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Abstract. This paper considers multivariate extreme value distribution in a
nested logistic model. The dependence structure for this model is discussed.
We find a useful transformation that transformed variables possess the mixed
independence. Thus, the explicit algebraic formulae for a characteristic func-
tion and moments may be given. We use the method of moments to derive es-
timators of the dependence parameters and investigate the properties of these
estimators in large samples via asymptotic theory and in finite samples via
computer simulation. We also compare moment estimation with a maximum
likelihood estimation in finite sample sizes. The results indicate that moment
estimation is good for all practical purposes.

Key words and phrases: Gumbel distribution, maximum likelihood estima-
tion, moment estimation, multivariate extreme value distribution.

1. Introduction

Statistical methods for multivariate extremes have been used to solve many
engineering problems (for example, see Coles and Tawn (1994)), but parametric
estimation for p-variate (p > 3) extreme value distribution has received only lim-
ited attention. Because no natural parametric family exists for the dependence
structure of the multivariate extreme value distribution, this must be modelled in
some way. A number of parametric models have been given by Coles and Tawn
(1991). The logistic model is one of the essential parametric models which has the
joint distribution function

(11) G(ZL'l,...,:Ep) :exp{_ (Ze—xi/a) }’
i=1

* The work was supported by the National Natural Science Foundation of China.

253



254 DAOJI SHI AND SHENGSHENG ZHOU

where we assume, without loss of generality, that the margins have standard

Gumbel distribution
H(z) = exp(—e™7).

Some papers have been written concerning parametric estimation in this
model, for example, for the asymptotic behaviour of a maximum likelihood es-
timation, see Tawn (1988), Oakes and Manatunga (1992), Shi et al. (1992), and
Shi (19956, 1995¢), while a moment estimation has been presented by Shi (1995a).

It requires a single parameter, ¢, to govern dependence among the variates in a
logistic model. Such a model would not be very realistic in many cases. McFadden
(1978) and Tawn (1990) developed a class of models which involves hierarchical
dependence, i.e. a nested logistic model. In order to simplify the expressions, here
we consider only trivariate extreme value distribution. This is given by the joint
distribution function

(12)  F(o1,22,73) = exp[—{(e7%1/%% 4+ e=52/P)B 1 ¢~5s/o}a],

where 0 < o, 8 < 1 are dependence parameters. It is clear that (1.1) is a special
case of (1.2) with 8 = 1. When a = 1, (1.2) may be reduced to the bivariate
extreme value distribution in the logistic model. Tawn (1990) described a physical
motivation for the nested logistic model.

To our knowledge, no results have yet been published within the context of
parametric estimation of the nested logistic model. Here we consider the moment
estimation of the dependence parameters in the model (1.2). Moment estimation
has some nice properties, for example, it is computationally simple, consistent
and asymptotically normal. In Section 2, we analyse the dependence structure
of the model and give a useful transformation so that we can derive an explicit
algebraic expression of the moment estimator in Section 3, and an approximately
asymptotic covariance matrix in Section 4. We use computer simulation to obtain
the biases and the variance-covariance of the estimation and compare these with
the maximum likelihood estimation in finite sample sizes in Section 5.

2. Dependence structure of model
For the sake of brevity, let
si=e ¥, 1=1,23,
so that (1.2) is reduced as
F(z1,22,23) = exp[~{(s1* + /)" + 55/},
and the density of the distribution (1.2) may be written as

8F3(IL'1, Z2, .’133)
6.1‘1311:28.’1}3

1

- g10203

(2.1) f(:l,'l, .’1:2,1‘3) =

e—uul—2/av1/a—2/aﬂ(Slsz)l/aﬂsé/aQ’
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where
V= (8}/04[3 + Sé/aﬂ)aﬂ,
w={(s1/ + /%) + 55/} = (01 + 55/,
v 1/0 _ﬂ
Q= ('{i) Qa(u; ) + e Q2(u; a),
1
(2.2) Q2(u;0) =u+ -~ 1,

(2.3) Qg(u;a):u2+3<é—1>u+(é—l) (%—1).

Especially when = 1, i.e. in the logistic model, we have the density of the
distribution (1.1)

0G3(z1, x2,73) _ (s18283)1/

I1,Z,T3) = = e Uyl—3/e U ).
g( 15,42, 3) 81‘16.’1)28.’1}3 010203 QS( 3 )

In general, p-variate extreme value distribution in the logistic model has the density
(Shi (1995¢))

P 1/a
9(z1,...,2p) = (g Sia/i ) ul_”/“Qp(u;a)e'“,
where
Qp(u; @) = (1%1 +u— 1) Qp-1(u; ) — um%iwa)’
Qi (u;a) = 1.
Make a transformation
51 = utftdP,

8q9 = ut‘l"(l - tg)aﬂ,
83 = u(l - t1)a,

or

1 = —log(utt3?),
(2.4) zo = — log{ut§ (1 — tz)"‘ﬂ},
z3 = —log{u(l —¢1)*}, u>0, 0<t;,ta<1.

We can regard u as a ‘distance’ from the origin to (s1, $2,53) and t1,t2 as a
dependence between s1, 52, s3. We find that the Jacobian of transformation (2.4)

is
0(z1,T2,T3) 0102030203

B(u, tl,tz) - ut1t2(1 - t1)(1 - t2) )
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Therefore, the joint density of the transformed random vector (U, Ty, T3) is
(2.5) w(u, t1,ta) = &?BQe™ = Bra(u, t1; @) + (1 — B)ra(u, t1; ),
where, for p = 2,3,

rp(u, ti;a) = hp(’u'; a)a'p (t1)
and

aP~1

hp(u; @) = '(}}_—T)!Q”(u; a)e™ = gpy(u, j)
j=1

is the density of mixed gamma distribution and ~y(u, j) denotes the gamma distri-
bution density with parameter j, y(u,j) = w/~te™*/I'(j), u > 0. The weighting
coefficient g,; has been given by Shi (1995¢). For example, we have g21 = 1 — «,
g22 = ; g31 = 3(1 — @) (2 — @), gz2 = 3a(1 — a), gs3 = o?, and

ap(t)=(p-1)tP"%, O0<t<l1

is the density of the power function distribution on interval (0,1).

From (2.5), it can be seen that T5 is independent of (U, T1). T3 has the uniform
distribution on interval (0,1), and (U,T}) is the 8 : 1 — 3 mixture of r3(u,ti;a)
and r2(u,t1; ). In any 7,(u,t;a), p = 2,3, U is independent of T;. We call this
relation a mixed independence. So, in the nested logistic model the transformed
variables U, T, and T, possess mixed independence.

Mixed independence shows that the dependence between s; and s; (therefore
z; and z;) is absolutely determined by independent variates 77 and T3. Under
mixed independence, it is easy to find the expectation of a function with the form
G1(U)G2(T1)G3(Tz). This is obtained directly:

(2.6) E[G1(U)G2(T1)G3(T3)]

- /01 /Ooo Cr(w)Ga(tr)

- [Bha(u; @)gs(ty) + (1 — B)ha(u; a)gz(tr)ldudty

1
. / G3(t2)dt2
1]

= {BE3[G1(U)|E3[G2(T1)]
+ (1 = B)E2[G1(U))E2[G2(T1) |} E[G3(T32)],

where
3 Apj = j=1,—u —
2.7) E,[G1(U)] Z;W /0 Cr(wwi~levdu, p=2,3,
1
(2.8) E,(Go(T1)] = /0 (p— 1)Ca(t)2dt, p=2,3,

(29)  EGs(Ty) = /0 Ga(ta)dts.
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It should be apparent from (2.7), (2.8) and (2.9) that E,[G1(U)], E,[G2(11)]
and E[G3(T3)] are easier to calculate and may be expressed in explicit formulae
for most practical cases. Therefore, when Gy, G2, G3 are some simple functions
the expectation of their product may have explicit expression through (2.6). For
example, we have

(2.10) ElUT!(1 - T1)%] = (1 + a)T(1 + a)T(1 + 5)T'(1 + ¢)
ﬂ(2+aa)'241-—+bi'é+1_ﬂ
' T2+b+c)

Especially when b = ¢ = 0, we have

E({U%) =(1+aq®) (1 + 9—?) r'1+a).

Differentiating with respect to a in both side of the above expression, E(U®log U)
may be obtained. Similarly, the expectations evolving in log T, log(1 — T1) may
also be calculated by differentiating with respect to b and ¢ in both side of (2.10),
respectively.

3. Characteristic function and moment

Using the mixed independence of the nested logistic model, we can derive a
characteristic function and moments in an explicit expression. The characteristic
function of the distribution (1.2) follows from (2.10):

. . T(1—it's)
3.1 @ t t =E 1(t1X1+t2X2+t3X3) — @t

( ) ( 17t27 3) {e } € 1-\(1 _ iat'a)
F[l — ia(t10'1 + t20'2)]

F[]. — iaﬂ(tlm + t20‘2)]

X F(l — iaﬂtlal)r‘(l - ia,@tzdz)r(l — iat303),

here t' = (t1,t2,t3), ¢’ = (i1, B2, p3), 0’ = (01,02,03). When 3 = 1, (3.1) reduces
the characteristic function in the logistic model (see Shi (1995a)).
From (3.1), we easily find that

0P

— = i(p; ; i =1,2,3,
at; o 2(“‘] +‘737), J )

where i is the imaginary unit and ~ is Euler’s constant. The relation between the
characteristic function and moment yields

E(X;)=pj+o57 =123

On the other hand, we can also directly calculate any moments of the distri-
bution (1.2). For example, from (2.4) we have

E(X,) = —E(logU + alogT; + afBlogT3).
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It is necessary to calculate E(logU), E(logT}), E(logT2). From (2.6) we have
E(logU) = BE3(logU) + (1 — B)Ex(log U)

—5(%5 1) +a-pa-7=F +a-n,

where E3(logU) = 37" —v, E3(logU) = a—+ can be obtained from (2.7). Similarly,
from (2.8) and (2.6), we have E(logTi) = g —1. And E(logT,) = -1 is directly
obtained from (2.9) and (2.6). It is immediately obvious from the results given
above that E(X1) = p1 + 017.

More calculation may derive any moment. of the distribution (1.2). For ex-
ample, we have

7.r2
E[X]—E(X])]2=0?—6—, j:172)3)
2
E[X: — E(X))][Xa - E(X2)] = 0102%(1 — a?p?),

BIX; ~ E(G)|[Xs — B(G5) = 055 (1 - %), j=1,2

(also see Tiago de Oliveira (1980)). Therefore, the correlation coeffcient must be

P12 = COI‘I‘(X],XQ) =1- 02,32,
pj3 = Corr(X;,X3) =1- o, j=1,2.
The linear dependence degree between x; and z; is completely determined by the

dependence parameters a, 5. Now we may obtain the moment estimators of the
parameters in the distribution (1.2):

(32) &= -;—(\/1—1”134‘\/1-7‘23),
(33) =Yzt

where 7,5, ¢ < j, 1,7 = 1,2,3 are the usual sample correlations. Of course, we

must ensure that 0 < &, 8 < 1.
It needs higher moments of the distribution (1.2) to give a covariance matrix of

the moment estimators &, B . We see that X, X, are symmetric in the distribution
(1.2) and X3 is different from X, X,. Consequently, the moments concerned in
X3 have different expressions. Let

pijk = E[(X1 — EX1){(X2 — EX2)/ (X3 — EX5)").
We have the following results about the third moment

pije = 201030k (1 - A3, i+j+k=3, 0<4,5,k<3,
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where A = 0 in the case where there are two zeros among i, j, k; or else there
is at most one zero among ¢, j, k, A = aif k # 0; A = of if Kk = 0. And
(3 = 1.20205690- - - is the zeta function, {; = Y po, k™%, evaluated at s = 3 (see
Abramowitz and Stegun (1964, §23.2)).

Similarly, for fourth moments, i.e. i + 7 + k = 4, we have

1 . .
Hijk = @a;a;ag(g +42%)(1 — At

when either i, j, and k are not equal or there are two zeros among %, j, k. In the
other case, there is equality among 7, j and k, and we have

i 1-6% (11 —5n%, +6k2,)(1 — K2))
Rijk = 010§0§{ % kl + kl % kl kl 7r4,

where l =1,ifi # j; 1 =2, if i = j, and

on =« 1 = af, K11 = «,
021 =0, No1 = @, K21 = @,
bpp=aff, mNa=a K22 = q,

bo2 =0, o2 = af, Koz = af.

4. Asymptotic covariance matrix of moment estimation

In general, moment estimators are simple and often useful in applications.
Moment estimation possesses consistent asymptotic normality. Except in some
special cases, it is impossible to accurately find the covariance between the es-
timators. The method described by Kendall and Stuart ((1969), §10.6) can be
used to obtain approximately the asymptotic covariance. Using the expressions
for moments given in the preceding section, for example, we have (approximate to
o(n™'))

- 1
cov(S1, S;) = K220 — 12001020 o102(11 +a2ﬂ2)(1 . aQﬂ2)ﬂ,2’

- 4n,/Uzootoz0 60n

but
- 1
COV(SI,S{_J,) — w — _0-10-3(11 + (12)(1 _ 02)’11'2.

dn./faookicoz  60n

In an analogous way, we have

1
cov(riz,m13) = P12013 {_ (M;oo 4 Ha202 4 H220 4 Moz )
n 4 \ p300  HM200M002  M200H020  HM020/002

1
_z ( H301 4 H12 n H310 + H112 )
2 \ p200ft101 Ho20H101 MH2004110  Moo2H110

n H211 }
Hitol101

1— 2
- 10: a*B2(1142 + 44 + 202 + a28%),
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but

cov(ri3,T23) = a(55 + 3a?),

10
and so on. After tedious calculation, it turns out that approximate expressions for
elements of the asymptotic covariance matrix of the estimators of the dependence
parameters given in (3.2) and (3.3) (approximate to o(n™')) are

(4.1) D(&) = o (131—116a - 5a%),

(42) D(B) = —(107 + 5202 — 4482 + 30* — 84023% - 4a°B),

cov(&, ﬁ) aﬂ ( —43 + 3202 + 226% — 22a%3% + ot + 2023* — 2048).

5. Comparison with maximum likelihood estimation

In this section, we want to investigate the properties of the moment estima-
tion in finite samples and to compare them with maximum likelihood estimation by
simulation. So far we have little knowledge about maximum likelihood estimation
for the parameters of the distribution (1.2), even its asymptotic behaviour, because
of its complicated form. Now we consider maximum likelihood estimation for
dependence parameters. Firstly, we can write the log-likelihood function, denoting
by ¢, for a single observation from (2.1)

(5.1) £ = log f(z1,%2,73)
2 1 2
— log(o10203) —u + (1 - —) log u + (— - ;ﬂ—) logv

1 1
+ — log(s182) + p log s3 + log Q.

af
The score statistic may be expressed as
ot 1 2 -2
% = —a log[t1t2(1 - tl)(l — tg)] + (u -+ a — 1) D - A o Cy
1
+ 5{%(Dt1 ﬂt102 - tl logtl) - thl aQus
1-p8 Qs 1-p4 1-380Q2
_ - FuD _
af ub+t da a2ﬂQ2+ af Oa |’
ol 2 1
25 (au — a+2)t1Cy — (1 - E) Cy — 3 log[ta(1 — t2)]
1 1
+ —Q— {-—tl(l - tl)CQQ3 aut2C2 6Q’u,3 <1 - B) ut102 - %} s
where

C(t) =tlogt + (1 —t)log(l —t),
Ci=C(t), Ca=Clts), D=Ci+ptiCs,
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Table 1. Simulated bias.

« 0.2 0.5 0.8

B n b@a) b(B) b@) bB) b@) b(B)
b(&) b(B) b@a) bB) b(& b(B)

0.2 30 .003 .004 .007 .005 -—.001 .006
.000 .003 .001 .004 -.005 .005

50 .002 .002 .005 .003 -—.001 .004
.000 .001 .001 .001 -.003 .003

100 .001 .001 .003 .002 -.001 .002
.000 .000 .000 .001 -—.002 .002

200 .000 .000 .000 .001 -—.000 .001
.000 .000 .000 .000 -.001 .001

0.5 30 .003 .012 .006 .012 —.001 .015
.000 .008 .000 .007 -.002 .009

50 .002 .007 .004 .006 -—.001 .010
.000 .004 .000 .002 -—.001 .007

100 .001 .004 .002 .003 —.001 .006
.000 .002 .000 .000 -—.001 .004

200 .001 .002 .001 .001 -.001 .004
.000 .002 .000 .000 -.001 .003

0.8 30 .003 .010 .006 .010 —.001 .012
‘ .001 .004 .002 .004 -.001 .005

50 .002 .006 .004 .005 -—.001 .006

.000 .004 .001 .004 -—.001 .004

100 .001 .003 .002 .002 -—.001 .003

.000 .002 .001 .001 -—.001 .003

200 .001 .002 .001 .001 -—-.001 .001

.000 .001 .001 .001 -—.001 .002

and Q2, @3, as in (2.2), (2.3).

Let ¢, denote the log-likelihood £ based on n observations and &, B denote
the maximum likelihood estimators which have be calculated by maximizing ¢,.

A computer simulation experiment was run to study the properties of the mo-
ment estimation and compare them with the maximum likelihood estimation in
finite sample sizes. The mixed independence suggests a simple and accurate proce-
dure to generate a random vector from the multivariate extreme value distribution
(1.2). For example, see Shi et al. (1997). Simulations were performed for sample
sizes n = 30, 50, 100,200 with the dependence parameters o, 8 = 0.2,0.5,0.8. For
each combination of values of a, 8 and n, 5000 random samples from the dis-
tribution (1.2) were genereted, and the moment estimators, &, # and maximum
likelihood estimators &, § were obtained for each sample, respectively. Quasi-
Newton procedures work well for maximizing the log likelihood. This is based on
iterative procedures. Here we take moment estimates as starting values.
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Table 2. Simulated covariance matrix (n X covariance).

[o' 0.2 0.5 0.8
B n D) D@B) C(&B) D) D@B) C&,B) D@ D@B) C&ap)
D(@&) D(B) C(apB) D@&) D@B) C(&pB) D@ D(@B) C&p)
2 30 .07 .07 —.03 .38 .08 —-.07 47 .08 —.07
.03 .06 —.03 17 .06 —.07 .34 .05 —.08
50 07 .06 —.03 37 .07 —.06 .51 .08 —.08
.03 .05 —.03 .16 .05 —-.07 .36 .05 —.09
100 .07 .06 -.03 37 07 -—.07 .52 .08 —.07
.03 .05 —-.03 .16 .05 -.07 .35 .05 -.09
200 .07 .06 —.03 37 .07 —.05 .53 07 -.07
.03 .05 —.03 .16 .05 —.06 .35 .05 —.09
oo .06 .05 —.02 .32 .06 —.04 .44 .07 —.04
.03 .05 —.03 .16 .05 —.06 .32 .05 —.08
5 30 .07 .38 -.07 .35 .39 —.14 45 42 —.16
.03 .32 —.06 .15 .31 -.13 .30 .30 —.18
50 .07 .37 —.06 .35 .38 —.14 47 41 -.15
.02 .31 —.05 .15 .30 —-.13 31 .29 —.18
100 .07 .36 -.07 .35 .37 —.14 A48 41 —.15
.02 .30 —.05 .15 .29 —.13 31 .28 —.18
200 .07 .35 —-.07 .35 37 -.14 .49 41 —.15
.02 .30 —.05 .14 .30 —.14 .30 .27 -.17
oo .06 .30 —.05 .32 .32 —-.10 .44 37 —.10
.02 .29 —.05 .14 .28 —.12 .29 27 —.17
8 30 .07 .69 —.06 .32 .69 —.15 .40 .64 —.17
.02 .49 —-.05 11 48 —-.12 .24 .46 —-.17
50 .06 .70 —.06 .32 .70 —-.16 42 .64 —-.17
.02 .53 —.05 11 .54 —.13 .24 .50 —.18
100 .06 .67 —.07 .32 .68 —.17 45 .65 .17
.02 .54 —.06 11 .55 —-.13 .24 .51 —.18
200 .06 .67 —.06 .32 .68 —.16 .46 .64 —.18
.02 .53 —.06 A1 .55 —.12 .24 .50 —.18
[e3) .06 .63 —.06 .32 .63 —.12 .44 .62 —.13
.02 .53 —.05 .11 .52 —.12 .23 .49 —.17

Tables 1 and 2 contain simulated biases and covariances of both moment and
maximum likelihood estimators, respectively. The rows listed above correspond to
the moment estimators and below to the maximum likelihood estimators. Actually,
the numerical results on variances and covariances summarized in Table 2 are n x
covariance, such that they are comparable. The rows labelled oo correspond to the
asymptotic calculations, but we do not know any numerical results of the maximum
likelihood estimators. Here we give the inverse of the observed information, which
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is superior to the expected information as an estimator of variance (see Efron and
Hinkley (1978)).

The results provide evidence that both estimations are asymptotically unbi-
ased. Even for small samples, the simulated biases are lower. The maximum bias
for the moment estimation is not greater than two units in the second decimal
place and for the maximum likelihood estimation is not greater than one unit in
the second decimal place. The biases are all positive, but the biases of both es-
timations of a are negative for large a. The maximum likelihood estimator & is
nearly unbiased for lower a.

It seems from Table 2 that the behaviour of both estimations is approximated
by asymptotic theory for sample sizes of n = 30 or larger. The variances of max-
imum likelihood estimators are lower than moment estimators. The covariances
between estimators of the dependence parameter for the two procedures are in-
significantly different for all combinations of values of ¢, 3 and n.

6. Discussion and conclusions

In this paper we have considered the multivariate extreme value distribution
in a nested logistic model. The aim is to illustrate the dependence structure of the
model and to give a moment estimation of the dependence parameters. A suitable
transformation leads to mixed independence of the variates. The transformation
(2.4) is the analogue in Shi (19955, 1995¢). We believe this transformation to be
very useful in multivariate extreme value analysis. It should be apparent from the
simulated results that asymptotic theory of both maximum likelihood estimation
and moment estimation may provide an adequate approximation for quite small
samples. The relationship between parameters and moments takes a simpler form
only in Gumbel marginals and, for that reason, the moment estimation is a con-
venient tool for the nested logistic model (1.2). We conclude that the moment
method is good for all practical purposes.

Although this paper is restricted to the case of p = 3, the mixed independence
discussed in Section 2 is a general property. For higher-dimensional models, for
example, in the case of p = 4, based on different problems, we may have different
distribution forms

exp[—{(e“’“/“ﬂ + e %2/oB e”“/"ﬁ)ﬁ + e_“/o‘}"],
exp{_[{(e—zl/aﬂv + e—xz/aﬂv)v + e—za/aﬁ}ﬂ + e—z4/&]a},
exp[_{(e—ml/aﬂ + e—zz/aﬁ)ﬂ + (e—zs/av + e—u/av)v}a},

where 0 < o,8,7 < 1 are dependence parameters. Analogous results may be
obtained in a similar way, but will have more complicated forms.
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