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Abstract. Based on a small correlations approach, this paper deals with the
probability distributions of the order statistics under a general Gaussian model
with unequal (positive or negative) correlations. Illustrations are given for the
cluster data those follow suitable antedependence models.
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1. .Introduction

Let ¥; = (Yi1,---,¥ijs---»Yin)! be a vector of n observations for the i-th
cluster (i = 1,2,...,q) on a response variable Y. Also, let Y;; = p; + v; + u;j,
i=1,...,q, 7 = 1,...,n, where y; is the fixed effect due to the i-th cluster,
v; g N(0,02), u;; i N(0,02), and v;’s are independent of u;;’s. It then follows
that

}/i ~ N(ﬂiln,0'2V),

where 02 = 62 + 02 and V = (1 — p)I, + pU, with p = 02/0? as the common
intercluster correlation, 1, is the n x 1 unit vector, I, is the n x n identity matrix
and U, is the n x n unit matrix. In such cluster models, one usually makes
inferences about p; which requires the knowledge of the intercluster correlation
p. In practice, this correlation parameter takes small values, see for example,
Cochran ((1977), pp. 233-248), Scott and Holt (1982), Wu et al. (1988), and Rao
et al. (1993).

There are other practical situations, where the observations in a cluster may
not have the same correlation, and where one may be interested in inferences
about the distribution of the extremes (maxima or minima). For example, in an
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agricultural study, a large number of agricultural zones in West Africa may be
considered to determine the effects of the extreme temperatures exceeding a pre-
fixed maximum of weekly temperatures on the production of potatoes. Here, for
a given cluster or zone i, one would be interested to study the pattern of Y;,) =

max(Y;;,j = 1,...,n), where Y;; is the maximum temperature in the i-th (¢ =
1,...,q) zone during the j-th (j = 1,...,n) week. Note that as the observations
Yi1,.--,Ysj,...,Yin of the i-th zone are collected successively over weeks, it is

reasonable to assume that these n observations are correlated and correlations at
different lags will be generally unequal. Consequently, this problem reduces to the
order statistics problem where observations will be unequally correlated.

Another interesting situation where extreme value analysis for unequally cor-
related data is useful, is the repeated cluster data analysis where observations in a
cluster follow an antedependence (non-stationary) model. For example, consider
the calf data analyzed by Kenward (1987) (see also Gabriel (1961, 1962), Albert
(1992)). In this problem, the main objective is to compare two or more meth-
ods for controlling the intestinal parasites in cattle. During the grazing season,
from spring to autumn, cattle can ingest roundworm larvae, which have developed
from eggs previously deposited on the pasture in the faces of infected cattle. Once
infected an animal is deprived of nutrients and its resistence to other disease is
lowered, which in turn can greatly affect its growth. In order to control the disease,
an infected calf is usually assigned to a particular treatment. For monitoring the
effects of a treatment for the disease, the response of interest, weight, is recorded
for an infected calf at n time points and it is examined whether the maximum of
these weights (y(n)) are less than a standard weight (A, say) of an uninfected calf
of the same age (at the initial level of the experiments). That is, we require to
compute the probability Pr(Y(,) < h), for known h, which indicates the failure
of the treatment. Alternatively, one may find the probability Pr(Y(;) > h) to see
whether the treatment is working effectively. Here the observations yi, ...,y will
most likely be a realization of the sample Yi,...,Y, that follow the antedepen-
dence (nonstationary) model (cf. Section 6), as weights are likely to vary with
repeated time, equally or unequally spaced.

Note that in both of the above examples, the correlations among observations
in a cluster are generally unequal. In these or other similar situations, one may
often wish to make certain inferences by exploiting the extremes, such as maxima or
minima. But, there does not appear any such inferential study based on extremes
of unequally correlated data. We further note that as the clusters in the above
two examples are considered to be independent, the extension of the inferences
based on a single cluster to the case of multi-clusters is very straightforward.
Consequently, in this paper we deal with inferences for the extremes of a single
cluster. Because of this, in what follows, without any loss of generality, we drop
the subscript ¢ and rewrite y; = (Yi1,- - - Yij>- -+, Yin)~ aSY = (Y1, Yj--- ETRLE
For the special case where Y = (Y1,...,Y},...,Y,)T ~ N(0,R) with R = {p;x}
as the variance-covariance matrix of Y with pjx = 1, for j = k and p;x = p, for
j # k, the distribution function of the r-th order statistic has been studied by
many authors over the last four decades. For example, we refer to Gupta et al.
(1964), Gupta et al. (1973), Owen and Steck (1962), Hoffman and Saw (1975),
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and Rawlings (1976), for such inferences. But, the order statistics inferences for
the antedependent types of data, where correlations can be positive or negative
but unequal, have not been adequately discussed in the literature.

The main objective of the present paper is to derive the distributions of the ex-
tremes under a general Gaussian model with unequal correlations. This is achieved
by using a small correlations asymptotic approach. Applications of the distribu-
tional results are discussed in the context of antedependence model. The perfor-
mance of the proposed approach is examined, first for the equi-correlation case, by
comparing the tail probabilities of the extremes with those of Gupta et al. (1973).
Next, for the unequally correlated case, we conduct a limited simulation study to
verify the accuracy of the tail probabilities obtained by the present approach. The
proposed approach is also compared with the existing Bonferroni bounds approxi-
mation used by Ellenberg (1973, 1976), among others, for the computations of the
tail probabilities of the extremes.

2. An approximate joint probability model for order statistics: a small correlations
approach

Suppose that Y = (Y3,...,Y,...,Y,)T ~ N(0,%), with & = DY2RD'/2,
where D = diag(o?,...,07,...,0%) and R is the correlation matrix of ¥ written
as R = (p;x) with pj; = 1 and pji # 0 for j # k. Also suppose that p;x’s are small
in magnitude. This assumption about the small correlations is reasonable for many
practical situations, for example, in cluster sampling problems as mentioned in the
previous section. Then by expanding the joint probability density function (p.d.f.)
of Y, namely, f(y1,...,¥jr-.-,yn; %) = (2m)7"/2[Z|7/2exp{—(1/2)y" ="y}
about ¥ = D, one easily obtains an approximate joint p.d.f. given by

(21) fa(yl,...,yj,...,yn;Z)

n n n
= |ko = (1/2) D ajsui + > bikyue + (1/2) Y cismnyvi

j=1 i<k i<k

n n
+ Z CiikYYRYL + z djkimY;YkYtYm
JEkAL jAkAlEm
x fy1,-- - Yj- - Yni D)

where ko = 1+ (1/2) X7 P?k, ajk = ajl—,,gzz;j#k PitPels bik = o= — ik,

Cijkl = féx_z’l’ djklm = pjkpzmj;);:l;?;:mmpkt’ and f(yl’---’ij",yn;D) =
(2m)~"/2|D|" 2 exp{—(1/2)yTD~ 'y} = II;_; fyji03) with f(y;02) =

(2r0?) 712 exp{—y}/202}.

LetY ) <--- < Yjy<-- < Y(n) be the correlated order statistics of the orig-
inal variables Y1,...,Yj,...,Y,. Then, given the realizations of the order statistics
tobeya) < -- <y(y) < -+ < Yn), the original variables Y; (7 =1,...,n) are con-
strained to take on the values y(;,) which yields the same expression for the similar
terms in equation (2.1) for all n! permutations (j1, j2, .- ., jn) of (1,2,...,n). This
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ordering mechanism, consequently, yields the joint probability density function
9*(Y(1),Y2)s - - - »Y(n); L) of the n order statistics Y{1),...,Y(;),- .-, ¥(n) given by

(2.2) 9 (Y1), Y@2)s -+ 1 Y(n); )

n n n
* 2 2 2
= |k — a3 > vl + 05> uovw + ¢ Yk
j=1 i<k i<k

n n
* ok 2 *
et Y vwmvo 4 Y. VG YERYOYm)
ERAL itk AlAm

X H f(y(r);a[2r])
r=1

with k§ = nlko, and for general covariance structure, the coefficients are given by
ay = (1/2)(n — )37, aj5, by = 2(n — 21357 4 bk, ¢ = (n = 2)1 3204 cjjkk,
cg" =2(n = 3)! 30 ku Cights dy = A — 305y 1t dikim, Where Ko, ajj, bk,
Cjjkks Cjjkts and djgim are defined in (2.1) for appropriate j, k, I, and m. In (2.2),
f (y(r);aﬁ]) is the p.d.f. of a normal variable with mean zero and variance 0[21']
where 0[2,.] =offoryny =y (l=1,...,n).

The above joint p.d.f. (2.2) of the n order statistics is exploited in Section 3
to obtain the marginal distribution of a single order statistic. In Section 4, we
provide the marginal distributions of the extremes. Applications of the distri-
butional results of the extremes are shown in Sections 5 and 6, respectively, for
the equally (positive or negative) and unequally (positive or negative) correlated
normal variables.

3. Distribution of a single order statistic

We now turn to the distribution of a single order statistic, say Y,y (1 <
7 < n). To derive this distribution, one requires to integrate out Y(y),...,¥(r_1),
Y+41), -+, Y(n) from the approximate joint p.d.f. of all n order statistics given in
(2.2). Note, however, that this integration is straightforward but lengthy. For
simplicity, the following U and L functions will be used to define four sets of A
functions, which will be exploited later on to write the p.d.f. of Y{;).

For real t;, ti, t;, and t,,, we define necessary U and L functions as follows:

. (t;) Y(r) Ve
Ao W) =/ / Yo Wnr-1)dyp,r-1,
-0 —0Q
(31) 4 for j<r
A(tjtktltm)( )_ y(r).” Y(2) ti ti t tm f( )d
jklmU Yr)) = . o Yin¥Y Y myd \Yir,r-11)0Y[1,r-1)
( for jk,lm<r

and
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' A;%)(y(r)) = /°° /°° yz;)f(y[r+l,n])dy[r+l,n]v
Y Y(n-1)
(3.2) f01;>o j> roo
Mgt yry) = /y L /y - YU Yo Yomy f Wir+1,0) 841,15
. for jk,lim>r
where f(?;'{l,r—l]) = {f(y(1);<7{21])'"f(y(r—1)§0[2r_1])}7 f(y[r+1,n]) =

{Fmys ofy) - F@ea; o) b @Yr-1 = dyq) - dYer-1), and dYiri1n) =

dY(n) - dy(r+1)-
Although the above U and L functions are defined for all real ¢;, tx, ¢, and
tm, in what follows, each of them will take values 0, 1 or 2, only.

Function 1. /\§2)(y(r)); j,r=1,2,...,n.

In terms of the U and L functions /\g-tlj)(y(r)) and /\g-tZ) (y(r)) defined in (3.1)-
(3.2), this Function 1 is defined as

W Uﬁ]))\ﬁ}(y(r))Ag(? Y j<r

2 .
(3.3) AP () = 2, f Yy NP WML W), =7
FWe BN D WAL ), >

Note that the superscript t; = 2 in the left hand side of (3.3) is reflected, respec-
tively, in the U and L functions in the right hand side of (3.3) based on j < r and
j > r. If t; = 2 appears in the U function, ¢; takes zero value in the L function
and vice versa. For the case when j = r, the superscript ¢; = 2 becomes the power
of Y(j) = Y(ry- In this j = r case, the superscript t; of the U and L functions takes
zero value.

Function 2. /\;}cl)(y(r)); g k,r=1,2,...,n

Similar to Function 1, for j,k < 7; j < r,k =71;j <r,k > r, we now define

Function 2 in terms of A;Z(t]")(y(r)) and /\gﬁcjz")(y(r)) as

Fyery; o8N W) Ae (W) j<k<r
11 .
34) AP m) = { v Fue a2 W) et W), d<r k=T
F Wy o)A WA W), j<rk>r.

Here, the superscripts t; = 1 and t;x = 1 in the left hand side of (3.4) is reflected
in the right hand side functions depending on the position of j and k with respect
to 7. More specifically, for the case when j,k < 7, the superscripts ¢; = 1 and
tr, = 1 in the left hand side of (3.4) are reflected in the U function in the right
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hand side. Both of the superscripts of the L function in this case will take zero
values. For j < r, k = r, the superscript t; = 1 is reflected in the U function and
tx = 1 becomes the power of y) = y(). In this case, the superscripts ¢ in the U
function will take zero value but both superscripts in the L function will take zero
values. For the third case when j <7, k > r, t; = 1 is reflected as the superscript
of the U function and #; = 1 is reflected as the superscript of the L function. The
remaining superscripts in the U and L functions will take zero values.

We further note that for other possible positions of j and k with respect to
7, the pattern of assigning the superscripts t; and ¢ in the U and L functions

required to define /\g-}cl)(y(r)) will remain the same. The all possible positions for
j and k with respect to r excluding the positions shown in (3.4) are [j =7, k <7}
j=rk>rl,j>rk<rji>r,k=r;j>r,k>r].

A set of functions, namely )\giz)(y(r)), similar to Function 2, will also be
necessary to define the p.d.f. of Y{;). These functions are defined by replacing the
superscripts t; = 1 and ¢, = 1 in the expressions for /\g}cl)(y(,,)) with ¢; = 2 and
ty = 2.

Function 3. A;i}l)(y(r)); ik lr=12...,n.

Similar to the definitions of Functions 1 and 2, Function 3 is defined by using
the U and L functions A\Z™ () and A% (y,y) from (3.1)~(3.2) as follows:

{
F ey o)A Wer))AS0e (W)
ik l<r
210 000
(3.5) A i) = S Uy S Wy BN W) Mz, i),

Lk<r, l=r

1
Ferys oA at ) A (v,
L j<r,kandl!>r.

The technique of assigning the values of ¢;, tx, and t; from the left hand side of
(3.5) to the expressions in the right hand side, is quite similar to the techniques
used for Function 1 and Function 2. In this case, all possible positions for j, k,
and ! with respect to r excluding the positions shown in (3.5) are [,k > r, | = r;
Lhk>rl<rjkl>r,i<rk=r,l>rjl<rk=r,j>rk=rl<m
hl>rk=r,j=rk<ri>rj=rkil<r,j=rk>rl<rj=r,
kl>r,j<rk>rl=rjl<rk>rj<r,kl>r],and[j>r k<r,
l=r;j>r, kl<r; jl>r k <r]. Notethat for any of these positions, one can
easily obtain the appropriate expressions for Function 3 in the similar way as we
have obtained the expressions for this function for the particular position of j, k,
and ! with respect to r shown in (3.5).

Function 4. )\(1111)

kim Y()); Sk Lm,r = 1,2, 0.

In terms of U and L functions /\E-Zjltn';tg,t'")(y(r)) and /\ﬁ"lt,fltlft'")(y(r)) from (3.1)-
(3.2), we can define Function 4, following the definition of Functions 1, 2 and 3,
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as follows:
f(y(r)’g[r]))‘ klmU(y("')) k:lmL(y('r'))
ik Im<r
0000
(3.6) M) (yiry) = Yl 023 ) Mty W) Nt ()

Lkl<r, m=r

0011
Fyeryioty) ]klmu(y(r)) gklml),(y(r))

L jk<r,land m>r.

Here again, the technique of assigning the values of t;, t, t;, and t,, from the left
side of (3.6) to the expressions in the right side, is quite similar to the previous
techniges used to define Functions 1, 2 and 3. One may also write very easily all
possible positions for j, k, I, and m with respect to r. Note that in this case, there
are 56 possible positions.

Turning back to the distribution of the single order statistic, Y,y (1 <7 < n),
a lengthy integration, as mentioned earlier, yields the marginal density function
93 (y(r)) of the statistic Y{,). More specifically, by integrating the joint p.df. (2.2)
over the range of y(1), .-, Yr—1)s Yr+1), - - -1 Y(n), ODE obtains

BT g = ko) - a5 3 A7 ()

n n
* 11 * 29
+0, D A W) + 65 ) 252 (i)

i<k i<k
. (211 " 1111
t¢ Z Ajkl )(y(r)) +dy Z Akim (Y(r)s
kAL i#kAlEm

00 S Y(r) S

where a3, b}, ¢;, c;*, and dy are defined as in equation (2.2). Further in (3.7),
d(yr) = [(r— D1 — ) [F yn)I"H 1= Fly)I™ " f(yry; ofy) With F(y()) =
29 flys; J)dy], fyj; J) belng the p.d.f. of normal Y; with mean zero and
variance a ,forallj=1,.

4. Distribution of the maxima: a special case

The value of the largest order statistic may be of special interest in numerous
practical situations. The p.d.f. of this order statistic directly follows from the p.d.f.
of the r-th order statistic given in (3.7), by putting r = n. For this special case,
the expressions for Functions 1 through 4 used in (3.7) may be simplified to a
great extent. Since the computation of the p.d.f. of Y, requires the integrations
over the remaining n — 1 ordered variables, the L functions do not appear at all
in any expression of those four functions given in (3.3) to (3.6). Consequently,
Function 1 defined in (3.3) takes the form

F Wy BN Wiy, j<n

(4.1) AP (ymy) = ,
Youyf (y(n);afn])/\ﬁ} (Ymy) J=n
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Note that the subscript j now can take positions with respect to n in the form
Jj <mnand j = n only as shown in (4.1).

Similarly, only for three types of positions of j and k with respect to n,
Function 2 in (3.4) takes the form

F Wy BN Wiy, jk<n
(4.2) AP W) = § Yoy F Wy OB AND W)y G <m k=n
Yy f (Ui 0[2"])/\%}(3/(”)), k<n,j=n.

In the manner similar to that of (4.1) and (4.2), one may very easily define
Functions 3 and 4 following (3.5) and (3.6) respectively. Note that now in Func-
tion 3, j, k, and ! with respect to n have the positions [j,k,l < n; j,k <n,l=mn;
Jhl<mn, k=mn;kl<mn,j=n],and j, k, [, and m with respect to n have the
positions [j,k,l,m < n; j,k,l<n,m=n; jkkm<n,l=n;jlm<n k=n;
k,l,m < n, j =n|, in Function 4.

4.1 Computation of the integral for U functions
To represent all possible U functions defined in (3.1), we write a general
function for the case r =n > 2 as

(4.3) I(y(n),n_1;0[21]7"'10[2n—1])
Y(n) Y(2) ¢
=/ / H y(Z) f(y[l,n—ll)dy[l,n—ll’
-0 —oo a=1(1)n—=1

where ¢, for all @ = 1,...,n — 1 can take values 0, 1 or 2, f(yn-1) =
{fyayiofy) - FYm-1)i0f_1)} and dyp n-1) = dyq) -+ dy(n-1) as in (3.1). In
the general function I(y(,),n — 1; 0'[21}, e ,afn_li)) in (4.3), the index n — 1 repre-
sents the number of integrations necessary to obtain this function. For example,
I(yny,n — 1;0’[21], .- ’U[2n—1]) in (4.3) is identical to )\ﬁj) (Y(n)), a U function used
to define Function 1 in Section 3, when t, = t; = 2 for a = j and t, = 0 for
a # j. Similarly I(y(n),n — 1; 0[21], e ,0'[2n_1]) in (4.3) is identical to )\ch(y(n)), a
U function used to define Function 2 in Section 3, when t, =t; = 1 for a = j,
to=ty=1fora=k, and t, =0 for a # j,k.
Now turning back to the integration (4.3), it is easy to see that

(4.4) I(yum),m — l;aﬁ], ... 70[2m—1]) = / I(Ym-1),m — 2;Uﬁ], . "0[2111—2])
—o0
X f(y(m—l); U[zm_l])dy(m——l)x

for m = 2,...,n. As the integration in (4.3) has to be done successively, the
application of the relation (4.4) requires the solution of a basic integral of the
form

T
4.5 z,t;,0%) = utfe_“2/2"?ildu, z€RL,
NZ,t5, 975
—00
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at different stages. More specifically, this integration for all j = 1,...,n — 1 will
be necessary to solve the integral I(yn),n —1; 0[21], ceey a[2n_1]). Note that we have

written the integral form (4.5) in terms of ¢; and 0[21.] defined in (4.3) for the

convenience of obtaining the final result for the integral in (4.3). In reality, in
(4.5), t; can take any real value and Ufﬂ needs to be a positive quantity. Now the

solution of n(z,t;, 0[2:,.]) may be achieved by using the following partial sum form
of the incomplete gamma function, that is,

r T+a

" 00 0
(a) = [ 1emods = T(a)e S L o i
I'(u, ) —/0 s lem%ds =T(a)e “Tza?!— T(a)e "rzo o)

(cf. Gupta (1960, 1962) and Prescott (1974)). For z > 0, some straightforward
computations yield

)
01 22902
(4.6) n(x7tj7a[2j]) = Qj(tj70[2j]) + E Gjr, (tjaaﬁj];rk)x2rk+t]+le z”[20;)

=0

where

. _ . ts + 1
Qj(tj; 0[2j]) = (—1)t12(t1 1)/20-6]4'11-\ ( j - )

t;+1 r t:+1
ontuti =t (451) oo ()

These Q;(-) and Gjy,(-) functions, for convenience, will be denoted by Q; and
Gjr, functions respectively. When z < 0, the expression (4.6) still remains valid
except that the G, function is now multiplied by (—1)%*!.

Next, for example, consider a product containing m G functions defined as

(4'7) Gir, Godyry - Gmdm_1er(m+1)dm

where the subscript d; (j = 1,...,m) either for G or Q function denotes the sum
of the r’s from it’s (G or Q) preceding j consecutive G functions. In the above
product function (4.7), the first G function is the same as G, function defined in
(4.6), and other m—1 ‘G’ functions are similar to but different than the G functions
defined in (4.6). Further, in (4.7), dy = r1,do = 71 +72,...,dm = z;nzl rj. If
a similar product of G and Q functions such as Gir, Q24,G3r, @44, is considered,
then d; in Q2q, is simply 71 and d; in Q4q, is 72. The Q and G functions in (4.7)
with d; as one of the subscripts, unlike in (4.6), are defined as follows

(48) Q(m-l—l)dm (dmv t(m+1)m, U(2m+1)m)

(__1)t(m+1)m2dm+(t(m+l)m_1)/2r‘ (dm + t(m;l)z’."_-l__l)

- dm+(t(m+1)m"'1)/2
T (m+1)m

(4.9) Grdyrn (djy thj, 055 Th)

c g m2Y) /o (s 5 )
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with ty; = S8 J(tl +1) +t, and of; = 33,7 k_J(l/U[l]) +- (1/0[]]), for k =
2,....,m,j=1,....m—1l,and h=2,...,m.

Note that varieties of product functions such as (4.7) will appear in all dif-
ferent terms in the solution of the main integral I(y(,),n — 1; 0[21], . 0[2"_1]). In
some of the terms of the integration result for I(y(,),n —1; 0[1], . 0[2 ]) these
product functions will represent constants and in some other terms, they will be
the coefficients of integrals of the form

z
(4.10) &(z,dj, tkj, 00;) Z/ wdittni g=(w*/2o%; gy

— 00

forj=1,...,n—-2,and k = 2,...,n—1, which, as a multiple of suitable coefficients
containing the product of appropriate number of G or @ functions, is yielded
by the multiplication of integral results such as n(z,t;, 0[2].]) defined in (4.6), by
appropriate functions of order statistics defined under various integrations in (4.3).
Now, for z > 0, in the manner similar to that of (4.6), the integral in (4.10) reduces
to

o0
(411) 5(2’, d]7 tkjao-]%j) = dej (djytkjaalgj) + Z de,-rh (dj,tkj,(f,%j;'f'h)
=0

2
2(d;+7h)+tr;+1 Z 52
ZoN 7 exp _?Ukj ’

where Qq;’s and Giq,r,’s are defined similar to the Q and G functions in (4.8)
and (4.9) respectively. For z < 0, the expression (4.11) still remains valid except
that the Gra,,, function is now multiplied by (—1)ts+1.

Further, for positive Y; (j = 1,...,n) (implying z > 0 in (4.6), and z > 0 in
(4.11)) and for ny > ny, let "IH**("2)(Q,G) denote a single combination of the
product of n; ‘G’ functions and ny —n, ‘@’ functions. As G and @ functions can be
arranged in " Cp, = gn, n, (say) possible ways to make such a product, in order to
obtain the summation of all these product combinations, we, for convenience, label

them as mH " (Q,G),...," H;"”(Q,G),... an;j"i (Q,G). For example,
for n; = 3 and ny = 2, all possible combinations are 3 H; £ (Q,G) = Q1G2r,Gsdyrys
2 2

3H;®(Q,G) = Gir,Q24,G3ry, and *H;? (Q,G) = Gir,Gaa,r,Qad,- Note that
without any loss of generality, one may label the second product Gior, Q24, Gsr,

*(2)(Q, QG) or 3H§(2) (Q,G). In this case, dy = 7, do = 11 + 73 and in
3Hl @ (Q,G), G3d17-2 = G(dy,t31,02,;72), and for n; = 4 and ny = 2, all possible
combinations are (2) (@Q,G) = Q1Q2G3,Gudyry, 4H*(2) (@Q,G)

2 2

Q1Ga2r, Q34, Gary, *((:)(Q G) = Gir,Q24,G3r,Qua, *‘ ’(g)@ G)
Q1G21‘1 G3d17‘2Q4d27 4H5 (QaG) = G1T1 G2d17’2Q3d2Q47 and 4H6 (?7G) =
Gir,Q24,Q3G4r,. Here d may be ry or ra, do = r; + r2 and in 4Hf( )(Q,G),
Guadyry = G(d1,t41,0%;72). Note that any Gkd;ry, o Qra; function will appear in
the product combination only if it is preceded by a G function. More specifically,
in any product combination, G4,r, function will be preceded by (k—1) ‘Q’ or ‘G’
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functions and j G functions. Similarly, in any product combination, Qk4, function
will also be preceded by (k — 1) ‘Q’ or ‘G’ functions and j G functions. Further
note that, for the case when smaller order statistics take negative values, that is,
Y; < 0 (implying z < 0 in (4.6), and z < 0 in (4.11)), the G functions in each term
will be multiplied by (—1)t*! or (—1)%i*+1 where t; or tx; are the corresponding
values in G functions.

Now, by using the above notations, after a lengthy calculation, the integral
(4.3) reduces to

(4.12)  I(ymy,n—1 0[21], e 0[2”_1])

o] 2
n— *(n—) T n— y
~cuaalr S o iy e { - )

r1=0 [n—1]

n—1
+ ng(n_l)(ﬁ)}
=2

00
Z n—1px(2) (7-1’7-2) 4.

)

r1=072=0
oS! o
T ST SV L TR g
r1=0 Tm=0
o) 00
+ Z . Z n_lB*(n—2)(T’1,...,’l"n-2)
r1=0 Tn—2=0
o) o0
+ 3 S WYy, re)
71=0 Tn-1=0

2
2(dn—2+7Tn—1)tt(n_1)(n—2)+1 Yn) o
XYy e exp{-—zn U(n—x)(n-z)}

where, in general,

1
"~ (2m)u/2|D|1/?

j=1

Cy

and

T(ry, .. ry) =Cy [[Gig,or, with do=0
j=1

wn=1)

n—1)-1 n—1
er" " (r) = Cp ATV )G[(n—l)—l+1]n[Q[(n-l)—z+2]d1]I" [Aﬁn_li_l+3]”2

with Iy, =0if (n—1)—1+2>n—1and I;;, =1, otherwise. Similarly I5, =0
if (n—1)—-1+3>mn-1and I, =1, otherwise. Furthermore, in (4.12), for
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m=2,3,...,n— 2, we have
4n—1 (m)
n_l‘B*(m)(rla"'yrm) = Cn—l Z qn_1'n—1H;* (Q)G)
=1
where

An-1,m = n_ICm
and

n—lH}m("‘) Q,G) = "_IH;(m) @, G)[y(21(lt)i‘+r‘)+t‘+1e_(y%’n)/2)a2‘}IG
with I = 1 if the product function "‘1H;*(m) is ended by a G function and
Ic = 0, otherwise. For the case when I = 1 and the product function is ended
by a G function of the form Giq,r,, d*, r*, t* and 02" in the square bracket
[ ] will take the values of the d;, Th, tx; and a,%j, respectively, those are used in
the last G function involved in the product function 1 H }‘m (Q,G). However, if
Ic =1 but the product function is ended by a G function of the form Gj;,, then
d*=0,7" =71y, t* =t; and o = a[2j], where 74, t; and 0[2j] are used in the last
G, function in the product function "~1H ;‘m (Q,G). Note that one may exploit
the integration result in (4.12) to obtain any U function necessary in (3.7) for
maxima by putting appropriate values of t,. For example, for )\Sclb). (Y(ny) in (4.2),
we require to put t, = 1 for a = j,k and ¢, = 0 for all a # j, k in equation (4.12).

5. Percentile points of the maxima for homoscedastic equi-correlated (positive or
negative) normal variables

For the equi-correlated normal variables Y1,Ys,...,Y, with E(Y;) = 0,
E(Yf) = o2, forall j = 1,2,...,n and E(Y;Yi) = p, for all j # k, the prob-
ability density function of the maxima directly follows from (3.7) by using r = n
and adjusting the constant coefficients in (3.7) for p;x = pfor all j # k and o7 = o2
for j = 1,2,...,n. This density function for this special case will be denoted by
9 (Y(n), p,0%) with adjusted coefficients for equal correlations as a¥, b%, c*, c**,
and d;. The interpretation of the A functions in the density function of y,) are
quite similar to those A functions (Functions 1 to 4) given in Section 4.

Now, let ho be the (1 — ) percentile points for the maxima Y(,). Then the
distribution function of the maxima, that is, W (ha;p,---,0,--.,p;0%,...,0%) =
Pr(Yiny < ha) may be easily computed by performing the integral

ff:o 9n(Yn)» P, 02)dy(n). In carrying out this integral, for notational convenience,
we now turn back to the U functions given in (3.1) and define necessary A functions
as follows:

v
A§tj)(v’ n; 0'[21], “eey 0'[2n]) = / ’\_gt;}) (y(n))dy(n)
(5.1) o
Aﬁjﬁff‘t’”) (v,n; 0y, ..., 00) = / Aﬁi’ﬁi@“"’ (Y(n))AY(n)-
—00
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Table 1. The probabilities for the maxima of positive equi-correlated normal variables based on
CTM and SCA for selected a, p and n with 02 = 1, corresponding to the nominal 100(1 — a)%
probabilities with a = 0.01, 0.025 and 0.05.

n 4 a= 0.010 0.025 0.050 n p a= 0.010 0.025 0.050

2 0100 ho 2.5739 2.2368 1.9508 3 0200 ha 2.7078 2.3829 2.1080
CTM 0.989799 0.974801 0.949806 CTM 0.989801 0.974807 0.949813
SCA 0.989832 0.974685 0.950282 SCA 0.991875 0.975631 0.952218

0.1256 ho  2.5736 2.2361 1.9497 0.250  hqo 2.7058 2.3795 2.1029
CTM 0.989801 0.974801 0.949812 CTM 0.989802 0.974807 0.949811
SCA 0.989842 0.974728 0.949266 SCA 0.994132 0.976198 0.954731

0.200 hq  2.5722 2.2336 1.9456 4 0100 hqo 2.8041 2.4907 2.2276
CTM 0.989802 0.974807 0.949809 CTM 0.989801 0.974804 0.949806
SCA 0.989877 0.974877 0.949708 SCA 0.990062 0.975166 0.950091

0.250 ho  2.5709 2.2314 1.9423 0.125  hq 2.8034 2.4894 2.2255
CTM 0.989802 0.974807 0.949809 CTM 0.989799 0.974801 0.949804
SCA 0.989906 0.974993 0.950045 SCA 0.990824 0.975913 0.950789

3 0.100 hq 2.7105 2.3878 2.1158 0.200 hqo 2.7078 2.3829 2.1080
CTM 0.989801 0.974802 0.949803 CTM 0.989802 0.974804 0.949814
SCA 0.988399 0.974687 0.948522 SCA 0.994899 0.975946 0.954433

0.125 hq  2.7099 2.3829 2.1141 0.250 ho 2.7083 2.4804 2.2116
CTM 0.989799 0.974805 0.949804 CTM 0.989802 0.974807 0.949804
SCA 0.988554 0.974806 0.949234 SCA 0.994904 0.975926 0.957025

Note that the integrals in the right hand side of (5.1) are similar to the integral
ffoo I(y(ny,n — 1; 0[21], ... ,aﬁl_l})dy(n), where I(-) is also a function of the auxil-
liary parameters t;,tg, %, ..., etc., although these parameters were not shown for
simplicity in the integral (4.3).

By using above notations, it is easily seen that the distribution function
W*(ha;py---yPs---,0;0%,...,0%) has the expression given by

(5.2) W;(ha;p,...,p,...,p;aZ,...,o2)

n

~ ki ®(ha,0?) — al Z A;Z)(ha,n; o2,...,0%)

=1
-~ n
+ b.: ZAg}cl)(havn; 0'2, ceey 0’2) + C; ZAgiQ)(ha’n;OQ, o 0_2)
g<k i<k
n
+et D A%I)(ha,n; o?,...,0%)
kAL
n
1111
DY A (hay s 0%, 0%),
kAlAm

where ®(ha,0%) = ®(ha) lo2=...co2=02 With ®(hq) = L[F(ha)]™, F(ha) be-
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ing the distribution function of the normal variable. For example, Aﬁl)(hmn;
0%,...,0%) =I(ha,n;02%,...,0%) when t; =1, tx = 1, t, = 0 for a # j, k.

In order to examine the performance of the proposed small correlations ap-
proach, we now compute the probability Wi (ha;p,...,p0,...,0;1,...,1) in (5.2)
for selected values of o = 0.010, 0.025 and 0.050, and small values of correlation,
namely, p = 0.100, 0.125, 0.200 and 0.250 and compare the results with those
given in Gupta et al. (1973). More specifically, we use the h, values from Gupta
et al. (1973) for n = 2, 3, and 4 and compute W} (hy;p,...,0,...,p;1,...,1) by
using the formula given in (5.2). These probabilities, computed based on small
correlations approach (SCA), along with the corresponding probabilities obtained
by correlation transformation method (CTM) of Gupta et al. (1973), are shown in
Table 1.

It is clear from Table 1 that the SCA based probabilities are close to the
CTM based probabilities given in Gupta et al. (1973), for all p < 0.250. Note,
however, that for p > 0.250, our SCA based results do not agree with the CTM
based results, as our approach is developed based on small values of correlations.

Remark that for negative equi-correlations case, the CTM of Gupta et al.
(1973) is not suitable to compute the percentile points of the maxima. But, as
our SCA is very general, one may apply this approach to compute the h, values
for small negative p as well. In Table 2, we show the h, values for n = 2, 3, 4,
a = 0.01, 0.025, 0.05, and the selected values of p = —0.100, —0.125, —0.200 and
—0.250. Note that the h, values for these negative equi-correlations p = —0.100,
~0.125, —0.200 and —0.250 are generally different than the h, values for p = 0.100,
0.125, 0.200 and 0.250 respectively.

Table 2. The SCA based 100(1 — )% percentile points ha of the maxima for negative equi-
correlations and selected  and n with o2 = 1.

p a= 0.010 0.025 0.050

2 -0.100 2.5123 2.2519 1.9878
-0.125 2.5067 2.2408 1.9707
—0.200 2.4956 2.2397 1.9667
-0.250 2.4841 2.2251 1.9513

3 -—-0.100 2.5405 2.3065 2.0907
—0.125 2.4799 2.2799 2.0509
—0.200 2.3778 2.1829 2.0218
—0.250 2.2858 2.1295 1.9837

4 -0.100 2.7279 2.4567 2.2156
-0.125 2.6801 2.3912 2.1967
-0.200 2.5478 2.3369 2.1613

—0.250 2.4765 2.2801 2.1409
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6. Application to antedependence models

The s-th order antedependence model of size n has the structure

Yi=0m
85
(6.1) Y=Y Vi-s¥i-g +6mi, =21
=1
where s; = min(s,j — 1), V-5, J = 1,2,...,85, j > j', are antedependent
parameters, §;, j = 1,2,...,n are n-scale parameters, and the errors 7); are inde-

pendent and normally distributed with zero mean and unit variance. For s = 1,
the covariances among the n observations are given by

0;;(1) =v2;_10G-1G-n(1) + 6, i=12,...,n with 710=0
and
ojk(1) = Y k—i0ik-5 (1), I <Kk,

where 0;;(1) is the variance of Y}, and o;(1) is the covariance of Y; and Y, under
the first order antedependent model. Observe that here all the variances and
covariances are functions of different scale and antedependent parameters, those
may vary due to repetition. Thus, the correlations among observations in a cluster
under such an antedependence model are generally unequal.

For a higher order antedependence model, the structure of the covariances
for n observations in general is complicated, but the covariances can be computed
directly by using the interdependent relationship of the observations. For example,
when s = 2 and n = 3, it directly follows from the model that

Var(Y1) = a11(2) = 6%,
E(V1Y2) = 012(2) = V2,163,
E(Y1Y3) = 013(2) = V3,272,167 + V3,167,
E(Y) = 023(2) = 131631 + 63,
and
E(Y2Y3) = 093(2) = 132(73.167 + 63) + 73,172,167

It is clear that the variances and covariances for the second (s = 2) order antede-
pendence model also depend on different scale and antedependent parameters,
showing the nonstationarity among the components of Y. In the similar fash-
ion, one may show the nonstationarity under the antedependence model for any
suitable s and n.

Since the p.d.f. of Y{;) in (3.7) is given for general correlation structures,
by performing the integration in the similar manner to that of (5.2), we obtain
the W2 (ha; P125 -+ - » Pkjs - - - » Pre1,ni sy - - -, 05) = Pr(Y(y) < h) from the equation
(3.7) as

(62) W;(haa P12, - ,ij» sy Pn—1,n; 0%7 ‘.. a072;)
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~ kg®(ha) — agen ZA§~2)(ha,n; 0[21], .. ,a[zn])

j=1

+ bgan Z Ag}cl)(ha, n; 0[21], e U[2n])
i<k

n
* 22
+ cgamz:Ag,C )(ha,n; 0[21], e ,0[2,1])

j<k;

211
Cgan Z A" (haym; "[11’ Oy
J#k#

* 1111 L2 2
+dgan Z Agklm) ha,’n,d[l],...,()'[n]),
JF#k#EIEM

* % * *
where the coefficients aj,,,, b74n, Coans Coan a0d dgq, are obtained from ag, bg, cg»

cg” and dg in (2.2) by considering o} as 0;(s) and calculating p;x by using pjx =

o,k(s)/{a”(s)akk(s)} 12 5 k=1,2,...,nand j # k. In (6.2), ®(h,) is defined as
in equation (5.2), and all A functlons in (6.2) are obtained from equations (5.1).
Here again, these A functlons are comparable with I(-) functions. For example,

(u)(ha,n JU]’ ) = I(hq,n; 0'[1],...,0[2n]) when t; =1, ¢, =1, t, = 0 for
a 76 ik, 1rrespect1ve of] <korj>k.

6.1 Illustration of numerical computations of percentile points

Before computing the percentile points of the maxima, we first compute the
correlation coefficients among the repeated observations those are generated follow-
ing an antedependence model of order s = 1 and 2 having the variance-covariance
matrix structure discussed in the previous section. In this numerical computation,
we consider n = 3 and 4, and scale parameters of the antedependence model §; = 1
for all j. We also consider the values of the antedependent parameters «y; ;_; as
Yjj—j <0250 for j =2,...,n, j' =1,...,s; j > j' yielding all possible p;; as
pik < 0.250 for j # K, Wthh are small in magnltude Now the computation of the
95% percentile points of Y{,) for the selected n, pj¢, and 0 is done by using the
distribution function W*(ha; P12, - - - s Pkjs - - - s Pa=1,n} T2, - - - , 02) given in equation
(6.2). The percentile points are shown in Table 3.

Note that the h, values computed for p;x < po are generally different from
ho values obtained in Gupta et al. (1973) for p = po. More specifically, our
calculations show that for n = 3, the h,’s for the cases with unequal correlations
are greater than the h,’s for the cases with equal correlations. On the other
hand, for n = 4, some of the h, values for the cases with unequal correlations
are greater, and some of them are less than the h, values for the cases with equal
correlations. In the next subsection, we examine the performance of the proposed
small correlations based approximation by conducting a limited simulation study.
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Table 3. The SCA based 95% percentile points of the maxima for antedependence data with
order s = 1, 2 and selected pjx (5,k=1,...,n), a]2- (G=1,...,n) and n.

n s o} o3 o3 o} piz2 p3 P23 ha
P14 P24 P34

3 1 1 1.0046 1.0100 0.0677 0.0068 0.0997 2.1598
1 1.0225 1.0164 0.1483 0.0189 0.1271 2.1423
1 1.0312 1.0412 0.1738 0.0346 0.1990 2.1357
1 1.0625 1.0562 0.2425 0.0559 0.2308 2.1283

3 2 1 1.0100 1.0123 0.0995 0.0752 0.0878 2.1512
1 1.0163 1.0303 0.1268 0.1129 0.1425 2.1398
1 1.0400 1.0469 0.1961 0.1403 0.1931 2.1257
1 1.0455 1.0789 0.2087 0.1543 0.2495 2.1167

4 1 1 10077 1.0044 1.0104 0.0872 0.0057 0.0658 2.2409

0.0006 0.0066 0.0997

1 1.0138 1.0184 1.0229 0.1167 0.0157 0.1343 2.2345
0.0023 0.0201 0.1497

1 1.0400 1.0320 1.0260 0.1961 0.0347 0.1771 2.2256
0.0056 0.0284 0.1601

1 1.0465 1.0660 1.0409 0.2108 0.0525 0.2489 2.2043
0.0104 0.0494 0.1984

4 2 1 1.0100 1.0118 1.0184 0.0995 0.0745 0.0854 2.2335
0.0156 0.0915 0.1059

1 1.0129 1.0290 1.0306 0.1126 0.0997 0.1455 2.2226
0.0238 0.1157 0.1432

1 1.0224 1.0325 1.0529 0.1481 0.1153 0.1505 2.2177
0.0371 0.1395 0.1944

1 1.0246 1.0520 1.0794 0.1549 0.1326 0.1969 2.2112
0.0473 0.1561 0.2482

6.1.1 Verification of percentile points: a simulation study

To examine the accuracy of the percentile values shown in Table 3, we have
conducted a small simulation study. In the simulation study, we generated 5000 n-
dimentional (n = 3, 4) observations from the normal distribution with zero mean
and the variance-covariance matrix corresponding to the antedependent correla-
tions given in Table 3. We now refer to this zero mean case as the common
mean (CM) case, and compute the proportion of simulation runs with max-
ima of the run greater than or equal to h,. This proportion is denoted by
Po = P(Y(n) > ha | CM), and is shown in Table 4. Since h, was chosen from
Table 3 such that Pr{¥(,) < hq} = 0.95, these proportion po should be compared
with o = 0.5. It is clear from Table 4 that pg’s are very close to 0.05, showing that
the SCA based computations for h, works quite well. We also verify the perfor-
mance of our small correlations approach to compute the proportion of simulation
runs, with maximum of the runs greater than or equal to h,. For the purpose,
we first generate 5000 n-dimentional (n = 3, 4) observations from the normal dis-
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Table 4. The proportion pg under the case CM and the proportions p11 and pi2 under the two
different cases EM1 and EM2, respectively, for selected hy and n, based on 5000 simulations.

n s ha Po P11 P12
3 1 2.1598 0.0466 0.9966 0.9664
2.1423 0.0488 0.9970 0.9670
2.1357 0.0504 0.9963 0.9668
2.1283 0.0530 0.9970 0.9672
3 2 21512 0.0482 0.9980 0.9690
2.1398 0.0500 0.9980 0.9698
2.1257 0.0506 0.9982 0.9706
2.1167 0.0540 0.9982 0.9712
4 1 22409 0.0536 0.9956 0.9668
2.2345 0.0546 0.9954 0.9664
2.2246 0.0564 0.9956 0.9668
2.2043 0.0608 0.9958 0.9680
4 2 22335 0.0512 0.9954 0.9662
2.2226 0.0532 0.9954 0.9666
2.2177 0.0559 0.9954 0.9666
2.2112 0.0580 0.9954 0.9672

tribution when one observation in a run is generated with extreme mean equal to
4 (EM;) or 5 (EM3), the means of other observations in the run being the same
as zero. Now, similar to the CM case, we compute the proportion of simulation
runs which satisfies y(,) > ho under EM; or EM3. These proportions under the
two different situations EM; or EM; are denoted by p11 = p(y(n) > ha | EM;) or
P12 = P(Yn) > ha | EM2) respectively, and they are shown in columns five and
six of Table 4. Note that the computed proportions for both cases EM; or EM,
appear to be quite high, indicating that the SCA based computations of percentile
values is also quite powerful.

6.2 A comparison with Bonferroni bound approximation

In this subsection, we compare the performance of Bonferroni bound approx-
imation with our small correlations approach, to compute the percentile points
hs for the maxima. We do this for general unequal correlations cases with both
equal and unequal variances. In the latter case, we compute the variance and
covariances following certain antedependence models, those are different from the
models discussed in Subsection 6.1.1. We first compute the h, values such that
Pr{Yn) > ha} = a by using our small correlations approach, as in the previ-
ous sections. These h, values are then used to examine the performance of the
well known Bonferroni bounds approximation. The upper and lower bounds, as
functions of h, values, are defined as follows:

(6.3) LB(h,o}) =Y Pr(Y; > ha) = 3 _Pr(Yj > ho, Vi > ha)
Jj=1 i<k
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and
(6.4) UB(ha,07) =Y Pr(Y; > ha)
=1

where E(Y?) = 03, and Y; and Yk are correlated such that E(Y;Yy) = pjr with
E(Y;) = 0. Now by using Z; for ;JL,, we obtain the lower bound as

(6.5) LB(ha,U?)=in (ijﬁ—j) ZP (Z >_ 2k 2 ik)

i<k
_2[1— ( )J ZPr(Z >fi_  Zi > e )
95 i<k Tk
and the upper bound is given by
(6.6) UB(ha,02) = [ (U] )]
j=1

with

(6.7) Pr (Z > h— , 2y > —) / / (25, zk; pjk)dzidzy,
0j holox Jho/a;

which is cumbersome to compute directly. Note, however, that our numerical
computations as discussed below, show that it is enough to compare our SCA
based percentile values with Bonferroni upper bound only.

Similar to the case for unequal variances, we also obtain the lower and upper

bounds, for the cases with equal variance, that is for E(Yf) =02 (j=12,...,n),
as
= h
. 2 = > —
(6.8) LB(h,0?) n[l ( >] J§P (Z Z > U)

[ G- (G 5e)

J
and

(6.9) UB(h,0%) =n [1 —-F (g)] :

For @2(%, %, pjk), We obtain an expression provided by Greig (1967) as

d, (E,g:pij) =1 (1 -pp)*1®1 G) (- o) P2 (g)

w(5)-L-+G)]

with
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Table 5. The SCA based percentile values ho for selected tail probabilities (TP) and the cor-
responding Bonferroni upper and lower bounds for selected pjr (j,k = 1,...,n) and n, for
homoscedastic normal variable case.

n o2 P12 P13 p23 ha TP LB(ha) UB(ha)

3 1.10 0.1000 0.0100 0.1000 2.2667 0.050291 0.055770 0.059006
0.1500 0.0225 0.1500 2.2438 0.049813 0.057373 0.062053
0.2000 0.0400 0.2000 2.1989 0.049611 0.061697 0.068413
0.2500 0.0625 0.2500 2.1532 0.048262 0.066191 0.075441

2.15 0.1000 0.0100 0.1000 4.4297 0.050230 0.055812 0.059051
0.1500 0.0225 0.1500 4.3918 0.048976 0.056985 0.061624
0.2000 0.0400 0.2000 4.3115 0.048059 0.060795 0.067389
0.2500 0.0625 0.2500 4.2101 0.048583 0.066080 0.075312

3.20 0.1000 0.0100 0.1000 6.6001 0.050666 0.055519 0.058736
0.1500 0.0225 0.1500 6.5012 0.049813 0.058490 0.063287
0.2000 0.0400 0.2000 6.3912 0.049611 0.061948 0.068697
0.2500 0.0625 0.2500 6.2591 0.048906 0.066415 0.075703

4.25 0.1000 0.0100 0.1000 8.7789 0.050065 0.055112 0.058296
0.1500 0.0225 0.1500 8.5913 0.050759 0.059898 0.064845
0.2000 0.0400 0.2000 8.4478 0.050188 0.063327 0.070264
0.2500 0.0625 0.2500 8.2796 0.050286 0.067605 0.077097

Next, to compute the tail probability of percentile points h, such that
Pr{Y(n) > ha} = 0.05 for general unequal correlations with unequal variance
cases, we have used the distribution functions W} (hqa;pi12,--.,Pkjs--+)Pr-1,n;
02,...,02) given in equations (6.2). We have also computed similar tail prob-
abilities for the equal variance case by using the distribution function W} (hq;
P125 - Pkjs-- -3 Prn—1m; 0%, ..,02) which is a special case of the distribution func-
tion given in (6.2). In this special case, the A’s used in the expression for W (hy;
P12y Phis - -3 Pr—1,n; 0%, ...,02) in (6.2) reduces to the A’s those used previ-
ously in (5.2). For the same percentile points h,, we also compute the upper
and lower bounds by using the Bonferroni bounds approximation in equations
(6.8)—(6.9) for homoscedastic normal variable case. In the heteroscedastic normal
variable cases, the computation of the lower bound is complicated. Consequently,
we have used the upper bound given by (6.6) to compare the bound approximation
with our SCA based results. It is interesting to note that our numerical compu-
tations show that in some situations the upper bounds are seen to be lower than
0.05, indicating that the lower bounds calculations are not necessary in such cases.
In other situations, however, the lower bounds would have been much better rep-
resentative than the upper bounds, but they were not calculated because of the
technical difficulty as mentioned above. The results are reported in Tables 5 and 6,
respectively, for the cases with equal and unequal variances. Note that in both of
the homoscedastic and heteroscedastic normal variable cases, the bounds for dif-
ferent percentile points h, based on the Bonferroni approach, are seen to deviate
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Table 6. The SCA based percentile points hq for selected tail probabilities (TP) and the corre-
sponding Bonferroni upper bounds and tail probabilities (TP) for selected a? GG=1,...,n), pjk
(j,k =1,...,n) and n, for heteroscedastic case.

s n o} o3 o2 P12 P13 p23 ha TP  UB(ha)
2 0.9801 1.5273 0.0971 2.5978 0.0508 0.0488
2.5921 4.6520 0.1577 7.9756 0.0509 0.0449
2.2500 0.5849 0.1959 3.9162 0.0500 0.0412
2.8561 2.2423 0.2498 5.4434 0.0502 0.0363

1 3 1.5625 2.2697 4.0401 0.0932 0.0093 0.0996 6.3514 0.0499 0.0612
0.5625 1.0207 3.0952 0.1426 0.0146 0.1027 3.6814 0.0507 0.1183
3.0625 1.6488 0.5862 0.2288 0.0459 0.2009 5.0589 0.0492 0.0509
2.2500 1.0835 3.9359 0.2419 0.0152 0.0629 3.5908 0.0492 0.2369

2 3 02971 08111 29509 0.0814 0.0396 0.0609 4.0968 0.0492 0.0833
1.9074 1.0586 0.6044 0.1478 0.0901 0.1413 3.2108 0.0499 0.0481
0.9902 1.2506 0.3245 0.0357 0.2083 0.1856 2.8416 0.0493 0.0143
3.4044 1.3159 0.9151 0.2253 0.2448 0.1473 6.2689 0.0507 0.0334

in time to a great extent from the nominal probability 0.05. Furthermore, it was
found that this deviation increases as variances and correlations increase in gen-
eral. But the corresponding tail probabilities for the same percentile points based
on our small correlations approach were found to be very close to the nominal
probability 0.05.
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