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Abstract. In this paper we derive an explicit formula for the expected value
of the first time a Z-valued AR(1) process exceeds a given level. Using martin-
gale theory we obtain a generalized Wald’s equation that holds under a simple
integrability condition. As an application, we give an asymptotic formula for
the expected value of the first exit time of the AR(1) process with a thinned
Poisson innovation.
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1. Introduction

Time series models for sequences of Z,-valued r.v.’s have been the object
of several recent papers. McKenzie (1986, 1988) used the concept of binomial
thinning to construct Z-valued ARMA models. The binomial thinning operator
(introduced by Steutel and van Harn (1979)) is defined as follows. For a Z-valued
r.v. X and a € (0,1), let

X
(1.1) aoX = ZYi’
i=1

where (Y;, ¢ > 1) is a sequence of iid Bernoulli («) r.v.’s independent of X. The
operator o is treated as the analogue of the scalar multiplication and incorporates
the discrete nature of the variates. A sequence (X,, n > 0) of Z-valued r.v.’s is
said to be an AR(1) process (cf. McKenzie (1986)) if for every n > 0

Xn
(1-2) Xnr1=ao Xy +€np1 = ZYl(n) + €nt1,

=1
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where 0 < a < 1, Yi(") (n > 0,4 > 1) are iid Bernoulli (a) r.v.’s, (€n, 7 2 1)
is a sequence of iid Z,-valued r.v.’s with finite first moment, and the sequences
(Yi("), n > 0,4 > 1) and (en, n > 1) are independent. The sequence (€n, n > 1)
is referred to as the innovation sequence. Regression and correlation properties of
model (1.2) are similar to those of the Gaussian AR(1) process. Stationary AR(1)
processes with given marginals (such as Poisson, negative binomial, etc...) were
extensively studied (cf. Aly and Bouzar (1994) for further references as well as for
a generalized AR(1) model).

The purpose of this paper is to study the following first exit time (over a given
level) of a Z, -valued AR(1) process (X, n > 0):

(1.3) 7(A) = inf{n e N: X, > A},

for some A € N. This class of stopping times arises naturally both in the theory
and applications of stochastic processes as well as in areas of statistics such as
sequential analysis. The main goal is to derive an explicit formula for the ex-
pected value E(7(A)) of the first exit time. Using martingale theory we obtain
a generalized Wald’s equation that holds under a simple integrability condition.
Wald’s equations for sequences of dependent variables were obtained by Novikov
(1990) who studied first exit times of standard AR(1) processes. It is principally
Novikov’s approach that we adopt here.

The paper is organized as follows. In Section 2 a class of martingales as-
sociated with a Z,-valued AR(1) process is constructed. The main result and
some examples are given in Section 3. As an application, an asymptotic formula
for E(T(A)) is obtained in Section 4 in the case where the AR(1) process has a
thinned Poisson innovation.

2. Martingales associated with Z-valued AR(1) processes

Z . -valued AR(1) processes are Galton-Watson branching processes with im-
migration, and as such their existence follows from Harris (1963). We will therefore
assume that for a Z-valued AR(1) process (X, n > 0) all the r.v.’s in (1.2) are
defined on some probability space (2, F, P). For each n € N, we denote by F,
the o-field generated by {(Yi(k),i > 1),k < n— 1} and Xy, €1,€2,...,€n (With
Fo generated by X only). We further assume that the exponential moments
be(z) = E(2%) and ¢x,(z) = E(2%°) exist and are finite for every z > 1. The
cumulant exponential moment of ¢; is defined by

(2.1) P(2) =logpe(z), 221

It can be easily deduced that for a Z,-valued AR(1) process (X, n > 0) the
following relations hold for each n > 1 and z > 1:

(2.2) E(z%°%~ | F,) = E(z*°% | X,,) = (1 — a + az)™",
n—1
bx,(2) = E(z"") = ¢x,(1 — o™ + a"2) H bc(1 — a* 4 aF2).
k=0
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Following Novikov (1990), we define the function ¥, as follows:

(2.3) To(z) =Y Y(1-a*+a¥2), 221,
k=0

where 0 < o < 1 and 9 is as in (2.1).
The following lemma is useful.

LEMMA 2.1. The function U,(2) is well defined and is finite for all z > 1.
Moreover, it satisfies

(2.4) Uo(2) =¥a(l —a+az)+9¢(z), 2z>1

PROOF. Since E(e;) < oo, we have for z near 1, |1(2)| < c|z ~ 1], for some
constant ¢ > 0. This implies that for k large enough [(1 — o +a¥2)| < ca¥|z—1]
which in turn implies that the series of (2.3) converges absolutely for z > 1.
Equation (2.4) follows then from the fact that

x>
Ul — o+ az) :Zzp(l — ot paktly), 2> 1 m]
k=0

Next, we compute the function ¥, for some discrete distributions. If €
takes the values 0,1,...,N, N € N, with probabilities po, p1,...,PN respectively,
(Ef;o p; =1 and 0 < py < 1), then ¢(z) = log Zﬁio pizt. It follows easily that

(2.5) U, (2) = log ﬁ(l + gi(z)) = log (1 + i bi(z — 1)’“) , z2>1,

k=0 k=1

where gi(z) = XN, 3o pia® (1) (2 —1)! and 0 < by < 00, k > 1. Equation (2.5)
applies in particular to the binomial and hypergeometric distributions. In the case
where €; has a Poisson distribution with parameter A > 0, ¥(z) = A(z — 1) and

(2.6) U,(z) = I :\a(z -1), =z2>1

More generally, if €; has a discrete stable distribution (cf. Steutel and van Harn
(1979)) with exponent « € (0, 1], then 9(2) = A(z = 1)?, A > 0, and

(2.7) ¥, (z) = (z—-1), =z>1.

1-a7
We now define two processes related to a Z-valued AR(1) process (X,

n > 0). For p>0and n >0, let

(2.8) Wik = a’m/ (z = 1)*712% exp(— Vo (2))dz,

1
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and

(2.9) Zn = Ho(X,) + nlog o,

where

(2.10) H,(-) = /oo(z —1)71(z0) — 2X0) exp(— W, (2))dz.

The processes (W,(,“ ), n > 0) and (Z,, n > 0) are adapted with respect to (F,,
n > 0). Moreover, letting

@11)  I() = /2°°(z—1)ﬂ-1¢xo(z>exp(—%(z))dz, b0,

we have the following result.
LEMMA 2.2. Letn € N.
i) For each u > 0, E(W,(l“)) < oo if and only if I(u) < ooc.
ii) If I(0) < oo, then E(|Z,]) < co.

PROOF. By Fubini’s theorem and equations (2.2)-(2.4), we have
E(WM) = a""/ (2= 1)*1opx, (1 — a™ + a™2) exp(—¥o(1 — a™ + a™2))dz.
1
The change of variable v = 1 — a™ + a™z implies
o0
BW) [ (2= 17710, (2) expl(~ Ta(2))dz
1

from which i) follows. Decomposing the integral in (2.10) along the partition
{(1,2], (2, 00)} and using the same argument as above, we obtain E(|Z,]) < 21(0)+
By for some constant By > 0, thus proving ii). O
Next, we state and prove the main result of the section.
PROPOSITION 2.3.
i) For each p > 0, I(u) < oo implies (W,(l“), Fun, n € N) is a martingale.
ii) If 1(0) < oo, then (Z,, Fn, n € N) is a martingale.

PROOF. i) From Lemma 2.2, E(W,(l“ )) < 0. By the conditional Fubini’s
theorem, the independence assumption, (2.2) and (2.4), we have for every n € N,

o0
E(W,(L’_f_)1 | Fr) = a("+1)"/ (z-D* 11 -a+ az)X" exp(—¥4 (1 — a + az))d=.
1

The change of variable v = 1 — @ + @z implies E(W,(l’_:)1 | Fn) = W)
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ii) Again by Lemma 2.2, E(|Z,|) < co. Using the same arguments as in the
proof of i) above, we have for n € N

E(Zny1 | Fn)
= / (z-1)"H{1 - a+az)® — (1 — a+ az)Xo}jeVa(l-ataz)g,
1

- /oo(z ~1)"YHh(z) = (1 —a+az)}dz + (n+ 1) log a,

where h(z) = 2%° exp(—¥,(z)). By Frullani’s integral (see Novikov (1990)) ap-
plied to the function A(z + 1), we have

/loo(z —1)"Hh(z) = h(1 — a+ az)}dz = h(1) loga = log c.

The change of variable v =1 — a + .z implies then E(Z, 41 | Fn) = Z,. 0O
3. First entry time

Let (X,, n € N) be a Z, -valued AR(1) process and let 7(A) be the first entry
time of X, over level A, for some A € N, as defined in (1.3). It is clear that 7(A)
is a stopping time for (F,, n € N).

We need to recall a version of the optional sampling theorem which can be
found in any graduate text on probability theory.

LEMMA 3.1. Suppose that (Y, n € N) is a martingale and T is a stopping
time. If P(T' < 00) =1 and E(sup,, |Yran|) < 00, then E(Yr) = E(Y)).

The following proposition obtains an explicit formula for the expected value
of the first entry time. This constitutes the main result of the paper.

PROPOSITION 3.2. Let (X,, n € N) be a Z -valued AR(1) process such that
Xo = xo, Tg > 1. Assume that for A€ N, A > x,

(3.1) /:o(z — 1) 124 exp(—¥u(2))dz < 0.

Then E(1(A)) < oo and

(32) E(r(A4)) = (- log @) ' E(Ho(X-(a)))-

PrROOF. The proof is a modified version of the proof of Theorem 1 in Novikov
(1990). First, note that (3.1) implies I(0) < oo and hence, by Proposition 2.3,
(Zn, n € N) of (2.9) is a martingale. Essentially, we need to show that Lemma
3.1 applies to (Z,, n € N) and 7(A). More specifically, we will establish that
E(1(A)) < oo and that E(sup, |Ha(X-(a)an)|) < 00. These conditions imply
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those of Lemma 3.1 and, since Zg = 0, the conclusion will follow straightforwardly.
The optional stopping theorem for bounded stopping times implies that for each
neN,

(3-3) E(r(A) An)(~loga) = E(Ha(Xr(a)rn)-

The key step involves deriving from (3.3) the claim that the sequence (E(7(4)An),
n € N) is bounded. This is done by combining a somewhat intricate truncation
argument on €,(4) with an application of Wald’s equation for iid r.v.’s. In order
to insure integrability of the various estimates under assumption (3.1), a suitable
function of z is chosen as the truncating bound. Let C > 0 and let g(z) be a
function defined on [1, 00) and such that

(3.4) lim 29%) = lim 29 =1
z—lt z—00
(for e.g., one can choose g(z) = @ﬁ%ﬁ and g(1) = 1). Partitioning the

domain of integration € on the right-hand side of (3.3) into [T(A4) > n], [T(4) <
n,e,(a) > Cg(2)] and [7(A) < n,e-(4) < Cg(2)], and using the inequalities X, < A
on [r(A) > n], and

Xk—1 A
(35) aOX.,-(A)_l — Z Yi(k_l) < Z}/i(k—l) <A
i=1 i=1

on [T(A) = k|, k < n, we have
(3.6) E(r(A) An) (log é)

7(A)An
<SH (A +E| > L(C)
k=1
+ [ = )7 A — ) expl(- a2,
1
where

Ly(C) = / (z = 1)1 EEE Y e _ pmoyte—Ya [lg, > Cg(2)]dz.
1

The first term on the right-hand side of (3.6) is finite by (3.1). The last term is
also finite by (3.1) and (3.4). Both terms are independent of n. Since (Yi(k_l),
i=1,2,...,4; ¢) are iid random vectors in RA*! the sequence (Lx(C), k > 1)
is also iid. By independence, (2.4), and the change of variable v =1 — a + az, we
have

E(L:(C)) < By +/ (z = 1)1z + 220)e Y=gz < oo,
2



ON THE FIRST ENTRY TIME OF A Z.-VALUED AR(1) PROCESS 365

for some constant B; > 0. It follows that limg_.o E(L1(C)) = 0. Moreover, an
application of Wald’s identity for iid r.v.’s yields

7(A)An
E| Y Li(C)|] = E(r(A) An)E(L:(C)).
k=1

Therefore, for 0 < n < 1 and C large enough,
E(t(A) An)(-loga) < B+ nE(1(A) An)(—loga),

for some constant B. The claim is thus proved and, by letting n — oo, we
have E(7(A)) < co. We conclude the proof of the proposition by showing that
the sequence (Ho(X7(ayan), 7 € N) has integrable upper and lower bounds. By
repeating part of the argument above, with 7(A) in place of 7(A) An and C =0,
it can be deduced that

7(A)
(3.7) E(Ho(X;w)) <E| Y Lk(O)) = E(1(A))E(L1(0)) < oo.

k=1

By combining (3.7) with the inequality
o0
Ha(X'r(A)/\n) < Ha(XT(A)) + / (Z e 1)_1(ZA — Z‘zo)e_‘l’“(z)dz
1

we obtain that H,(X;(a)an) has an integrable upper bound. Next, it can be easily
shown that

3.8 '_Ha XT A)An < z—1 _1z’“°e“‘1’°‘(3)dz
(4) A

+ sup (Zzoe_w“(z))lxr(,q)/\n — Zo|.
1<2<2

Furthermore, applying (1.2) iteratively leads to

T(A)
(3.9) [ X (ayan — Tol <270+ Y €

i=1

By Wald’s identity, the right-hand side of (3.9) is integrable. It follows then by
(3.1), (3.8) and (3.9) that Huo(X;(4)an) has an integrable lower bound. O

Proposition 3.2 readily provides a lower bound for E(7(A)).
COROLLARY 3.3. Under the assumptions of Proposition 3.2, we have

(3.10) E(1(A)) 2 (- loga) " Ha(A).
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PROOF. Straightforward from the inequality X,4) > A. O

Remarks. 1) It can be easily shown by using (2.5)-(2.7) that assumption
(3.1) in Proposition 3.2 holds for the binomial distribution, the hypergeometric
distribution, and the discrete stable (and in particular the Poisson) distribution.

2) It does not appear that Proposition 3.2 can be derived in a simpler
fashion. One would have hoped that by first establishing that
E(sup,, |Ha(Xr(ayan)|) < 00, then E(7(A)) < oo would have followed from (3.3).
The difficulty mainly resides in the fact that the truncation argument used in the
proof does not carry over to |Ho (X (a)an)|-

4. The Z,-valued AR(1) process with a thinned Poisson innovation

In this section, we study the special Z,-valued AR(1) process described by
the equation

(4.1) Xpp1=aoX,+(1—a)oept1, Xo=z0, n2>0,

where 0 < o < 1 and zg > 1. In this case X, ;1 results from a convex combination
(with respect to the operator o) of X, and €,41. More precisely, the innovation .
sequence (e,, n > 1) of the AR(1) process undergoes thinning at each n > 1
prior to being superimposed to the thinned X,. We assume that the iid Bernoulli
variables needed in the definition of (1 — &) o €, are independent of the Yi(k)’s of
Section 2. The filtration (F,, n > 0) is suitably redefined as to include these new
Bernoulli variables. We further assume that ¢, has a Poisson distribution with
parameter A > 0. This implies in particular that for each n > 1, (1 - a) o€, is
itself Poisson-distributed with parameter (1 — a)A.

The following result gives an approximating formula for the expected first
entry time of (X,, n > 0) for a near 1.

PROPOSITION 4.1. Let A € N, A > x¢, and let T(A) be as in (1.3). Then
E(1(A)) < o0, and

A-1 A-xo—-1

(4.2) lim (— log @) E(7(4)) = DD

§=0 i=(j—zo)*+

(o + i)!. \—G+1)
(o +7—j)!

PROOF. Since ¥,(z) = A(z — 1), condition (3.1) holds, and hence by Propo-
sition 3.2, E(7(A)) < co. Simple calculations lead to

Af A_i_l (@o £ -G+
(4.3) Ha(A) - ——‘“‘A— It .
§=0 i=(j—z0)t (mo e J)!

Further, by Corollary 3.3, we have
(4.4) (= log @)E(T(A)) > H,(A).
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Let N(a) = [6(1 — @)~1/?] where [a] is the largest integer less than or equal to
a and 0 < § < A. Partitioning  into [e;(4) < N(a)] and [e,;4) > N(a)] in (3.2)
leads to

(4.5) (logé) E(r(A))

00
< / (z = 1)1 a+ (1 — a)2}N (@ — z%0)e=2=-1g,
1

+ E(I[CT(A) > N(a)]Hy(A+(1—a)o 6.,.(A))).

Since (o + (1 — a)2)V(®) < e8(2=1)the first term on the right-hand side of (4.5)
converges to Hy(A) as @ — 1 and by Wald’s identity the second term does not
exceed

(4.6) E(r(A))E(Ilex > N(a)|Ho(A+ (1 — a) o €1)).
Now,
(4.7) E(Ilex > N(a)|Ha(A+ (1 — @) 0 1))

= E(I[El > N(a)]

. /oo(z - D71 a+ (1 - a)z} - z“”")e"\(z_l)dz),
1

from which it can be easily deduced that
1\ !
(4.8) lim1 (log a) E(Iley > N(a)|Hy(A+ (1 —a)oe€)) =0.
a—

Equation (4.2) follows then from (4.3)-(4.8). O
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