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Abstract. In this article the most general class of bivariate distributions
such that both conditional densities are Pearson Type VII, with fixed shape
parameter, is fully characterized. Some of its properties and relations with
other distributions are explored. The estimation of parameters is considered
by the methods of maximum likelihood and pseudolikelihood and a method
for random variate generation is presented along with a simulation experiment.
Bivariate and multivariate extensions of the Pearson Type VII conditionals
distribution are also discussed.
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1. Introduction

The study of bivariate distributions such that both conditional distributions
are members of specific parametric families (i.e. conditionally specified distribu-
tions) has received a considerable amount of interest in the last decade. The
motivation for conditional specification stems from the fact that it is usually eas-
ier to determine the forms of the conditionals rather than the joint or marginal
distributions. Ground breaking contributions to the theory associated with condi-
tional specifications are the papers by Castillo and Galambos (19874, 1989), which
pioneered the utility of functional equation arguments in specifying the complete
class of bivariate distributions with normal conditionals. The recent monograph
by Arnold et al. (1992) is an excellent reference for the work done on conditionally
specified distributions and related topics (see also Arnold et al. (1993, 1995) and
Sarabia (1995)).

This paper is concerned with bivariate distributions possessing conditional
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densities of the form

Vo) i
(o= D) raty

(1.1) fx(z) =

which defines the Pearson Type VII distribution (PVII for brevity) with parame-
ters 0 € R, and p > 27!; in the sequel we shall be referring to such distributions
as bivariate distributions with PVII conditionals (BPVIIC for brevity). Note that
when p = 1 the PVII becomes the Cauchy distribution with zero location pa-
rameter and by restricting 2p — 1 € N, (1.1) becomes the density function of a ¢
distribution with 2p—1 degrees of freedom and scale parameter o ~!. After deriving
the class of BPVIIC distributions with fixed shape parameter we study its proper-
ties and explore relations with other distributions. The estimation of parameters is
considered by the methods of maximum likelihood and pseudolikelihood and their
performances are compared by carrying out a simulation experiment. Finally, we
discuss briefly the general case where the shape parameters are allowed to depend
on the conditioned variable and sketch an extension to higher dimensions.

2. The BPVIHC distribution

2.1 Feasible models with PVII conditionals

Assume a pair of random variables (X,Y) with positive joint density
fx,y(2,y) over B? and denote by fx(z), fy(y) and fxpy(z | v), fix(y | 2)
the associated marginal and conditional densities respectively. To characterize the
wider class of BPVIIC distributions suppose that X | Y and Y | X are PVII
variables with densities

Vo(y)I'(p) zeR,

fxy(zly) = ,
ﬁr( - %) 1+ o(y)a?)
2.1)
Frix(y | z) = VT@)() yeR,

VAT (p- 3) a+r@y

where p > 27! is a fixed shape parameter and o(y), 7(z) are some positive func-
tions with real arguments. Now write the joint density as the product of a marginal
and a conditional density in both possible ways to obtain the functional equation

Vol _ fx@yre) o op

22) 0t o)y~ 1L+ r@)i)

and set

(2.3) 9@) = {Fr@Ve@}'?, k@)= {fx@)V1(@)}/?
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so that, after rearranging, (2.2) becomes

(2.4) 9(y) + ¥ 9(y)7(x) — h(z) — 2*h(z)a(y) =0,

which must be solved for o, 7, g and h. It is readily recognized that the latter is a
special case of the functional equation Y ,_; fx(x)gk(y) = 0, whose most general
solution is given in the classical book by Aczel ((1966), p. 161). Thus, with
h(z), z2h(zx) and g(y), y*g(y) being the systems of mutually linearly independent
functions, the solution of (2.4) is found to be

T(x)_/\3+)\4x 0‘( ):)\2+/\4y2
SV W LA L W W L

(2.5) : ,
h(ﬂ?) = Al + )\2:1;2a g(y) = m7

for real constants \j, j = 1,...,4. Finally, substituting (2.3) and (2.5) in (2.2)
the joint density function is derived in the form

Np(/\17 )‘2) )‘3; A4)

. - R
(2 6) .fX,Y(xa y) ()\1 _+_ /\2:1,'2 _+_ A3y2 + /\4:1,‘2y2)p’ x7y e td

where N,(-) denotes the normalizing constant and A; € R, j =1,...,4.

In order to meet the non-negativity condition for fxy we must postulate
that A; € Ry U {0}. Furthermore, for (2.6) to represent a well defined density
function certain compatibility conditions, studied by Arnold and Press (1989),
must be satisfied. Specifically, denoting by Sy and Sy the supports of X and Y
respectively, Arnold and Press proved that if (X,Y’) is absolutely continuous with
respect to some product measure m; X my on Sx x Sy then a joint density with
conditionals fxy and fy|x will exist iff

() {(=y) : fxyy(@|y) >0} ={(z,9) : frx(y | z) >0} =T, and

(i) Y(z,y) € T, a(z),b(y) : fx;v/frix = a(z)b(y), where Ja(z)dm,(z) <
00.

Obviously, in our case, the supports of the conditional densities coincide. The
equality in (i) holds with a(z) = (A3 + Xz?)~/2(A\1 + A22?)Y/277 and finally, to
ensure that a(z) is integrable we must have A; € R, U{0}and \; € R4, j =2,3,4;
moreover if \; = 0 then p € (271, 1).

2.2 The normalizing constant

The final step in the characterization of the BPVIIC distribution involves the
determination of the constant of proportionality in (2.6). To this end we must
evaluate the integral

+oo  ptoo
(2.7) {Np(A1, A2, A3, A0)} 71 = / / (M + Aoz + Asy® + Mz’y?) Pdzdy.
We treat the case A\; # 0 first. Making the transformation s = A2 AT 142,

t = AsAT'y?, calling ¢ = A1 Ag(A2A3)"! and using the well known integral repre-
sentation of the Beta function, B(m,n) = [;° 2™ !(1+z) ™ "dz, form,n € Ry,
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we obtain

(28)  {Np(A1,22,A /\)}_1_3@4"1) &
: PALAR AL AT T N (1+t)P~1/2,/t(1 + t)

Letting w = t(1 4+ t)~! and manipulating we end up with

AL /X5 A
1 1 11 ’
Blz,p-=)I{=z,Z,pm1-
(2,17 2>I<2,2,p, w)

where \; ER,,j=1,...,4, 0= Ads(MeAz)7Y, p>271 and

(2.9) Np(A17A2))‘37l\4) =

1
I{a,b,c;2) = / W1 = w) 1 - 2w) " %dw,
0

for ¢ > b € R,. The latter integral converges for z < 1 and it is fairly well
known from Euler’s formula o F} (a, b; ¢; z) = T(c){T'(b)T'(c—b)} 1I(a, b, c; z) which
extends the definition of the hypergeometric function o F;(a, b; ¢; z) beyond |z| < 1
(see Magnus et al. (1966), p. 54). Alternatively, the normalizing constant can
be expressed in terms of the usual infinite series representation of 2Fi(a, b; ¢; 2).
Making in (2.8) the changes of variables w = t(1+¢)~! and w = (1+¢)~! in turn and
placing appropriate restrictions on ¢ to ensure that the relevant hypergeometric
series converge, we find

(2.10)  Np(A1, A2, Az, Aa)
( XN s

11 1 1\’
.1_ 2 - _ =
2F1 <2 » 5o P sa)B (2,13 2)

0<p<

N | =

XV /N

1 1 1 1 1\’
F ip;l— =) (p—=)B?* | =,p—=
2 1( 2D 2717, (P) (p 2) <2ap 2)

1

> —.
\ 4 2

The advantage of (2.9) over the latter expression becomes evident when the process
of fitting the model to data is encountered. It is useful to note that for two values
of p the formula for the normalizing constant in (2.9) may be restated in terms of
elliptic integrals using the expressions

Rela,b,c) / {(t+a)(t+b)(t + )2,
(2.11)
Rp(a,b,c) / {(t+ a)(t +b)(t + )3}~V ?at,
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obtained from Carlson ((1977), Chapter 9) for the elliptic integrals of the first and
second kind respectively. For the former integral a, b, c must be non negative and
at most one may be equal to zero, while for the latter, c must be positive, a, b non
negative and only one of a and b may be allowed to take the value of zero. The
expressions in (2.11) are symmetrised variants of the classic elliptic integrals with
special advantages in computations and they are available in standard software
such as NAG (Numerical Algorithms Group, 1984). For p = 1 and 2 the integrands
in (2.8) (or 2.9) can be easily rearranged to accomplish the forms required by (2.11)
giving the normalizing constants as

V )\1/\4{27FRF(0,Q0—1, 1)}_17 pP= 1)

(2.12) Np(A1, A2, A3, Ag) =
34/ MM {7Rp(0,0 1, 1)}, p=2.
The evaluation of the integral in (2.7) when A; = 0 is dealt with arguments
analogous to those leading to (2.9) and subsequently yields

(M2Xs)P~ 120 7P
1 1 1\’
B <§,p- 5) B (1—p,p— 5)

with \; € Ry for j =2,3,4and p € (271,1).

Summarizing, we have obtained that for fixed p the most general BPVIIC
distribution has density function given by (2.6) with normalizing constant given
by (2.9) or (2.13) for p > 271, A\; € Ry U{0}, A\; € Ry, j = 2,3,4 and the further
restriction p < 1 when A; = 0.

(2.13) Np(A2, A3, Ag) =

3. Properties of the distribution
3.1 Conditionals, marginals and moments
Hereinafter we shall concentrate on the case where p > 1 (which implies that

A1 > 0) and for simplicity move to the parameterization p; = Aj11 )\1_1, 7 =12
Consequently (2.6) assumes the form

(3.1) fxy(z,y) = Np(pa, pa, ©)(1 + p1z® + pay® + puipe®y®) ™,  z,y €R,

where

V12
Np(“hy@»w): 1 1 1 1 )
Blzp—=)I{2 2 p1-
(2,p 2>I(2,2,p,1 @)

with p > 1 and pj,9o € Ry for j = 1,2; this is denoted by (X,Y) ~
BPVIIC(uy, 2, 9; p). From (2.1) and (2.5) we immediately have that

XY ~ PVIL{ (1 + pp2y?®) (1 + pay®) 7', 0},

(3.2) 9 o1
Y | X ~PVI{uz(1 + puiz*)(1 + mz®) ", p},
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with densities given using (1.1) and subsequently the marginal densities are

-1

fx($)=\/ﬂ_1{l(2 3wl w) (1+<pm2>1/2<1+m2>"—1/2} . weR,
11 2y1/2 2\p~1/2 -

fry) = Ve I{ 5,551 =) (L+epay™) " (1 + p2y) , YER

In this formulation p; and uo are intensity parameters for X and Y respectively
(uy ! and By ! are scale parameters) and ¢, p are dependence and shape parameters
respectively. It is easy to prove that X and Y are independent if and only if ¢ =1
and furthermore this is also the unique case for encountering PVII marginals.
The graph of the joint density is always a symmetrical bell-shaped curve and for
11 = pg = 1 we get the standard form of the distribution.

When p € (271,1] the BPVIIC distribution does not possess finite moments.
If on the contrary p > 1, the raw moments of the pair (X,Y) may be determined
from (3.1) by direct integration in a manner similar to that used for obtaining the
normalizing constant. For p > max{&f%, 71} and k,r € N U {0} we find that

( k+1 E+1 k+1 r+1
- - I -1 —
P( > )P<p 5 > ( 5 5 Pl 80)
11 ’
(33) E(XFYyT) = x/wluzl“(p— ) (2 3 Pl- so)

k, r both even or zero,

L 0, at least one of k, r is odd.

Accordingly, the BPVIIC model may be an appropriate candidate for uncorrelated
but non independent bivariate data. A set of real data arising from such situation
is analyzed in Arnold and Strauss (1991a) and also discussed in Sarabia (1995).

The conditional moments are easily derived using (3.2) and (1.1). For even
k < 2p — 1 we obtain

k+1 k+1
T r+l r p__i'_ ) k)2
k 2 1+ poy
E(X"|y)= 7 T tomd)
ﬁr(p_i) p1 (L + ppo
k+1 k+1
r{Zi)p(p- 212
E(Y* | z) = ( 2 ) (p 2 )( 1+ iz )’“’2
p2(1 + pu1z?) ’

vrl (p— %)

while for k£ odd the above moments equal zero. We note that the conditional
moments are rational functions of the conditioned variable.
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3.2 Relations to other distributions

From (3.1) with p = 1 we get the centered Cauchy conditionals model of
Anderson and Arnold (1991). The equivalence of their expression (2.21), which
gives the normalizing constant in terms of complete elliptic mtegrals of the first
kind K (m), with (2.10) can be seen through the formula 2 F1 (3, 1:1;m) = 2K(m),
m € Ry U{0} (see Abramowitz and Stegun (1968), p. 591). Of course (3. 1) with
the normalizing constant given alternatively by the first expression in (2.12), gives
the joint density in a compact form without having to distinguish two cases for ¢.

An interesting limiting case of the BPVIIC(u1, p2,@; p) occurs when ¢ — 0.
Let h(z,y) = lim,—o fx,y (2, y). Then it is straightforward to verify that

(3.4) h(z,y) =7 Hp — V)/mpz(l + ma® + pey®) P, z,y€R,

with p > 1 and py, uo € R4. This is a special case of the bivariate Pearson Type
VII distribution (Johnson (1987), p. 117) with location parameters equal to zero
and uncorrelated components. If we restrict 2p — 2 to take positive integer values
h(z,y) becomes a special case of the general bivariate ¢ distribution (Johnson and
Kotz (1972), p. 134, relation 1) with uncorrelated components and 2p — 2 degrees
of freedom. For 1 = gy = ¢~ 2 and p = 3/2 in (3.4) we get the bivariate Cauchy
distribution (Mardia (1970), p. 86), while for gy = pz = v™! and p = (v + 2)/2
we obtain the bivariate Student distribution (Johnson and Kotz (1972), p. 134,
relation 2) with v degrees of freedom. In the latter case we get the standard
bivariate normal distribution with independent components as a further limiting
case,

L 1 1 o .2
Vgngoggfx,y(x,y) = EeXP{—i(x +y )}, T,y € R.

Another limiting case of the BPVIIC(u1, u2, ¢; p) is the centered normal con-
ditionals distribution, studied in detail by Sarabia (1995). Letting a = 2pu;, 8 =
2ppa, ¥ = ©(2p)~" in (3.1) and using that lim, .. e '8 *T(z + a){I'(2)} ' =1,
lime—o0 2F1 (@, b;¢;1—c2z™ 1) = 2°U(a,a—b+1, 2) (see Magnus et al. (1966), pp. 12
and 263 respectively) where U(+) is a confluent hypergeometric function, we obtain

pli{{.lo fxy(z,y)

-1
1 1 1
2aﬁ’y (271’U (—2", 1, ﬂ)) exp {—'é‘(ax2 + ,Byz + a,37$2y2)} ’

which is the density function of the centered normal conditionals model with
o, 8,7 € R,

The BPVIIC distribution can be related to a special case of the bivariate
second kind Beta conditionals of Castillo and Sarabia (1990), by means of the
change of variables (U,V) = (X2,Y?). Specifically if (X,Y) ~ BPVIIC(};,j =
1,...,4;p) with density given by (2.6) and normalizing constant as in (2.9) or
(2. 13) then using their notation (X2,Y?2) ~ BE(\1, A2, A3, Aa; 5,0 — 3)-
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4. Estimation of parameters

4.1 Mazximum likelihood and pseudolikelihood estimation

We assume that data Y,ps = (z;,¥:;¢ = 1,...,n) are observed and are known
to be i.i.d. from the BPVIIC(uy, 2, ¢; p) distribution with density function (3.1).
From (3.3) it is evident that moment estimates for the parameters cannot be ob-
tained in closed forms and therefore there is little point in considering the method
any further. Proceeding with the method of maximum likelihood (ml), the log
likelihood function from the n pairs of observations is given by

1
l(#‘l)#?)wap; Yobs) = —-n {log\/;r"' lOgF <p - 5) - lOgF(p)}

+

o3

11
(log p11 + log p2) ~ nlog I (5, 7 Pl- w)

n
—p Y _log(l+ pma? + pay? + pp1peziyl)-

i=1

To avoid additional complexities in an already burdensome estimation problem we
assume that p is known and consequently the ml equations are found to be

n " z? + puox? 2

o Z i T PHTY;

n P 14 pz? + 2 4 22’
1 S L+ ma + oy + Py

n - 2 + puizdy?
n_9 Z Yi v PITIY;
Pl Ty 22 + o + 2,2

K2 i=1 1 zy H2y; PH1U2T7Y;

3 3
nI(_x—up+1§1_‘P) n 2,2

2 2 = 2#1#21’2 TiYi

1+ naf + payl + ppapelyl’

11
I<§7§ap11_30)

where we have used that %I(a,b, ¢;z) =al(a+1,b+ 1,¢+ 1;2) for the integral
in (2.9). The ml estimates of p;, po and ¢ must be derived numerically and
the evaluation of the integral I(-) in each iteration imposes a further drawback.
However, the presence of an awkward normalizing constant is a common problem
in conditionally specified models.

One alternative estimation scheme is provided by maximum pseudo likeli-
hood (mpsl) estimation, which was introduced by Besag (1975, 1977). Arnold
and Strauss (19915) demonstrated that, under standard regularity conditions, the
mpsl estimators are consistent and asymptotically normal but are not, in general,
efficient. They also gave some interesting examples of the use of mpsl estimators
and derived expressions for their asymptotic variances and covariances; see also
Arnold et al. ((1992), Chapter 9). The estimation scheme for conditionally spec-
tfied models is based on the maximization of the product of conditional densities
and hence the problem is tackled without call to the normalizing constant. When
the sampling distribution is the BVPVIIC(u1, 2, ; p), the required conditional
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densities are given using (3.2) and (1.1) and therefore we have the pseudo log
likelihood function in the form

n
lps(p1, 2, 0,05 Yobs) = Hin[Yi(xi | ya) frx: (i | @)
i=1

= - 2n{log\/?+1og1“ (p— %) - logl“(p)}

(log p1 + log p2)

wlz

[a——y

n n
L1
= E og(1 + puayf) + 5 > log(1 + ppma7)
1=1 i=1

+ ( ;) {Zlog 1+ poy; )+Zlog(1+u1$ )}

i=1

[\]

n
—2p ) log(1+ ma? + pay; + pp1p2iyl).

Differentiating with respect to p1, 2, ¢ and p we get the mpsl equations in the
form,

n 2

T
- _ _ 1 _
Zl+<pu:c (2p - )Zl-i-,ulx?

2
+ ‘Pllzf
+ 4p
; 1+ ma} + pay? + wmzx y?’

n 2 n 2
n _ PY; @ Y;
- = E —F%__(2p-1 E i
p2 S 1+ ppayl ) 1+ pay?

N 4PZ yz + wlw?y?
L+ paa? + poy? + ppapozlyy’

n 2,2
s poy; z.Y,
0= E + E -4 E ’
1+ pme; =1+ opy} HIH2P 20 T 022 + pay? + g padiy?

0 = 2m(p) — 209 (p——) Zlog(1+u2y, )+ 3 log(1 + ?)

i=1

) Zlog(l + ma? + p2y? + puipaziyl),
i=1

where () is the digamma function.
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Table 1. A simulation experiment: the upper and lower figures in each pair are the maximum
likelihood and pseudolikelihood estimators respectively. Each is the average of 100 replications
and the figures in parentheses are the root-mean-squared deviations of the 100 estimates from
the true value.

True values n = 50 n = 100 n = 500

pr=1 1.138(.437)  1.055(.320) 1.009(.115)
1.153(.462)  1.063(.325) 1.010(.115)

pe =1 1.121(.340) 1.042(.291) 1.017(.133)
1.135(.417)  1.050(.297) 1.018(.134)

0 =0.5 .738(1.079) .689(.554) .551(.224)
.730(1.113) .682(.563) .549(.223)

pur =1 1.113(.373)  1.051(.276) 1.001(.123)
1.112(.378)  1.052(.279) 1.001(.123)

p2 =1 1.128(.413)  1.075(.313) 1.019(.131)
1.127(.416)  1.075(.316) 1.019(.131)

=1 1.429(2.032) 1.201(.838) 1.103(.430)
1.574(2.663) 1.208(.855) 1.104(.433)

p1 =1 1.127(.401)  1.056(.298) 1.001(.126)
1.123(.407) 1.052(.301) 1.000(.127)

pe =1 1.127(.446)  1.075(.315) 1.023(.137)
1.120(.453)  1.072(.320) 1.022(.137)

p=15 2.037(3.064) 1.846(1.585) 1.594(.581)
2.284(3.421) 1.928(1.904) 1.601(.592)

pr=1 1.147(.502) 1.057(.299) 1.000(.131)
1.146(.531)  1.050(.298) 1.000(.131)

ue =1 1.128(.500)  1.090(.320) 1.022(.129)
1.125(.516)  1.084(.317) 1.020(.129)

p=2 2.888(3.840) 2.268(1.518) 2.102(.712)
3.357(4.010) 2.341(1.695) 2.114(.721)

4.2 Simulation

In order to allow a comparison of the ml and mpsl estimators a simulation
experiment was conducted as follows. We generated 100 samples of sizes n = 50,
100 and 500, each randomly sampled from a BPVIIC distribution with density
given by (3.1) for p = 2, u1 = p2 = 1 and each of four values of ¢ = 0.5(0.5)2.

The generations were accomplished using a rejection scheme which required
only the kernel of the BPVIIC density and therefore circumvented the lack of
analytic expression for the constant of proportionality. Briefly, denote by ¢;(z,y)
the kernel of the density in (3.1) and by g2(z,y) = (1 + 122 + p2y?) P the kernel
of the density h(z,y) of the uncorrelated t distribution given by (3.4). Then, to
generate a BPVIIC pair (z,y) we sample from h(z,y) and accept it with probability
91(z,y)/g2(z, y).

For each sample we found the m! and mpsl estimates of y1, u2 and ¢ using the
elliptic integral representation for the normalizing constant, given by the second
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expression in (2.11) and appropriate routines from the NAG Library. The results
are reported in Table 1 which gives the averages of the 100 ml and mpsl estimators
together with their root-mean squared deviations from the actual parameter value.
It appears that both estimators behaved very much the same. The methods tended
to overestimate the parameters and the estimators improved as the sample size
increased, in the sense that the estimates were generally closer to actual values and
the spread decreased. The estimators of p1, 2 seemed tolerable even for n = 50
and steadily improving, as n increased, to rather satisfactory values. Both bias and
spread were unpleasantly serious for ¢ when n = 50; although such sample size is
rather unrealistically small for bivariate data. However, they drastically decreased
as n increased to 100 and seemed to mitigate, reaching acceptable values for n =
500. We also increased the number of replications to 200 and 500, and repeated
the experiment to investigate for possible significant changes in the behaviours of
the two methods. However, apart from the expected reductions in bias and spread,
the results of both methods persisted to remain close and therefore the contents
of Table 1 seem to be convincing. For example, with 500 replications, n = 50
and g1 = pp = @ = 1, the respective average ml estimates were 1.028, 1.048 and
1.414, with root-mean-squared deviations 0.281, 0.308 and 1.781 respectively; the
corresponding results for the mpsl estimation were 1.028, 1.048, 1.490 and 0.285,
0.314, 2.217. Overall, the results in Table 1 provide with experimental evidence
that for samples with moderate-to-large sizes (n = 100 to 500) the ml are close
to the mpsl estimates and therefore the computationally simpler method of mpsl
seems to be an attractive alternative to the, by far, more difficult method of ml.

5. Generalizations of the BPVIIC distribution

5.1 Bivariate case

In the previous sections the most general class of bivariate distributions which
have PTVII conditionals, with a common constant shape parameter, was examined
in detail. Here we treat in passing the general case where both the scale and shape
parameters depend on the conditioned variable. Therefore, under the settings of
Section 2, we wish to identify the most general class of bivariate distributions
with conditionals that satisfy X | Y ~ PVII{o(y),p(y)}, Vy € Rand Y | X ~
PVII{r(z),q(z)}, V& € R, where 7(z),0(y) € Ry and g(z),p(y) € (27!,00). In
this case the functional equation to be solved assumes the form

(5.1) a(@){1 + 7(2)y?}@ = b{y){1 + o (»)2}*¥, z,y€ER,

where

o(s) = 150V [ {ate) - 5}] 0 eto) = o)
) = VT ew) [r w31 = -so)

Setting u = 22 and v = y? in (5.1) we get four functional equations with each
one assuming the form

(5.2) a(u) {1 + 7(u)v}*™ = bw){1 + 6(v)u}‘i(“), u,v € Ry,
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where a(u) is either a(y/u) or a(—y/u) and similarly for the others. The func-
tions @(u), b(v), 7(u) and &(v) are positive while &(u) and d(v) assume values in
(—00,—271). The solution to the functional equation (5.2) was given by Castillo
and Galambos (1987b); Arnold et al. (1993) used it in their characterization of
multivariate distributions with generalized Pareto conditionals. Two families of
solutions of (5.2) exist. The first is such that

a(u) {1 + 7(w)v}™ = (A + Agu + Agv + Auw)s,
and the second

a(w){1 + 7(u)v}*™ = exp{6; + 02 log(1 + Osu) + 63 log(1 + Ogv)
+041og(1 + G5u) log(1 + 66v)},

where A;, i =1,...,5and §;, j =1,...,6 are constants. Substituting back for all
the functions we get the two possible models with PVII conditionals in the general
case,

(5.3) fxy(@,y) o< (1 + Aez? + A3y® + Mz?y?)™,  z,y€R
and

(54) fxy(z,y) xexp{b; + 62log(1 + 0522) + 03 log(1 + Osy?)
+84log(1 + 052%) log(1 + 86y*)}, =z,y € R.

Model (5.3) corresponds to the case p(y) = g(z) = constant, for every z,y € R
and is the one examined previously. The value of the common constant shape
parameter is —\s. The second model, (5.4) is distinct from the one examined
so far. It corresponds to the case where 7(z) and o(y) are constants Vz,y € R;
specifically, 7(z) = 65 and o(y) = 6s. The PVII distribution with known scale
parameter is a member of the one-parameter exponential family of distributions
and therefore model (5.4) can be obtained from the results of Arnold and Strauss
(1991a).

To summarize, we can say that there are two classes of bivariate distributions
with PVII conditionals, one with a common constant shape parameter and one
with constant values for the scale parameters. Therefore it is not possible to have
a model in which both conditionals are PVII with both shape and scale parameters
dependent on the conditioned variable.

5.2  Multivariate case

Extending the form of the model (2.6) we can identify the form of the pdf
of multivariate distributions with PVII conditionals and fixed shape parameter.
Let X = (Xi,...,Xk) be a k-dimensional random variable whose joint density
fx(z1,...,zx) exists and is positive over R*. Furthermore, let X® i=1,... k
be the vector X with the i-th coordinate X; deleted. If we assume that for each
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i =1,...,k the conditional distribution of X; | X®) is PVII, then the joint density
is given by

-p

k
(5.5) fx(x1,...,zk) = Np(X) Z A, Hx?j ’
j=1

s€€k

where z; € R, j = 1,...,k and p > 271, & denotes the set of all vectors of di-
mension k, with coordinates 0 and 1 only and N,(J;) is the normalizing constant.
Restrictions have to be placed on the parameters A, so that compatibility condi-
tions are satisfied. All of them must be non-negative, while some are permitted to
be zero, depending on the values of k and p.
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