t) = —%Ho(t) as t— 00,

and, hence (recall (5.4)),

(5.11) Cov, (7(t) + L, Wr(p41)
— g Var, (r(8) + 1) —;:(E,,T(t) 1) A+ oft)

2 A
=us (%t + o(t)> — St+olt)
Ha Ha

2-A
12

A

Putting things together we thus obtain (cf. Gut and Janson (1983), formula (3.9)
for the first equality sign),

(5.12) Var, Wy(y11 = (Ey7(t) + 1)vB — uh Vary((t) + 1)
+ 2pp Covy(7(t) + 1, Wr(t)+1)
1 » 27 BBYS — A#A)
= | —vg —ug—=% +2up- t+ o(t)
(MA BT A
_ HaYE +uEYA — 2Bpans

& t+o(t) as t— oo.
Ha

A final appeal to (5.3) in conjuction with Janson (1983), Corollary 1.1(i) and (5.4)
now shows that

(5.13) Ey(Sr@)f — Wews1)? =o(t) as t— oo

and the desired conclusion follows.

(iii) This part follows from (4.10), Janson (1983), Corollary 1.1(i) and the
first part of the theorem.

The proof of the theorem thus is complete.
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6. Applications

As mentioned in the introduction, the basis for chromatographic separation
is the distribution of a sample of molecules between a stationary phase and a
mobile phase and that the separation between the compounds is caused by their
different molecular behaviours as they travel along the column. The essential idea
of the present paper is that the results above allow us to consider a more general
model (the results were, in reality, motivated by the idea), in that the mobile
phase now can be divided into several layers, in the sense that the probability of
being sorbed into the stationary phase within a small time interval is larger for a
molecule that is “closer” to the stationary phase than for a molecule more “in the
center” of the mobile phase. Let us, for simplicity, divide the mobile phase into
two different layers, thus introducing a Markov chain with three states, 0, 1 and 2,
respectively, corresponding to the stationary phase, one part of the mobile phase
that is “near” the stationary phase and “the central part” of the mobile phase.
The corresponding transition matrix is

0
q |,
0

o o
=N

where 0 < p = 1 — ¢ < 1. (The extreme case p = 1 corresponds to the case
with only two phases.) Further, let (X,(LO))HZO, (X,(Ll))nzo, and (X,(f))nzo be the
random variables corresponding to the durations in the states, and assume that
all durations are independent, and i.i.d. within each sequence with means u; and
variances o2, i = 0,1,2, respectively. All random variables without indices are
generic.

Suppose that we wish to compute the relative time spent in state 0 during
the interval (0, t] starting at 0. An identification shows that X then equals one of
X ,(CO), X ,(cl) or X ,(CZ), for all k, depending on the state of the Markov chain, and, for
all j, f(M;,X;,Y;) equals X J(-O) when X; = X](O) and 0 otherwise. Furthermore,
the regeneration times are the times at which a transition to state 0 occurs. An
A-block has the form

L
(6.1) XO 4 xM 43 (xP + x 1),
k=0

where L has a geometric distribution with EL = ¢/p, and where, in particular, L is
independent of the sequences of duration times. Namely, the first visit in state 0 is
followed by a visit in state 1, after which there are a geometric number of “state 2+
state 17 visits before state 0 is visited again. A B-block is of the form X(© . Note,
in particular, that (Xg)r>o0 are neither independent nor identically distributed.
The A- and B-blocks, however, are equally distributed (within each sequence); in
this example the blocks are, in fact, independent (within each sequence).
It follows that

1 2
(6.2) .uA=uo+u1+%(u2+u1)=uo+%+gg—, and  pp = po,
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and, hence, that

-1
ﬂ+%) _

6.3 ={1+
(6.3) KB/A ( Plo  PHo

Furthermore, since by independence
(6.4) Covy(uaBo — ppAo, paB1 — ppA1) =0,
it follows that

L
(6.5) %= Var ((uB —pa)XO 4 pupX® 4 up Z(X(Q) + X(l)))
k=0

= (up — pa)’0g + phot + pE{EL(0} + 03) + (4] + p3)* Var L}
2
B gH2 q q
= (B4 22) g sior + i { Lt + o)+

aug
2

52 2
= p—g(m +qu2)® + - (11 + p2)® + 70(03 +go3),

and, hence, that

2

a3 qud 1
2 p—g(ul +qu2)® + ?Q(,Ul + p2)® + —1-,9(0? +g03)

(6.6) = .
(uo L 2&2)
p p

=

In particular, for the boundary case p = 1, the above expressions reduce to the
known ones; cf. e.g. Gut (1988), Section IV.3.3. For example, v2 then becomes
odud + atug.

In the chromatographic problem one assumes that the durations are exponen-
tial. With u; = )\[1 for 2 = 1,2, 3, we then have

1 1 q 1 oo gro\
= — —_— _— = —, = 1 —_— _— ,
Ha o + A + PV uB " UB/A ( + +

— 1+qz+i1+i2+1 1+
TEERA\N TR TN TR T\ TR
In the degenerate case (p = 1) the formulas, once again, reduce to the known ones.
To finish off it suffices to observe that we need analogs of Gut (1988), formulas
(3.8) and (3.9), page 120. However, our results provide asymptotics for X7 f, as
t — oo and the discrepancy between that quantity and the time spent in state 0
is dominated (in absolute value) by the last B-block (recall (4.1) above), and the

negligibility of this block has already been established in Sections 3 and 5. Having
identified all parameters involved, it thus follows, for example, that the time spent
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in state 0 is asymptotically N(up/4t, ﬁ:—t)-distributed as t — oo, where pup,4 and
A

2
7};— are as given above.
A

In the chromatographic example we assume that the (longitudinal) velocities
are v; and v, in phases 1 and 2, respectively, and, as before, that the durations are
exponential. An A-block then, again, corresponds to X (@ + X + Z,I;=O(X ,22) +
X,(cl)), and a B-block to v; XV + Zﬁ:o(WX/(cz) + le,(cl)). Thus,

b, 32
1 1 q v g2 PA1__ pho

= = o, = : = :
Ha Ao e PA1 P2 HB/A l_ + _1_ + 4
Ao PA1 pAe

PA1 DA

and, invoking independence (cf. (6.4)), computations analogous to those above
yield

5 2 (v2 qu3 qvlvg) q(2 + q)(v2 — v1)? N 4qui (v — v1)
3 )

p2)\(2) % /\% )\1/\2 pZA%/\% p2/\0)\%

By arguments like those above it is now obvious how to formulate asymptotics for
the (longitudinal) distance travelled by a molecule at time ¢ as ¢ — oo.

Let us also briefly mention replacement policies. Some conclusions are dis-
cussed in Gut and Janson (1983) (see also Gut (1988), Section IV.3). The remarks
below are also inspired by Kao (1973).

Suppose we have d > 3 different states, 0,1,2,...,d — 1, where states 0 and
d — 1 correspond to the device being perfect and dead, respectively, and the in-
termediate states correspond to the successive states of deterioration, with the
transition matrix P = (p;;) describing the evolution of the deterioration. (The
case d = 2 would correspond to the classical case.) A typical example would be
a device that consists of (d — 1) smaller components, and the states denote the
number of defect ones. Qur results can now be used to find asymptotics for the
relative time spent in a given state, or, associating costs to the states, for the total
cost at some large time point.

One further example is shock models, where the analogous extension is dis-
cussed in Boshuizen and Gouweleeuw (1993), p. 839. For the case of independent
shocks, see also Gut (1990).

7. Complements

7.1 Finiteness of moments

Our main results above are devoted to the classical limit theorems and to
asymptotics of mean and variance. One can of course do more. For example, by
combining (4.1) and Janson (1983), Theorem 1.3 and Corollary 1.1 one can easily
show that for any p, 1 < p < 0o, we have

E,7(t)?P < o0, E,|Ao|P < o0, E,|BglP < 00 = E,7|2T(t)f|p < 00.

Results of this kind on uniform integrability are also obtainable.
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7.2 On the assumptions

The moment assumptions in the theorems are in terms of moments of the
blocks. It would be more pleasant to phrase them in terms of moment assump-
tions on X, and f(Mo, Xo, Yo) under the stationary measure £ of (2.9). Since the
blocks consist of stopped sums we have no general solution to this problem without
additional information (except for the first moment, cf. (3.3)); if, for example, the
sequences are martingales or sums of i.i.d. random variables one may apply known
inequalities for such objects. The generalization of the alternating renewal process
in Section 5 is one such example.

7.3 FErtensions
The results can easily be extended to the perturbed case analogous to Gut
(1992), where stopped perturbed random walks are treated.
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