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Abstract. Consider k (k > 2) populations whose mean 6; and variance o? are
all unknown. For given control values 8 and o3, we are interested in selecting
some population whose mean is the largest in the qualified subset in which
each mean is larger than or equal to 8y and whose variance is less than or equal
to 2. In this paper we focus on the normal populations in details. However,
the analogous method can be applied for the cases other than normal in some
situations. A Bayes approach is set up and an empirical Bayes procedure is
proposed which has been shown to be asymptotically optimal with convergence
rate of order O(In? n/n). A simulation study is carried out for the performance
of the proposed procedure and it is found satisfactory.

Key words and phrases: Best population, multiple criteria, asymptotical op-
timality, empirical Bayes rule, convergence rate.

1. Introduction

In many practical occasions, an experimenter often faces with the situation
of testing for homogeneity. And when the hypothesis of homogeneity is rejected,
the experimenter often needs to rank priority of several categories or treatments
under consideration according to his goal. This concerns the multiple comparison
of ranking and selection which has been developed in last forty years. Readers are
referred to Gupta and Panchapakesan (1979), for instance, among others.

In this area of ranking and selection, most literature are concerned with one
criterion, for example, a population is considered as the best if it is associated with
some largest (or the smallest) parameter in a finite set of populations. In many
situations, it may not satisfy the experimenter’s demand. For example, in indus-
trial statistics, one needs not only to attain its largest target, but on the other
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hand, one also needs to keep the variation of product under control. Under this
circumstance, a single criterion selection of potential treatments does not meet
our requirement. Recently, Gupta et al. (1994) consider selecting the best normal
population compared with a control. It involves two criteria for selection, how-
ever, they belong to same character and only the location parameter is concerned.
Since few literature concerns such situation, therefore, it necessitates to develop
some methodology in this area for multiple criteria. In this paper, we formulate
the problem in a more general setting, however, we focus on the case of normal
populations. We consider two main different quantities, i.e. mean and variance for
our main concern. Since the set of vectors of mean and variance is not linearly
ordered in usual sense, it involves some problems in utility theory which needs fur-
ther development for applications in this area. These statistical quantities, mean
and variance, indicate two measures which are completely different in nature. Ac-
cordingly, instead of combining these two quantities to be a single value so that
linear order is possible, we rather consider the order to be lexicographic which is
more practical and significant and meets our requirement in many situations. It
is noted that in the lexicographic order, it assumes implicitly some priority of its
order. As can be seen in the next section, the first criterion in Definition 2.1 is
more concerned than others. This can be explained in many occasions. For in-
stance, according to the Taguchi’s methodology in industrial statistics, one needs
first to reduce variation of product to an acceptable level and then maximize its
target (see, for example, Taguchi (1987) ).

In Section 2, we formulate the problem and develop the Bayes framework. In
Section 3, we propose an empirical Bayes procedure and in Section 4, we study
the large sample behavior of the proposed empirical Bayes rule. It is shown that
the proposed empirical Bayes selection rule has a rate of convergence of order
O(In® n/n), where n is the number of past observation at hand. In the last section
some Monte Carlo simulation results are given to show the performance of the
proposed procedure.

2. Formulation of problem and a Bayes selection rule

Suppose there are k populations (treatments or designs etc.) my,..., 7 such
that m; has distribution function F;(z) whose mean and variance are respectively,
6; and 02,i = 1,...,k. We are interested in identifying which population has the
largest mean, however, its variance should not be large. More exactly, let 8y and
02 be two controls and it is expected to identify the population corresponding to
the largest mean for which its mean is no less than 8y and its associated variance
should be no larger than o3. We define it in details as follows.

DEFINITION 2.1. Let 7,...,7 be k populations such that n; has mean 6;
and variance af, i =1,...,k. Let 6y and ag be two control values (prefixed).
Define S = {m; | 02 < 02}. A population 7; is called o-qualified, if 7; € S. A
population 7; is considered as the best o-qualified, if it simultaneously satisfies
the following conditions:

(l) m; €S,
(ii) 8; > 6o and
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(ili) 6; = maxy,es ;.

Consider a parameter vector (6;, o2) corresponding to 7; as a point in the
upper half plane R x R*. Under restrictions of (i) and (ii) in Definition 2.1, we
can order those k points. In other words, the qualified set, that is the set of pairs
{(6;,02)} in the domain defined by (i) and (ii), is linerly ordered such that (6;, o)
precedes (6;, 032), if ; > 6;. In this sense, the best o-qualified population is the one
whose corresponding parameter vector in the qualified set has the largest order.
Of course, when the qualified set is empty, none is the best o-qualified.

When o2 is taken to be +0o, the restriction of (i) is removed and under this
situation, our selection problem becomes the classical selection problem with a
control (see, for example, Gupta et al. (1994)). And if furthermore, 0o is taken
to be —oo, the condition (ii) is again removed and it becomes the usual classical

selection problem.
Let = (61,...,0k), 0 = (01,...,0k) and @ = {(8;,07) | —00 < 8; <

+00,0; > 0,i=1,...,k} be the parameter space. Let a = (ao, a1, - .- ,ax) denote
an action, where a; = 0,1; ¢ = 0,1,...,k and Zf:o a; = 1. Let A denote the
action space, the set of all such a. If a; = 1, for some ¢ = 1,...,k, it means

that population 7; is selected as the best o-qualified. When ao = 1, it means no
population is considered as the best o-qualified, i.e. none in k populations satisfies
both restricitions (i) and (ii) in Definition 2.1.

For the sake of convenience, corresponding to @, we define a new parameter
vector & = (6,...,6;) and 6 as follows. ’

DEFINITION 2.2. For a given positive § and for ¢ =0,1,...,k, define

o = {90—6 if 02> ad,
é; otherwise.

Accordingly, those populations which do not meet the requirement (i) will
also fail to meet the requirement (ii) in Definition 2.1 in terms of the transformed
parameter 6.

Choice of the threshold value § is up to the decision maker. However, it can
be clearly seen from the following loss (Definition 2.3) that when ¢ is large, the
associated penalty becomes large, and thus the decision maker should take small
6. To see some behavior of risk for different choices of §, it is referred to some
simulation results in Section 5. It is usually recommended to take value of § no
larger than 1073,

In a decision-theoretic approach, we consider the following loss function.

DEFINITION 2.3. For parameter 8,0 (equivalently, @, 0), if action a is taken,
a loss L(6,0, a) is incurred and which is defined by

(2.1) L(6,0;a) = L(#,0;a)

k
= a (max(8y, 6o) — Z a;0;
i=0
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k
o
+ (1 - a)z7ai (;‘:; - 1) I{Ui>00}

i=0
for prefixed o (0 < a < 1) and ¥(> 0), where 6, = max;<icx 0; and 6y = 6.

Remark 1. (1) Obviously, the loss of an action consists of two parts: one is
caused by either requirement (ii) or (iii) of Definition 2.1 in terms of means, and
the other is caused by the requirement (i) in terms of variances. The value of o
and 1 — o shows the ratio of penalty of the first part to the second part. This
ratio is up to decision maker to determine which part of loss is more serious to
him. It should be pointed out that few literature has considered the situation of
combining different kinds of penalties together. There is no universal theory so far
to define a loss function that is most convincing. The loss form in the second part
of (2.1) is taken for granted to be the ratio rather than a difference, it is usually
because they are scale parameters. As a matter of fact, the second term of (2.1)
can be extended in a general form including the difference form, i.e.

k

(1-ea) Z'ya,-((n - UO)I{a,->ao}-
i=0

This is explained in Remark 2.

(2) The positive value <y is determined by decision maker to adjust different
scale of penalty for variance comparing to penalty for mean. This value can also be
considered by decision maker to show its seriousness for the penalty for variance.
If v = |6o], then the term (2t — 1)y = ’Z—g[(ai — o) which is the difference between
o; and oo multiplied by an adjustment factor (|6p|/00). If a decision maker takes
v = 1, this means adjustness is not needed.

(3) If m; is considered as the best o-qualified population but, the requirement
(i) is not met, then the penalty is given by a[max (6, 6o) — (6o — 6)] + (1 —a)(Zt —
1)v. It is easy to see that the major punishment is caused by variance. A decision
maker is quite flexible to adjust values of §, o and <y for his penalty.

(4) If 7; is the best o-qualified, but action ap = 1 is taken, that is none is
taken as the best, then the penalty is a(efk] — 6).

(5) If ; is in fact the best o-qualified, and 7, is o-qualified and selected as
the best o-qualified, then the penalty is a(ﬁfk] —6;).

In this paper, we focus on the problem of selecting the best o-qualified nor-
mal population. Analogous method can be also applied for situations other than
normal. In this paper, we consider a Bayes approach for the problem of selecting
the best o-qualified normal population.

Here we want to point out that we have two criteria and some preference is
implicitly assumed. It is well known that some difficulty may exist in combining
them. The priority of preference is assumed to be the order of conditions in
Definition 2.1. As a matter of fact, we take some position to consider lexicographic
preference on the quantity of variance first and then the mean preference. When
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this is combined in the loss of Definition 2.3, it is implicitly assumed that the
second part of loss is more concerned especially, when v is taken to be large.
Accordingly, to make problem simple and more clear to be seen, we permit no
perturbation on the quantity of variance. However, on the other hand, we permit
the mean parameter to have some perturbation so that we consider some structure
on the location parameter of mean, i.e. some prior is assumed on the mean.

Foreach i =1,...,k, let X;1,...,X;pm be a sample of size M from a normal
population m; with mean 6; and variance af. The observed value of X;; is denoted
by z;;. It is assumed that ; is a realization of random variable ©; with a nor-
mal prior distribution N(u;,7?), where y; and 77 are respectively unknown mean
and variance, i = 1,...,k. The random variables ©,...,0 are assumed to be
mutually independent.

For convenience, we denote z; = 47 ZJAil z;;. Let fi(zi | 6;) and hi(0; | pi, 72)
denote the conditional probability density function of X; and ©;, respectively,
i=1,...,k. Let £ = (x1,...,7x) and x be the sample space generated by . A
selection rule d = (dp, ds, .. .,dx) is a mapping defined on the sample space x into
the k + 1 product space [0,1] x [0,1] x - -+ x [0, 1] such that 2?:0 d;(x) =1 for all
z € x. For every € x, d;(x) dentoes the probability of selecting population ;
as the best o-qualified, i = 1,...,k; and do(x) denotes the probability that none
is selected.

Under the preceding formulation, the Bayes risk of a selection rule d, denoted
by r(d), is given by

r(d) = EgE.L(0,0,d)
= a/ﬂ/xmax(gfk],ao)f(w | )h(0 | ”77'2)d:1:d0

k
_a /Q />< ;di(x)ogf(z | )1 (8 | ,7)dzd8

k
a;
+0-a) [ [ da) (— - 1) Loy f(2 | )R | 7)dzd
QJIx -0 i)
=aJ; —aJy+ (1 —a)Js, say.

Then, a straightforward computation yields the following
Ji = /Q max(0ly;, 60)h(0 | s, 7%)dB = C

for some constant C, and

k
Iy = / /Q ;di(w)é‘éh((’lz,u,rz)f(w)dedw

k
- / Y di(@)di(@)f(@)de
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where
8o if i=0,
(2.2) ¢:(.’El) = 00 -4 if g; > 0,

¢i(xz;)  otherwise.

f(x) = H:;l fi(x;) is the marginal probability density function of X, h(@ |
Z,1,7%) is the posterior probability density function of © given X = z, and

di(z;) = E©; | ;) = (7} + %}2—#1)/(7}2 + %}2-), i = 1,...,k, denoting that
$o(z0) = do(z0) = bo-

Remark 2. It is easy to see that if the second term defined in (2.1) is ex-
tended to become

k
1-0) Y yaiu(0:i/00) (0,500
1=0

when u(-) is a positive non-decreasing function, the quantity J3 defined in r(d)
is unchanged and so is r(d). Hence, the loss function defined in (2.1) can be
extended to a bigger class.

Hence, for some constant C,

k
(23)  r(d)=aC-a / S di(@)6)(z:) f (z)de
X §=0

k
g
+(1- a)/ Z’ydi(m) (0—0 - 1) o500y f(x)de.
X i=0
For each x € ¥, let

(2.4) Qz) = {z | pix:) = Orélja%(lcfbg(zj),i =0,1,.. .,k} .
Then, define

0 if Q(z)= {0},
min{s | i € Q(x),i # 0}  otherwise.

(2.5) i =i*(z) = {

Then, according to (2.3), (2.4) and (2.5), it can be derived that a Bayes selection

rule d® = (d¥,d?,...,dB) is given as follows
di(z) =1,
(2.6) { ’B(m) .
di (x) =0, for j#1i".
Hence,
k
(2.7) r(d?) = aC — a/ Zd?(w)d;;(xi)f(m)da:.

X i=0
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3. The empirical Bayes selection rule

Since @/(z;) involves the unknown parameters o and (ui,72), 1 =1,...,k,
hence, the proposed Bayes rule d? is not applicable. However, based on the past
data, these unknown parameters can be estimated and hence a decision can be
made if one more observation is taken. Let X;j; denote a sample of size M from
population 7; with a normal distribution N(;;,02) at time ¢t (¢t =1,...,n), j =
1,...,M, and 6, is a realization of a random varlable ©,; which is an independent
copy of ©; with a normal distribution N(u;,72), t =1,...,n. It is assumed that
Oi,i=1,...,k, t=1,2,...,n are mutually independent. For our convenience, we
denote the current random sample X;;n41 by X;j, for j=1,...,M,i=1,... k.

For each m;, i = 1,2, ..., k, we will estimate the unknown parameters u;, 72
and o? based on the past data X;;, j=1,...,M,t=1,...,n. We denote

M
Xit = %injta X; (n ZXz ts

(3.1) { S¥(n) = ——Q}thm»

4

z]t - Xi.t)2a Wz(n Z

Also, let 1/ = 72 + M Then, it is well-known that X;;, ¢t = 1,...,n, are
iid. with a normal distribution N(u;,v?) and hence X;(n) has a normal dis-

tribution N (ps, == ) and 5"—#52(71) has a chi-square distribution x?(n — 1) and
(M — 1)W2,/02, t = 1,...,n are iid. with chi-square distribution x*(M — 1)
and Mﬁwz(n) has a chl—square distribution x?(n(M — 1)). From the above
discussion and by the Strong Law of Large Number, we have

Xi(n) - pi as., W2Hn)—-o? as, SZn)—1v} as,

2 W2(n) 2 2 2
Sin) - =4~ -1l as,  EXm)]=w,  B[SI(n)] =i,
W2(n) o?
j%ﬁzﬁ_ﬁ—g.

(3.2)
EW2(n)) =02, E [s?m) -

For ea.se of notation and for the sake of nonnegativeness of variance, we define
fin, 02, v2, and 72, as estimators of p;, o2, v? and 77, respectively, by the
following. Note that these estimators pin, 02,, v2,, and 772, have been used by
many authors such as Ghosh and Meeden (1986), Ghosh and Lahiri (1987) and

Gupta et al. (1994), among others.

n = Xl(”’)? Uizn = WZQ(n)’ Vi2n = Sf(n)’

3.3 2
(33) Tﬁl=max <Vi2n—aﬁ,0).
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Also, for i =0,1,...,k, we define

%6 if i=0,
. ) — 2 .
(3-4) $in (@) (x,-T,?n + oﬁ,um) JvZ,  otherwise
and then define
0o if i=0,
(3.5) o (x)=4 6—6 if o2, > a2,

$in(z;)  otherwise.

We consider ¢;,(z;) to be an estimate of ¢;(z;), and ¢,,(z;) to be an estimate of
@%(x;). For each € ¥, let

0<j<k

(36) QA@={H¢A%%:mu¢ﬁ@ﬂi=mhn$}-

Again, define

0 if Qn(z)= {0}7
min{i | ¢ € Qn(x),i # 0}  otherwise.

6 =i ={
We then have an empirical Bayes selection rule d*™ = (dg™,d{™, ..., d;") as follows:

{d;";f‘(w) =1,

(38) d;"(x) =0, for j#ij.

4. Some large sample properties

In this section, we study the asymptotic optimality of the proposed empirical
Bayes rule. Before we start to investigate the asymptotic property, we need some
preliminary tools.

4.1 Some preliminary lemmas
We need the following Lemma 4.1.1, due to Gupta et al. (1994), which is
obtained by applying the well-known inequalities due to Chernoff (1952).

LEMMA 4.1.1. Let S, be a random variable having a x2(n) distribution.
Then,

(1) P{Sn <n(1 —n)} <exp(—5g1(n)), for anyn, 0 <7 <1,

(2) P{Sn 2 n(1+n)} < exp(-3g2(n)), for any n, n>0,
where

am=-n-In(l-n) forany n, 0<n<1,
g2(n)=n—In(1+n) forany n, n>0.
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Let P, be the probability measure generated by the past random observations
Xijt,i=1,...,k,j=1,...,Mandt=1,...,n.

LEMMA 4.1.2. Let o2, be the estimator of o7 defined in (3.3). Assume o7 #

02. Then,
2 2 2
(1) Pafo?, > 0,07 < 03} < exp(~2MD (el _1n ),
5 2 2

(2) Pa{o?, < 0,0% > 03} < exp(— 24 (- 257 —n %))

ProOOF. (1) Since ———Q—mn(M;_l)”? has a distribution x?(n(M — 1)), by Lemma
4.1.1, we get '

M —1)o? 2 —o?
Pn{U?n>U§)Ui2SU(2)}=Pn{L&#>n(M—1) (14—00 20’)}

i o;

_ 2 _ 2 2
< exp (_n(M 1) (00 20z —lng—g)).

2 o; o;

(2) The proof is analogous to (1). O

4.2 Convergence rate of the empirical Bayes selection rule
Consider an empirical Bayes selection rule d™ = (dg,d7, ..., d;) and denote
its associated Bayes risk by r(d™). From (2.3) and (2.7), we have

k |
(41) r(d") - r(d®) = a / S (@B (x) — d7 (@))6(z:) £ (z)de
X =0

k

+-a) [ Yk (Z- 1) o0 f(2)d

1=0

k k
—a [ 2N Lirmiinmn 6100 — 6i(;)1f (2)d

X i=0 j=0
k o
+ (]. — a)/ Zl{in=i} ('0_—:) - 1) 7I{ai>ao}f(w)dm‘
X =0

Obviously, 7(d™) —r(d®) > 0, since r(d?) is the minimum Bayes risk. Thus,
E,[r(d™)] — r(d®) > 0, where the expectation E, is taken with respect to the
past observations X;j, 1 = 1,...,k, j =1,...,M and t = 1,...,n. The non-
negative difference E,[r(d™)] — r(d?) can be used to measure the performance of
the selection rule d™.

DEFINITION 4.2.1. A sequence of empirical Bayes selection rule {d"}52, is
said to be asymptotically optimal of order B, if E,[r(d™)] — r(dB) = O(B,),
where 3, is a sequence of positive numbers such that lim, . Bn = 0.
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Then we have the following

THEOREM 4.2.1. Assume 02 # o2, for alli = 1,...,k. The empirical Bayes
selection rule d*™(x), defined in (3.7) and (3.8), is asymptotically optimal with
convergence rate of order O(In®n/n). That is

E,[r(d*™)] - r(d®B) = O(In® n/n).

A detailed proof is given in the Appendix. It should be pointed out that the
normality property is not the necessary conditions for the quantities on the right
hand side of (A.4) (i.e. I; ~ Ig) to hold.

5. Simulation study

In order to investigate the performance of proposed empirical Bayes selection
rule d**(z) defined in Section 3, we carried out a simulation study which is sum-
marized in this section. The quantity E,[r(d*")]—r(d?), mentioned in Definition
4.2.1, is used as a measure of performance of the empirical Bayes selection rule
d*". .

For a given current observations & and given past observation z;;;, let

k k )
D) = Sl (z) — dB(@)é(@) + (1 - 0) 3 vdi(a) (f,’— - 1) Lo}

1=0 =0

= a[d). (z) — ¢2; ()] +(1-a) ( no_ 1) 'yI{,,‘.; >o0}-

T;i»
0o

Then; from (4.1)
E,[r(d*™)] - r(d®) = EE,D"(X).

Therefore, the sample mean of D™(x) based on the observations of  and z;;¢, 1 =

1,...,k,5=1,...,M,t=1,...,n, can be used as an estimator of E,[r(d*")] —
r(dP?).

We briefly explain the simulation scheme as follows:

(1) For each time, t = 1,...,n and for each population m;, i = 1,...,k,
generate observations z;1¢, ..., Z;ap¢ by the following way.

a. Take a value 6;; according to distribution N(u;,72).

b. For given 6;; and af, generate random samples x;14, . . ., Z;p¢ according to

distribution N (6, 02).

(2) Based on the samples z;j4, 1 =1,...,k, j=1,...,M, t =1,...,n, esti-
mate the unknown parameters o2, y;, 72 according to (3.3) and they are denoted
by 02,, tin, T2, respectively.

(3) For population m;, % =1,2,...,k, repeat step (1) with ¢ = n+ 1 and take
its sample mean as our current sample x;. Thus the current sample vector is given

by ¢ = (z1,...,2k).
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Table 1. Behavior of empirical Bayes rules.

n fn Dy ' nDp SE(Dy)
20 0.8810 2.5792 x 102 5.1585 x 10~1 1.2990 x 102
40 0.9448 4.6918 x 103 1.8767 x 10~1 1.6007 x 103
60 0.9597 2.3430 x 103 1.4058 x 10~! 7.0444 x 10~4
80 0.9663 1.1835x 10~3 9.4676 x 1072 1.2697 x 10~4
100 0.9698 7.5871 x 104 7.5871x 1072 4.6151 x 105
150 0.9737 5.3432 x 1074 8.0148 x 10~2 2.4140 x 1075
200 0.9777 4.8255 x 10~% 9.6510 x 1072 1.9511 x 10~5
250 0.9795 3.2959 x 10~% 8.2398 x 10~2 1.0599 x 10~5
300 0.9867 1.5689 x 10~% 4.7066 x 102 3.0435 x 10~6
350 0.9843 2.0822 x 10~% 7.2875x 10~2 6.1888 x 1076
400 0.9860 1.7324 x 104 6.9297 x 10~2 8.8127 x 10~
450 0.9877 1.4610 x 10~% 6.5745 x 10~2 3.8426 x 10~6
500 0.9860 1.6198 x 1074 8.0991 x 10~2 3.8001 x 10~6
600 0.9898 1.0635x 10~* 6.3812 x 10~2 2.2434 x 10~
700 0.9885 9.5706 x 1073 6.6995 x 102 1.6320 x 10~
800 0.9908 8.0349 x 10~% 6.4279 x 10-2 1.2273 x 1076
900 0.9915 8.7131 x 10~5 7.8418 x 10™2 1.8236 x 1076
1000 0.9902 8.1926 x 10~% 8.1926 x 1072 1.2413 x 10~

Table 2. Entries of D,, associated with various values of n and é.

) n =20 n = 60 n = 100
10~ 2.3905 x 10-2 2.3432 x 103 9.5235 x 10™*
1073 2.3924 x 1072 2.3442 x 10~3  9.5243 x 10~4
102 24107 x 10™2 2.3547 x 103 9.5318 x 10~*
10~1 25937 x 1072 2.4597 x 1073  9.6068 x 10~
109  4.4237 x 102 3.5097 x 103  1.0357 x 10~3
101 22724 x 10~! 1.4010 x 1072 1.7857 x 10~3

(4) For given values of 6, o and -y and control values o3 and 6y, based on the
current sample vector, determine the Bayes selection rule d? and the empirical
Bayes selection rule d*™ according to (2.6) and (3.8). Then, compute D, ().

(5) Repeat step (1) through step (4) six thousand times, and then take its
average denoted by D, which is used as an estimate of E,[r(d*™)] — r(d®). In
addition, SE(D,,), the estimated standard error and nD,, are computed.

In this section Tables 1-2 and Figs. 1-3 are given and another Tables 3-4
which tabulate values associated with Figs. 1-2 are given in the Appendix.

In the following, we take 71 = 75 = 73 = 74 = 1 for Tables 1-4. In Table 1,
we take k = 4, (u1 = 7.5, 01 = 1.2), (p2 = 8.5, 02 = 1.2), (u3 = 7.5, 03 = 1.8),
(ug = 8.5, 04 = 1.8), § = 0.001, a = 0.5, v = 1, 6y = 8, 0o = 1.5. The relative
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Table 3. Entries of D, associated with various values of ¢ and .

oo y=1 vy=5 ¥y=10 =20

1.1 1.2961 x 10~2 27901 x 10~2 4.6575 x 1072 8.3923 x 10~2
1.2 1.3681 x 1071 1.4353 x 10~! 1.5194 x 10~! 1.6874 x 10~1
1.3 7.1387 x 1072 9.2490 x 1072 1.1887 x 10~! 1.7162 x 10~
1.4 2.5649 x 101 2.6768 x 10~1 2.8167 x 10~! 3.0965 x 10~!
1.5 2.2343 x 10~ 25029 x 10~! 2.8388 x 10~! 3.5104 x 10!
1.6 7.0133 x10~! 7.0133 x 10~! 7.0133 x 10! 7.0133 x 10~
1.7 2.6216 x 10~ 2.6216 x 10~ 2.6216 x 10~1 2.6216 x 10~1
1.8 5.8612x 1072 5.8612x 1072 5.8612x 102 5.8612 x 10~2

80 T T T T T

*li_
P+

70 |

2
iy
So

B =
X
.

60 ]

50 .

(xlaz) .

30 | . i

20 - Ry -

0k Ny J

Fig. 1. Plot of Table 3.

frequency that the proposed empirical Bayes selection rule coincides with that
of the Bayes selection rule is computed and denoted by f,. It can be seen from
Table 1 that values of D,, decrease quite rapidly as n increases. The performance of
the proposed empirical Bayes rules behave satisfactorily when n > 40. Comparing
to the situations of different unequal values of 7;’s, it is noted that the behaviors
of f, and D, are robust. To save space, the results of different values of 7;’s are
not tabulated.

In Table 2, we study some behavior of D,, with respect to 6§ and n. Take the
same values of (u;,0;), m;, a, v and o¢ as those in Table 1, associated with various
values of n and 6, the values of D, are tabulated. In this table, it can be seen
that values of D,, are quite stable (for fixed n) when § < 10~2. For given 6§, D,, is
quite robust in the sense when 7; are unequal for § < 1071,

In Table 3 (see the Appendix), we take (u; = 8, 01 = 1.0), (u2 = 9, o2 = 1.2),
(u3 =10, 03 = 1.4) and (ug = 13, 04 = 1.6) and also 8y = 8.5, a = 0.5, § = 0.001,
and n = 50. Associated with various values of oo and -y, values of D,, are tabulated.
Take values of 0y as x-axis and values of D,, as y-axis, associated with various
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Table 4. Entries of D, associated with various values of o¢ and a.

g0 a=02 a=0.>5 a=0.8
1.1 1.2321 x 10~! 8.3923 x 10~2 4.4641 x 10~2
1.2 1.0783x 10! 1.6874 x 10~1 2.2965 x 10!
1.3 1.9527 x 10~! 1.7162 x 10~1 1.4798 x 10~}
1.4 1.9100 x 10~1 3.0965 x 10~1 4.2829 x 10!
1.5 3.0162 x 10~! 3.5104 x 10~! 4.0047 x 10~}
1.6 2.8053 x 10~} 7.0133 x 10~ 1.1221 x 10°
1.7 1.0486 x 10~! 26216 x 10™1 4.1945 x 10~}
1.8 2.3445 x 10~2 5.8612 x 10~2 9.3780 x 102

120 T T T T T

100

Fig. 2. Plot of Table 4.

values of v, these are plotted in Fig. 1. Comparing to situations for unequal 7;’s,
it is to be noted that the procedure is not so robust.

In Table 4, we take the same values of (u;,0;), 6o, 6 and n as those given in
Table 3 and take v = 20. Values of D, associated with values of oo and « are
tabulated. Take values of o as x-axis and values of D,, as y-axis, these paris of
vectors are plotted in Fig. 2 associated with different values of o at critical values
of 0p = 1.2, 1.4 and 1.6 due to loss of over or under estimates of variances. This
loss will be enlarged due to unequal of 7;.

Finally, in Fig. 3, for n = 50, taking § = 0.001, 6y = 8, 0p = 1.5, for given
values of y, we study behavior of D,, with respect to a. It can be seen from the
loss function that it should be a linear function of . As a matter of fact, when
v = 1(2)9, they are respectively given by

— 0.00492560 + 0.001,

D,
D,, = 0.0029256¢ + 0.003,
D,, = 0.0009256a + 0.005,
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0.009 : : ' :
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0.003 .
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0 0.2 0.4 0.6 0.8 1
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Fig. 3. Linear relation of Dy, with respect to a.

D,, = —0.0010744a + 0.007

and
D,, = —0.00307442¢ + 0.009.

i

So, in general, we can have

D,, = (0.0059256 — 0.0017y)c + 0.001~
under same set of data.

6. Conclusion

Most literature in decision theory considers unique criterion. In this paper
we consider a selection problem with three criteria in which both location and
scale parameters are involved. A class of loss functions is introduced and various
behaviors of the risk function have been studied. In this loss function, there are
two parameters a and < which can be adjusted by the decision maker to fit one’s
requirement. The Bayes risk is sensitive to the variation of control og when oy is
closed to some o;, especially when 7;’s are unequal.

As is well-known, in many practical situations, it often involves more than
one parameter and also it often needs more than one criterion to fit one’s demand.
Therefore, the framework in this paper is more applicable in many practical situ-
ations.

It is worthwhile and important to consider a general location-scale model.
More study is needed for this model since it covers a big class of distributions
which are quite useful in practical applications. This will be one of our next
subjects for further study.
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Appendix

PRrOOF OF THEOREM 4.2.1. In order to investigate the convergence rate of
E,[r(d")] — r(dB), we decompose the first term of (4.1) in following situations.

Case 1. When none is the best o-qualified (i* = 0), however, population 7
is selected as the best o-qualified (¢} = j # 0).
Since i* = 0, we have ¢}(z;) < 6o. Hence,

either ¢;(z;) < 6o and o} < 0§ (i.e. ¢(z;) = ¢;(z:)); or
0'32 > 0’(2) (i.e. (i);(:l‘]) =6y — 6)

Now, since i% = j # 0, we have ¢;,(z;) > 6o and 02, < a2.
Combining above facts, we get

Enlgis—0,ix —jz0}[¢0(z0) — ¢5(x;5)]
= Pp{i* = 0,3}, = j # 0}|¢}(z;) — ol
< Pu{din(z;) > b0,0;(x;) < 0} (5) — b0l + Pafol, < 05,07 > 0§}
< Po{jn(z;) — ¢5(x5) > |9(z;5) — bol}@5(x;) — ol
+ P {02, < 0(2,,0]2- > 03}8.

jn =

Case 2. When 7; is in fact the best o-qualified (i* = ¢ # 0), but none is
selected (i), = 0).
Since i* =i # 0, we have ¢}(z;) > 6y. Hence,

oi(xz;) > 6p and 02 <ar  (ie ¢L(m:) = di(zs))-
Now, since i% = 0, we have ¢, (z;) < 6o. Hence,

{ either ¢;,,(x;) < 6p; or
ol >l

Combining above facts, we get

Enjie—izo,iz =0y [95(2:) — #0(0)]
= Pp{i* =i #0,i;, = 0}|¢i(z:) — o]
< [Pa{6i(2:) > b0, $in(xi) < B0} + Po{oZ, > 03,07 < ag}id(z:) — ol
< [Po{in(xs) — ¢ilxs) < —|¢i(w:) — Ool}
+ Po{o?, > 08,07 < ag}lpi(z:) — bol.
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Case 3. When m; is in fact the best o-qualified (s* = 7 # 0), but =; is
selected as the best o-qualified (i, = j # ¢ and j # 0).
Since i* = i # 0, we have ¢;(z;) > ¢}(z;) and 02 < . Hence,

either ¢:(x:) > ¢;(z;), 0% < 03 and o? < 03
(A.1) (ie. ¢5(zi) = di(z:) and ¢;(z;) = ¢;(z;)); or
o7 < 03 and 02 > 0f (i.e. ¢j(z:) = di(x;) and ¢(z;) = O — 6).
On the other hand, since i}, = j # ¢ and j # 0, we have
¢_,1n(z]) 2 ¢;n(x’t) and. O?n < 03.

Hence,

(A2) { either ¢jn(z;) > pin(2:i), 02, < 0§ and o7, < 0f; or

]n <02 and 02, > 02.

Combining (A.1) and (A.2), all situations can be classified into four categories.
Hence, we get

Enl(ie—it0,is=j#i and j20} [97(%:) — & (x;)]
< Po{di(z:) = 6(25), $jn(z;) 2 bin(zi) (i) — 65(z;)]
+ P {01271 > 03,07 < 03 }|¢i(mi) — ps(2;)|
+ Po{o}, < 05,07 > ap}|di(x:) — o + 9]
+ P.{o2, > 00,012-" <og,0l < 03,0? > o2 }|di(zs) — 60| + 6]

< [P {bunte - 000 > J10uta) - o360}
Pa{0in(@) = 83(23) > 3164(22) = 6@ }|10a) - 04(a)

+ P o}, > 03,012 < oY di(z:) — ¢j(;)]
+ Po{0}, < 03,05 > ap}{|#i(z:) — 6ol + 6]
+ Pof{o?, > UO’an < 05,02 < 00»%‘ > ogHlgi(z:) — 0ol + 6.

Next, we also note that some part of the second term of (4.1) can be dominated
by some quantity. To be more exactly,

ag;
(A3) EnI{l" =i#0} (: - 1) ’YI{CH>0'0} < P, {‘7m S UO,U > Uo} —O — 1' y-

From (4.1), (A.3) and by Cases 1, 2 and 3, we get

(A4)  Eq[r(d*™)] - r(d”)
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k k
=a) ) En / Iiemiin =53 (65 (2:) — ¢5(25)] f(@)dz

i=0 j=0

k
o
+(1-0) ZEn / I =iy <;(; - 1) Yio,>001 f(®)d
=0’z
k
=a) /R EnIji o, =300 — &5(x;)] fi(x;)dz;
=1
k
tay / Ep I =i —03 (¢ (i) — ol fi(xi)d;
i=1 /R

k k
+ « Enlfis—iin—;
>y JI Bulomiiion
x [¢i(xi) — &5 ()] fi(:) f5(zj)daid;

k
(4
+ (1 - a) /R E EnI{i;zi} <0—0 - 1) 7I{ai>ao}fi($i)d$i
i=1

k
<o) /R Po{|¢im(:) — di(2:)] > [64(zs) — B0}
X |@i(zi) — Oo| fi(z:)dz;
k k
+ az Z
i=1j=1
<[] [ {i6mtan - 6@l > glonte - eul}
+ Py, {|¢jn($j) - ¢j(z;) > %|¢i(xi) - ¢j(%‘)l}]
X |¢i(xs) — () fi(wi) fi(x5)dzidz;
k

+ aZPn{afn < 0(2),0]2 > 02}6
j=1

k
+aY / Pa{o2, > 02,02 < 02}1d:(z:) — B0l fi(w:)d
i=17R

k k
+a3 Y [[ Putet > dhot <oty

i=1 j=1
X |¢i(x:) — & ()| fi(xi) f(z5)dzidz;

ko k
+QZZ//}22Pn{U?n§ag,a]2- > o2}

i=1 j=1
x [|¢i(xi) — Oo| + 8] fi(x:) fi(z;)dzidz;
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+aZZ// B, {Uzn >007 ]'n, SU(),O' <UO, : >0'(2)}
i=1 j=1
X [|pi(x:) — ol + 6]f’i($i)fj($j)d$id$j
+ (1 - Q)ZP {azn = 0870'1;2 > O'g}

—a(Il +IQ+I3+I4+I5+16+I7)+(1—a)’)’13, say.

a;
- -1
Jo 7

Gupta et al. (1994) have proved that

(A.5) /an{ld’in(xi) — ¢i(x:)| > |pilzs) — Oo|}di(zs) — ol fi(xs)da;

= O(In® n/n),
which belongs to type of I, and
(A.6) /R2 Po{|in(zi) — dilzi)| > |dilz:) — 8;(z;)[}
x |¢i(x:) — &5(zj)|fi(zi) fi(z5)dzidz;
= O(In® n/n),

which belongs to type of Is.
By Lemma 4.1.2, we have immediately

(A7) P, {azn = 0'3,0',? > O’g} = O(exp(—con)),
and
(A.8) Po.{02, > 03,02 < 05} = O(exp(—con)),

—-— 2 .
where ¢y = maxi<i<k 1|zﬂ-gf$ In%|>0,fori=1,...,k.

Recall that ¢;(z;) = ﬂ———tﬁ'— and X; is marginally N(u;,v?) distributed.

Therefore, ¢;(X;) is N(u;, ;;) distributed, ¢ = 1,...,k, and ¢;(z;) — pi = ;g(xi -
;). Hence,

(A.9) /R 164(z2) — 6ol fi(z:)de
2
S/Rz_lizlxi"ﬂi]fi(xi)dxi‘l‘/Rll‘i—90|fi(xi)dxz‘

272
= \/%Vi + |ﬂi — 90| < +00.
Also, X; and X; are mutually independent, for all i # j, then ¢;(X;) — ¢;(X;) is
N(p; — py, 7 —; b+ —2') distributed. Similarly as in case of (A.9), we get

(A.10) //R2 |$i(z:) — ¢5(;)| filw:) f5(z5)dwida; < +oo.
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Additionally, § and |o; — oo| are fitite. Combining (A.7)~(A.10), it is easy to
see that I3, Iy, Is, Is, Iz and Ig all converge with rate of order 1/n. Finally, by
combining (A.5) and (A.6), we complete the proof. O
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