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Abstract. A general technique is developed to study the waiting time dis-
tribution for the r-th occurrence of a success run of length &k in a sequence
of Markov dependent trials. Sooner and later waiting time problems are also
discussed.
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1. Introduction

Let {X,,n > 1} be a sequence of Markov dependent trials, each trial being a
success (1) or a failure (0), with transition probabilities defined by

(1.1) pij=P(Xn1=J|Xn=1), n>1 0<i,35<1

and initial probabilities P(X; = j) = p;, 7 = 0, 1. Presently, we use this framework
for the study of run-related waiting time problems. There are various schemes for
counting success runs of length k. Four of the most frequently used schemes are:
(I) Non-overlapping scheme: Recounting starts immediately after a success run
of length exactly k occurs (Feller (1968)); (II) At least k scheme: A success run
of length at least k is counted only once (Goldstein (1990)); (III) Overlapping
scheme: A success run of length m(> k) accounts for m — k+1 runs (Ling (1989));
(IV) Exactly k scheme: We count only success runs of length exactly k followed
by a failure (Mood (1940)).

Let W' (a =L, I1, 111, IV) be a random variable (r.v.) denoting the num-
ber of Markov dependent trials until the occurrence of the r-th success run of
length k (r, k positive integers) where the superscript denotes the counting scheme
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employed. It is clear that for 7 = 1 the aforementioned r.v.’s are identically dis-
tributed and in this case the r.v. will be denoted by Wj. The notation Wi (po, p1)
will be occasionally used when the initial probabilities of the Markov dependent
trials are taken into consideration. Also, let Wg (Wy) be a r.v. denoting the
waiting time for a run of k successes or (and) a run of s failures whichever comes
sooner (later).

The above waiting time problems for a = I, III, either for i.i.d. or Markov de-
pendent trials, have been studied by Philippou et al. (1983), Philippou (1984), Ling
(1989), Ebneshahrashoob and Sobel (1990), Aki (1992), Aki and Hirano (1993),
Balasubramanian et al. (1993), Mohanty (1994), Aki et al. (1996), etc. Recently,
Uchida and Aki (1995) derived the probability generating function (p.g.f.) of Wr(‘;c)
(a = I, II and III) using the method of generalized probability generating functions
(g.p.gf.). They also studied generalized sooner and later waiting time problems.
Koutras (1997) studied Wr(';c) (a =1, II and III) by means of the method of finite
Markov chain imbedding developed by Fu and Koutras (1994) and subsequently
refined by Koutras and Alexandrou (1995). Fu (1996) extended this method for
multistate trials and obtained the waiting time distribution of a general compound
pattern.

This article develops a general technique for the study of WT(“;C), Ws and Wy.
Methodologically our technique is equivalent with the method of g.p-.gf. In Sec-
tion 2, by employing simple concepts of Markov chain theory some general results
are established which provide tools for the study of waiting time distributions.
In Section 3, by exploiting the Markov chain imbedding technique we derive the
probability mass function (p.m.f.) and the p.g.f. of Wr(i), Ws and Wp. A disad-
vantage of Koutras’ (1997) approach is that it does not seem to be suitable for
the study of WT(I:) A disadvantage of Fu’s (1996) approach is the use of matrices
whose dimension tends to infinity as the value of r increases. These disadvantages
are surmounted with the present technique.

2. General results

Let {Y;,,,n > 1} be a time homogeneous Markov chain defined on a finite state
space = {0,1,...,s} with transition probability matrix P = [Cy, C1, ..., Cs],
where C; denotes the (j + 1)-th column vector of P (0 < j < s), and initial
probability distribution a; = [P(Y; = 0),P(Y; = 1),...,P(Yy = s)]. For each
i,7 € 8, let

Fij(n) =Pr{Yn41 =3, £5,v=23,...,n|Y1 =14}, n>1L

Clearly, F;;(1) = p;j, and we define F;;(0) = 0. Consider the following probability
(column) vectors

F](n) = [Foj(n),Flj(n),...,st(n)]', n >0, ]EQ
Upon using the relation

Fi(n)= Y PimFm(n-1), n>2

0<m#j<s
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we get
(21) Fj(n)zMij(n—l), n22,

where M; = [Cy, ..., Cj-1,0, Cj11,.. ., Cs], and 0 denotes the column vector of
R**! with all its entries being 0. Making use of (2.1), we conclude to

0, n =0,

(2.2) F;(n) =< Cj, n=1,
MC;, n2>2.

Next, consider the (column) vector generating functions
G;(t) = [Go;(t),G1j(t), ..., Gs;(B)] Z Fi(n)t", jeq.

Denoting by I the (s + 1) x (s + 1) identity matrix, and making use of (2.2), we

get
G;(t) = I+ Mt + M?t> +-- | Cjt,

and under proper conditions for the series to converge (e.g. restricting ¢ in a proper
neighborhood of zero) we are immediately led to

(2.3) G;(t) = I - M;t] 1 Cjt.
For each 7,5 € Q, let Fi(jr) (n), n > 0, be a sequence defined by

{Fij(n)}, if r= 1,

(r)
(24) {Fi; (n)} = {{Fij(n)}*{F};—”(n)}, if r>2,

where {a,} * {b,} denotes the convolution of the sequences {a,} and {b,}, and

{bg ]} denotes the r-th convolution of {b,}. It follows that F(T) (n) is the probability
that, starting from state i the r-th entry to state j occurs at the n-th transition.
Let

FO(n) = [F) (n), FP(n),...,F )}, n>0, jeq,

and

¢ t) = 651,67 ),...,GH Z FO@y", jeq.

It can be easily checked that
(2.5) G (1) = GG
Next, for each w,i,j € Q, we introduce

Fij;w(n) =PI‘{Y1H_1 :j,YU #W,Y,, #j,l/:2,3,...,n|Y1 =i}, n > 1.
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Clearly, Fjj..,(1) = pij, and we define Fj;,,,(0) = 0. Let
Fj;w(n) = [Foj;w(n), Flj;w(n), caey st;w(n)]', n>0, wje

Then
FJ’;W(") = ij,ij;w(" -1), n>2,

where M; , is the matrix obtained from P by replacing the columns C; and C,
by 0. It may be easily checked that

0, n =0,
(2.6) Fj.,(n)=¢ G, n=1,
M;f;l Cj, n > 2,
and
(2'7) Gj;w (t) = [GOj;w (t)v Glj;w(t)’ SRR st;w (t)]l
= Z Fjw(n)t”
n=0
=[I- M; t| ' C;t.

3. Finite Markov chain imbedding and run waiting times

Let {X,,n > 1} be the sequence of Markov dependent trials defined by (1.1).
In this section we employ the results of Section 2 in order to study Wr(l,z, W,SI,Y ),

Ws and Wi, (W(H) and W(m) may be studied analogously). This is accomplished
by imbedding the r.v. 1nto a proper Markov chain {Y,,n > 1} defined on a finite
state space 2.

3.1 Non-overlapping scheme

Let £ > 2 and let {Y,,n > 1} be a Markov chain with state space Q =
{0,1,...,k} defined as follows: If X,, = 0 we shall say that the process is in state
0 at time n, i.e. Y, = 0, and if at the n-th trial the number of last consecutive
successes counting backwards is m, then Y, = kif m = sk (s > 1),and Y,, = j
ifm=sk+j(s>0,1<j<k-—1). Clearly, the resulting Markov chain is
homogeneous, a; = [po,p1,0,...,0]ix(k+1) and the non vanishing entries of the
transition probability matrix P = [as;](k+1)x(k+1), 0 < 4,5 < k, are ago = poo,
ag1 = Po1, ko = P10, Gk1 = P11,

{Plo if 7=0
a;; =

(3.1) )
pun if j=i+1

1<i<k-1.

It follows that every time a “1”-run of length k occurs in the sequence
{Xn,n > 1} the process enters in state k. Therefore,

(3.2) PWS) =n+1) =poF) (n) + pFR (n), n>0.
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Relations (2.2) and (2.4) provide a workable procedure for the evaluation of the
p.m.f. of Wr(l,z Denote by H,EI,)C (t) the p.g.f. of WT(I,Z From (2.5) and (3.2) it follows
that

HUL(t) = [(ot)Gor(t) + (1) G (1)) [Gre (D]

The evaluation of H') » i (t) may be easily performed through (2.3) after some routine
calculations. On mtroducmg the notation

Ao(t) = (port)(p11t)**
A () = (1 = poot) (p11t)* !

(3.3) .
B(t) = 1 - poot — (port)(paot) D _(pr1t)'
=2
we get
) ot ot AL Ao(t) A]
60 10 = [ e el o o]

We note that the p.g.f. of Wi (po,p1) is

Ap(t)
B()

Ar(t)
B(t)

(3.5) Hi(t) = pot—-~ + p1t
The above p.g.f.’s are consistent with analogous results obtained by Aki and Hirano
(1993), Mohanty (1994) and Uchida and Aki (1995). Some apparent differences are
due to the different set-up used there. It is mentioned that Koutras (1997) showed
that Wr(],z = S7_, T;, where T is a r.v. distributed as Wi (po,p1), Ti (2<i <)
is a r.v. distributed as W (1,0), and T; (1 < i < r) are independent r.v.’s. The
correct is that T} (2 < i < r) is distibuted as Wi(p10,p11) as relations (3.4) and
(3.5) imply.

Finally, we mention that the special case k = 1 may be studied by means of

PW =n+1) = poF) () + mF{] (), 20,
where Fl((l)) (n) = 80.n, n > 0 (6;; is the Kronecker’s delta function).

3.2 Ezactly k scheme

Let r > 2 and let {Y,,n > 1} be a Markov chain with state space 2 =
{0,1,...,k+2} defined as follows: If at the n-th trial the number of last consecutive
successes counting backwards is m, then Y, =m if1<m <k,and Y, =k +1 if
m > k. If the outcome of the n-th trial is a failure then Y,, = 0, unless the failure
is preceded by exactly k successes and in this case we define Y, = k + 2. Clearly,
the resulting Markov chain is homogeneous, a1 = [po,p1,0,...,0]1x(k+3) and the
non vanishing entries of the transition probability matrix P = [ai;](k+3)x (k+3)
0 <1i,j < k+ 2, are given by (3.1) and ago = ar+2,0 = Poo, @01 = Gk+2,1 = Po1,
Ok k+1 = Ok+1,k+1 = P11, Okk+2 = Gk+1,0 = P10-
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The above definition of the Markov chain implies that in order to register the
r-th success run of length exactly k we have to wait for (r—1) visits to state (k+2)
and then for the first visit to state k. Set

(VO (n)} = (FS55 ()} * {Frsap(n)},  i=0,1, n>0.

)

Denote by H,EI;/ )(t) the p.g.f. of WT(I,:/ ). Then, it may be seen that

PWS) =n+1) = pV"(n) + V" (n), n>0,
and
Hf,‘;”(t) = [(pot)Gok+2(t) + (P1t)G1 k+2(V)][Grt2,k+2(t)] 2 Grta,k(t).

On introducing the notation

Co(t) = (1 — p11t)(Port) (P11t)* ! (p1ot)
Ci1(t) = (1 — puut)(1 — poot)(pr1t)** (p10t)
D(t) = (1 — poot)(1 — p11t) — (port)(Prot)[1 — (p11t)*~* + (P11t)¥]

and making use of (2.3) and (3.3), we get

Co(t) Ci(t) Colt) X0
D) Dl(w] [”""t 0] “"“t‘f)l@]
[ty ey )

The above p.g.f. does not seem to have been noticed before.

Hflz:, () = [pot + it

3.3 Sooner and later waiting time problems

Let r,k > 2 and let {Y,,n > 1} be a Markov chain with state space Q =
{1,2,...,s+k} defined as follows: If at the n-th trial the number of last consecutive
failures (successes) counting backwards is m, then Y, = s (Y, = s+ k) if m = s
(m=1k),l>1,and Y, = jo (Yn = s+ 1) if m =Ils+ jo (m = lk + j1) for
1<jo<s-1(1<j <k-1),1>0. Clearly, the resulting Markov chain is
homogeneous, a; = [po,0,...,0,p1,0,...,0];x(s+k) Where p; is in the (s + 1)-th
coordinate of a1, and the non vanishing entries of the transition probability matrix
P = [a](s+k)x(s+k)» 1 £ 0,5 < s+k, are a1 = a;i+1 = poo and as 541 = Qis41 =
po1 for 1 <i < s—1,and as1k,1 = @s151 = P1o a0d Asik,s4+1 = Astj,s+5+1 = P11
for1<j<k-1.

It follows that every time a failure (success) run of length s (k) occurs in the
sequence {X,,n > 1} the process enters in state s (s + k). Let Ey (E;) be the
event that a failure (success) run of length s (k) occurs. For m = 0,1, let Pém)(n)

(Pém) (n)) be the probability that at the n-th trial the sooner (later) event between
Eo and E; occurs and the sooner (later) event is E,,. Then

PW, =n) = PO(n)+ PDm), n>1, z=85,L.
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Now, consider the vectors Fj,, (n) of Section 2 defined on Q = {1,2,...,s+k}.
For n > 0, we observe that

P..é‘O) ('I’L + 1) = pOFl,s;s+k(n) + plFs+1,s;s+k(n)a
Pél)(n +1) = poF1,s4k;5(n) + P1Fsi1,54k;5(n).

The evaluation of the p.m.f. of Wg may be performed through (2.6), while its
p.g.f. may be derived by (2.7) and coincides with the respective one obtained by
Balasubramanian et al. (1993) (see also Aki and Hirano (1993) and Uchida and
Aki (1995)).

We proceed now the later waiting time problem. Denote by W, the waiting
time for the occurrence of a failure run of length s in {X,,n > 1}. The p.m.f. and
the p.g.f. of W, can be obtained by using the results of Subsection 3.1. Forn > 1,
the p.m.f. and p.g.f. of W, may be obtained by

(P (n)} = {P{(n)} ¥ {P(Ws(p10,p11) = n)},
(PP ()} = (P (n)} * {P(Wik(poo, por) = n)}-

We note in ending that the memory space requirements for the numerical
evaluation of the p.m.f.’s presented in this paper depends mainly on the dimen-
sion of the vectors F;(-) and Fj,(-). Therefore, roughly speaking, our memory
availability should be enough in order to register these entries. Finally we mention
that our technique could be routinely extended in order to accommodate a higher
order Markov model (cf. Aki et al. (1996)), sequences involving non identical trials
(cf. Fu and Kutras (1994)), the waiting time distribution of a general pattern (cf.
Fu (1996)), etc. Related work will be reported soon.
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