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Abstract. In the present paper, we give the exact explicit expression for the
product moments (of any order) of bivariate order statistics (o.s.) from any
arbitrary continuous bivariate distribution function (d.f.). Furthermore, for
any arbitrary bivariate uniform d.f., universal distribution-free bounds for the
differences of any two different product moments (of order (1,1) or (—1,1)) are
given.
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1. Introduction

Let X'j = (X15,X2;5), j = 1 denote i.i.d. random vectors, with absolutely
continuous d.f. F = F(x1,x2) = F(Z) which has marginal d.f’s Fy(z;), t = 1,2.
Write X¢1.n < Xt 2.0 < -+ < Xgnin, t = 1,2, for the order marginals of the first n
pair (X j, X2 ;). Let X = (X1, X2) denote a generic X; = (X1, X2;), and define

uET’,;m’) E(X[",X3.n), Where m; and m; are any real numbers. Furthermore,
let uf';;;m’) be the (ml, mJ) -th moment of the bivariate o.s. (Ut i:n, U2, j:n) from any

arbitrary uniform d.f. D = D(uy,u2) = D(@) (ie., D has uniform (0,1) marginal

d.f.’s). For convenience, we shall abbreviate ufljl,z( 1(1] ln)) by i jin(Vi,jin) and the

components of the numerical vectors Z = (x1,z2), are signified by a subscript.
Throughout this paper the densities of the random variables (r.v.’s) X and X,
t = 1,2, are defined, respectively, as f = f(Z) = m and f; = fi(ze) = g—f:,
t = 1,2. Furthermore, let F1' = g—;; and Fl = 3_1:2 (ie., F'! = f). Finally, the
abbreviations min(a,b) = a A b and max(a,b) = a V b will be adopted.

2. Moments of bivariate o.s.

The following theorem gives a basic formula, which is needed in the next
section and enable us to derive the single and the product moments (of any order)
of bivariate o.s.

351



352 H. M. BARAKAT

THEOREM 2.1. Let m; and m; be any two real values and let 1 <1, j < n;
n > 1. Then, for any continuous bivariate d.f. F(Z), we have

( y (i- 1)/\(J 1)
(1) mgn = ¢ // T ()™ (B (uz))™
Ov(z+y—n 1)

(ul _ D)z ln-rDr
(ug — D)j_l_'"(l —uy — ug + D)V I DL Gy duy

+ Z Z Z C / (™ (ug))™ (F5 ™ (ug))™

Y=@. 0=0, T=T,
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(1 - D¥)'=¢(1 — D)) =0du, du,,
where, @, =0V (j— n+1) * =1A(j—1); 0. = 0V(i—n+1); 0* —1/\(z—1) Ty =
OV('L+.7 —n—0- (P) r* _(7’_0 1)/\(-7 L ) Cl = (-1-r)irl(G— 1—r)'(n Fy s 1

1

Ce = Gorme=mnig=i= pr i n—i—j+8+p+r)l’ “Hug) = sup{ze @ Fi(ze) < we},
0 < us < 1, is the inverse of the d.f. Ft(xt) and D = D(a) is the dependence
function of F, i.e., D = D(Z) = D(Fi(z1), F»(z2)) (see Galambos (1978/87) and
Leadbeter and Rootzen (1988)).

Remark 2.1. By using the well known é-method (see Arnold et al. (1992),
Chap. 5) we can derive an approximate formula for the product moments for any
bivariate d.f. F' as

- _ L+ J — 25 1
ign = FrH@)F 1) |14 st S
Hi,jin 1 (£)2 (J)[ +2(n+1)(n+2)+ o Vi.i +0(n )7

where ¢; = 5, t =4,j and v; j., is determined from (2.1) by putting Fy Yug) =
ug, t=1,2, m; =m; =1 and D = F(F ', F; ).

ProoOF OF THEOREM 2.1. The key ingredient of the proof is the observation
that the event £ = {z1 < X1,in < 21 + 621522 < X3 jin < T2 + 622} may be
realized as follows: r; 1; s1; 01; w; 62; S2; wo and t observations must fall
respectively in the regions I} = (—00, z1|N(—00, z2]; I2 = (21, Z1+8z1]N(—00, z2};
I3 = (1 + 6x1,00) N (—00, z3]; I = (—00, 1) N (T2, 22 + z2]; Is = (z1, 21+ 61| N
(1122,.’1,‘2 + 5.’112]; Is = (IL‘l + x4, OO) ] (.’EQ,.’EQ + 6.’1}2]; I; = (—OO,IIIl] n (562 + bz, OO);
Iy = (z1,z1+6z1|N(z2+822,00) and Iy = (z1+6x1,00)N(z2+822,00). Therefore,
the joint density function f; ;.n(Z) of (Xi,in,X2,j:n) is the limit of 5}:(32 as
6x1,6x2 — 0, where P(FE) can be derived by noting that 61 +62+w = 1 +p2+w =
Lir+b+so=i—1L,r+p1+s1=j-Lir+bh+so+pr1+w+ba+si+pa+t=mn;
r, 01,82, 01,w,602,81,p2,t > 0; P(Il) = F, P(Ig) ~ Fl"(S(L']; P(Ig) ~ (F2 - F),
P(Iy) ~ F'6zy; P(I5) ~ FY 1621619 = f611670; P(Ig) ~ (fo — F1)éxa; P(I7) ~
(Fy — F); P(I3) ~ (fi — F")éxy and P(ly) ~ (1 — F} — Fy + F). Finally, (2.1)
follows from the relation [f _oooo z7% 25" f; j.n(Z)dz1dz2 by taking the transformation
Ut = Ft(:ct), t= 1,2
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3. Distribution-free bounds

THEOREM 3.1. For any bivariate uniform d.f. D = D(@) and all 2 < 4,5 <
n — 1 we have

(n+Dm+2) =~ " TS g 1) (n+2)
and
—j 3j+1
S S VF I YU . N —
(n+ D(nt2) — Jbin = Vi-Lin S G0 N+ 2)
Moreover, for allmn =1,2,..., we have
1 <v <1 1 ;
(n+1) = ™= (n+1)(n+2)
n+3 n-—1 1
n S ————; d e < nnyVnln S T3
S i Dm+2) O et (n+2) - Pl = a0

Remark 3.1. For any bivariate uniform d.f. D, in view of Theorem 3.1, it
is easy to show that U, ;., and U j.,,, for fixed 4,j = 1, n are asymptotically
uncorrelated.

The following corollary is an easy consequence of the mentioned theorem.

COROLLARY 3.1. For2<i,5 <n -1, we have

(-1 G-DEi+1)

S Vijin S Vit + n+)m+2)

T A D) -

COROLLARY 3.2. Forall2<1i,j <n -1, we have

3l -y - 1 .
G- 1) SVl jm— Vijn < G-1)
3@ j
—3t+l oy -y oL

Z(l _ 1) — Vi,j—l:n i,jn = ('L _ 1)
and
2 2n —1
_2 0y i cq, 201
1 n= Vpnn ' Vnnn' = 1+ n(n — 1)

COROLLARY 3.3. For any bivariate d.f. F(Z) the rank concomitant o.s.
Piljlm Of Xo,[jjm = S XojIirank(z1:)=j], where Ija) denotes the indicator func-
tion of the set A, satisfies the relation p; [j.n, > %Jﬁipi,mmﬂ, Vi<i,j<n-1.
The general theory of concomitant o.s. is discussed by many authors (see e.g.,
Galambos (1978/87), David (1981) and Bhattacharya (1984)).
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For proving Theorem 3.1, we first present two lemmas.
LEMMA 3.1. For2<1i,j <n—1 and for any two real values m;, m; we have

2n—1—J3+2 (mi,m;) 4 { (m,,m,) + 2 .7 (mnmj)
n+1 1,5:n+1 n+1 t+1,J n+1 n+1 z,y-l—l n+1
(mhm ( T +1) ( i+1 ) ( 1«+1 ) ( (2] +1
> {7+ WD 4y T -y Tt
2n —1 -J (Mi,mj) + 1—1 I/(mi’mj) + .7 -1 (m‘l)mJ)
= n+1l i,7:n+1 n+1 i+1,5:n+1 n+1 1,,]+1 n+l°

ProoF. For all 2 < 4,5 < n — 1, we have, in (2.1), ¢, = 6, = 0 and
=0" =1. Let B(Zn“m’) C(T”m’) D(m“m’ and Ez(';l’,;mj) denote the second
term on the right hand side of (2.1) (the three summations over ¢, 8 and r) when
p=0=1,0=0=0;¢0=0,0=1and ¢ =1, § = 0 respectively. Therefore,

(2.1) may be written as

(3.1) V'(T?i1m]) A(mumj) + (B(mnmj) _+_ C(mzymj + D(mlvm]) + E(mumj))’

1,5 1,j:n i,j:n 3,J:m ,j:n i,j:n

where A"™™) denotes the first term on the right hand side of (2.1), i.e.,

i,J:n

G 1)/\(J 1)

(3.2) A(Z",;m’) C, / /

’I‘—OV(1+J n—1)
(Ul D)z 1- rDr ,u2 _ D)] -1-r
(1-uy —ug+ D))"~ =i+ pblgy, dus.

Now, upon using the identity 1 = (u; — D)+ (ua — D)+ (1 —u; —u2+ D)+ D in
the integrand of (3.2), and simplifying the resulting expression, we get

(mim;) _ i (mimy) | s (mam;)
63 AT = (S AT+ AT
n—z—J+2A(mi,mj)
———-—_n+1 i,jin+1
+ (AT AT - AR - ANTT),

(- 1)/\(J 1)

(3.4) AYlmema) = o) / /

r—OV(z+] n—1)
(Ul _ D)z 1- rDr+1 (u2 _ D)j—l—r
(1—up —u2+ D)”"i_j“”Dl’lduldug.
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On the other hand, by writing the term D™*! in the integrand of (3.4) as (1 —
w1 — us + D)D" — (1 —ug — ug)D"; u1 D" — (uy — D)D" and up D" — (uz — D)DT,
we get, respectively

a5 A= (PEIERAG - A )

— (A — AT AT ),
o) A = A - (kA - a)
and
an) A = Al - (LA - A

Combining (3.3) with (3.5), (3.6) and (3.7) we deduce that

2A(m1,mg) <2n‘i—j+2A(mz,mg) i A(mi,mj) - .7 (mi,m;) )

i,jin ntl i,5in+1 i+1,3ind1 T ) it lintl
+ (Al ) 4 A AE’";?;L"‘“ AL,
Similarly, we can easily get analogous relations for BZ(T’,;m’), E(Z"n’m’).
Namely,
a5 = (R g LB + LB )
+ (B + Bf';‘;;"”“) B — BT
20y = (Bmirdolmm) + o, + o)
(O Ot — Cf’”fjln"‘” ol
2plm = (I pmmy 1 S lpmm) + Lopii,)
+ (D) 4 Dl - pieystm) _ ploneony
and
2 = (P I ) + L E T + LR

i+1,m; imi+1 i+1,m; m;,m;+1
(Ez(r_jnn ) Ef?nm ) Ez(mljnm) E(,] lmn ))

Almema) - plmema)y gaeh

By combining the above derived five relations (for A; ;""" . i jon

(3.1) we can easily obtain the following two relations

L] n n+1 Vi,j:n+1 + —’_+ ll/i+1,j:n+1 + — ntl ,J+1 n+1)

(mi+1,m;) (mi,m;+1) (mi+1,m;) (miym;+1)
+ (1/1 JJim tv i,jin Vi—l,j:n - Vi,j—l:n )

2 (mnmj) (277/ - Z _J (miymj) 'L _ 1 (mi)mj) -7 - 1 (mhmj)



356 H. M. BARAKAT

1 (ma,m;) (mi,m;) (mi,m;) (mi,m;)
+m(2Ai?;nT1 +2B, 0 + D+ B

(mi,m;) (miym;) (mi,m;)
+ Ai+1,j:n+1 + Ci+l,j:n+1 + Ei+l,j:n+1

(ms,m;) (m;i,m;) (mi,m;)
+ Az',j+1rzlr’z+1 + Ci,r;‘l+11:nr:+1 + Di,j+1:n+1)

and
2wl = (PR Sl ), )
g Y T T )
- (D) + B 200

(mq,m;) (mi,m;) (mi,m;) (mi,m;)
+ B i1+ Divilint1 + Bijitms1 + B ji1ms1)s

which yield immediately the desired result after noting that 0 < Af?nm” ), ey

Elmems) < 1. The lemma is proved.

i,j:n

LEMMA 3.2. For any two real values m; and m;, we have

1 (mim)) (ms;m;) (mi,m;
ORLLLS ] 1y Hity mum]) (m,-+1,m-) (mi,m4+1)
n+1 (Vn1n+1m+1 + Vn+1,n:n+1 + 2nl’n+l,n+1:n-}—1) > Vn,n:n e Vn,n:n 7

> 2(n — 1) (mivmj) .
n+l,nt+l:n+1>

n+1
(mim;) N =1 (mim;) (mi+1,m;) (mi,m;+1)
21/1,1:71 - n+ 1V1,1:n+1 = Vl,l:n + Vl,l:n
(mi,m;) n_(mim;),
ZUim  — ntl 1’/1,1:n+1 ;
n_ (mimy) (miymy;) (mimi+1) o M= 1 (m;my)
n -+ lyl,n-!-l:n-l-l + n+ 1V2,n+l:n+1 = Vl,n:n 2 n+ 1”1,n+1:n+1
and
. (mim;) 1 (mi,m;) (mitlm;) S T — ly(mnmg‘)

] 1Vn+1,1m+1 + Y 1Yn+12m+1 2 Vn,tin Z g 1 /ntllntl

PROOF. Let us prove the first relation of the lemma. Upon using the identity
uy +uz = (u; — D) + (u2 — D) + 2D, in (3.2) (with ¢ = j = n) we can easily, after
simple calculations, derive the identity

1 e s 2n .
% 17 ] 15 ; — ( 1y ) ( i3 ( iy )
AS:,’;L: m,) + A7(17’r:u771n,+1) - n+ 1 (Anr,’:z-l—nll:jn+1 + Anr—rfl-l,r::]72+l) + n+ 1 Anfil:—j}—lzn—f—l'

Similarly, we can obtain analogous identity for By, ,.,. Namely,

1 s s 2n — 2 s
B’E:’r::::;l,mj)-lhB(mi,mj'*'l) — (B(mumg) +B( imj) n (ms,m;)

n,nn n -+ 1 n,n+1:n+1 n+1l,n:n+1 + n+ 1 n+l,n+l:n+1°

Combining the last two relations with the facts that (in view of (2.1)) Vﬁ%’}’éﬂj ) =
(mq,m;) (mivm‘). (ms,my) _ (mhm’) (mi,m;) (mivm')

An,n:n 7+ Bn,n:n ’ ) n,n+1:]n+1 - An,n+1:]n+1 + Bn,n+1:]n+1 + En,n—i—lzjn—}—l and
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(mism;)  _ A(ma,my) (mi,m;) (mim;) : ;
Uniinontl = Anstmmtl T Britnm+1 T Dagining1, We can easily, after routine

calculations, get the two relations

(mi+1,m;) (mi,mji+1)
Vnmn + Vnnm ©

1 (m;,m;) (mi,m;) (ms,m;)
= n+ I(Vn,n+lzjn+1 + '/n+1,n:]n+1 + 2nVn+1,n-:-1:n+1)
1 (miym;) (mi,m;) (mi,m;)
- n+ 1(2Bn+1,nilzn+1 + Dn+1,n:3n+1 + En,n+1:]n+1);
and
) 4 )
2(n = 1) (mim;) 1 (mam;) (msm;)
= Thrl et L int1 T m(An,nffan + A

(ms,m;) (mi,m;) (mi,m;)
+ 2An+1,nfi-1:n+1 + Bn,n+1:1n+1 + Bn+1,n:n+l)7

which immediately yield the desired result. For proving the three remaining rela-
(mimg) _ p(mim;) + clmims). (mimj) _ p(mimyg) +

tions, we first notice that vy ., 11m Lim 3 Vinen 1
mg,m; i, 15 my, My TG, 4 -
E§nn 3) and V,(l,lf;l ) = Aﬁl,h; W) 4 DfL Im 28 Therefore, upon using, respec-

tively, the identities u; +ug =1— (1 — u1 —up + D) + D; up = (up — D) + D and
u; = (u1 — D) + D and by proceeding on similar lines as we did in the proving of
the first relation (with only the obvious changes) we can easily get, respectively,
the desired relations. The lemma is proved.

PROOF OF THEOREM 3.1. An easy application of Lemma 3.1 with m; =1,

m; = 0 and m; = 0, m; = 1 leads, respectively to the first two relations in the

- o1 _ _j 1,00 _ (0,2) _ (G+1 (2,00 _
the'o'rem (note that v; ) = 245, Vijin = w1 Vigin = ——(ni(lj)(n?{-2) and v, =
(ni(]’)%, see Gibbons (1970)). The remaining relations of the theorem follow,
respectively, from the relations of Lemma 3.2, by putting m; = 1, m; = 0 in the

first three relations of the lemma and m; = 0, m; = 1 in the last relation. The
theorem is established.

PROOF OF COROLLARY 3.2. We again appeal to Lemma 3.1 with m; = 0,
m; = —1 and m; = —1, m; = 0 to get, respectively the first two relations of

the corollary (note that O noang 000 o L4, Vi,j > 1). The last

i,j:n 7—1 i,J:n
two relations of the corollary (for 1/,(11,;;,1 ) and 1/,(,]1,%)) follow from the third and
the fourth relations of Lemma 3.2 by putting, respectively m; = 0, m; = —1 and

m; = —1, m; = 0. The proof is completed.

PROOF OF COROLLARY 3.3. The proof follows by noting that p; (1., =
A and

i,J:n

o GTAGSD 1 | _
Pi[j]lm = AEJ,Z > Z C1 // (uy — D) 1""D"(ug — DY
0

r=0V(i+j—n—1)
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n—1—j+ 2A(0,0) 4 4*00)
S E— 1

(1 — ug — ug + D)* 72+ DLl duy duy = p—— ] ijin+ i-1,j—1:n
n—1t—73+2 (0,0
T

The proof is completed.
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