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Abstract. Two-step methods are suggested for obtaining optimal perfor-
mance in the problem of estimating jump points in smooth curves. The first
step is based on a kernel-type diagnostic, and the second on local least-squares.
In the case of a sample of size n the exact convergence rate is n~!, rather than
n~ ' (for some 6 > 0) in the context of recent one-step methods based purely
on kernels, or n~*(logn)**? for recent techniques based on wavelets. Relatively
mild assumptions are required of the error distribution. Under more stringent
conditions the kernel-based step in our algorithm may be used by itself to pro-
duce an estimator with exact convergence rate n~!(logn)/2. Our techniques
also enjoy good numerical performance, even in complex settings, and so of-
fer a viable practical alternative to existing techniques, as well as providing
theoretical optimality.

Key words and phrases: Bandwidth, curve estimation, change point, diagnos-
tic, discontinuity, kernel, least squares, nonparametric regression.

1. Introduction

Jump points in otherwise-continuous treatment effects arise when the treat-
ment changes suddenly, often without warning or planning. Examples occur in the
context of medical monitoring, and are typically addressed using methods of signal
processing. One novel, contemporary approach of this type, based on wavelets, has
been suggested recently by Wang (1995) (see also Raimondo (1996)), who has also
provided an excellent review of literature on jump-point estimation. His method is
tailored to the case of a continuously observed signal, with Gaussian white noise,
although it has a variant in the setting of a signal sampled at equally spaced time
points, with Normally distributed noise. There, Wang’s approach produces an
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estimator which converges at rate n~!(log n)1+4 where n denotes the number of
sampled points within a given interval, and ¢ is a positive number.

Results such as these raise the question of just how accurately the position of
a jump point may be estimated, and of whether procedures that achieve optimal
rates are practicable. In the present paper we show that even in a nonparametric
setting, a convergence rate of n~! is available under mild conditions on the error
distribution (only a little more severe than existence of finite variance); that this
rate is optimal in a minimax sense; and that procedures which achieve the rate
are definitely practicable.

It is possible to refine Wang’s estimator and obtain a convergence rate of

n~1(log n)!/2, at least in the context of Normal errors. This may be done by
regarding the spatial indices of empirical wavelet coefficients as defined in the
continuum, not just at points that are integer multiples of integer powers of 1 5
and closely monitoring the way in which the coefficients behave as functions of
this continuous variable. The nature of wavelets introduces practical difficulties,
however. Wavelets tend to have either rough, fractal-like graphs, or smooth graphs
with many turning points. This makes it difficult to identify the spatial location
where the appropriate maximum absolute value of an empirical wavelet coefficient
occurs, and so to achieve the rate n=!(logn)'/? in practice.

An alternative technique, appropriate for error distributions other than the
Normal, is to employ Wang’s wavelet-based estimator as a diagnostic for obtaining
a rough idea of the region where a jump point lies, and then use other tools
to identify the jump point more accurately. That is the approach suggested in
the present paper. For the reasons noted in the previous paragraph we employ
kernel rather than wavelet methods, however, to obtain our first crude estimator.
We show that the kernel diagnostic leads to a convergence rate of n=!(log n)1/2,
provided the error distribution has finite moment generating function; and that if
the diagnostic is combined with a local least-squares ﬁttmg step in order to refine
its performance, then it enjoys the convergence rate n~', and under substantially
weaker conditions. We show that in the least-squares part of the algorithm it
is adequate to fit curves that are locally constant, although more sophisticated
techniques could be employed. The resulting estimator enjoys good numerical
performance.

Our method has obvious generalizations to estimating points of discontinuity
in densities, where it produces identical convergence rates. In both settings, once
the locations of jump discontinuities have been estimated, left- and right-hand
limits at those points may be estimated using kernel methods based on right- and
left-handed kernels, respectively. It is straightforward to generalize our techniques
to estimators of jump points in the k-th derivative of a regression mean, for general
k > 0. Diagnostics based on kernel estimators of the (k 4 1)-st derivative of the
regression mean are employed to obtain a rough idea of the positions of jumps,
and are then refined by fitting k-th order polynomials in small neighbourhoods
on either side of the jump points. The convergence rate is n~1/k+1) " For the
sake of brevity, and since practical motivation for estimating jumps in the zero-th
derivative is considerably stronger than that for derivatives of higher order, we do
not provide details here.
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Loader (1996) has recently suggested a one-step jump-point estimator that
attains the O,(n~!) rate in the case of Gaussian errors and regularly-spaced design.
His approach is founded on ideas from likelihood-based inference in a parametric
model—hence the assumption of Gaussian errors. Miiller and Song (1997) have
also proposed a jump-point estimator which attains the O,(n~!) rate for regularly-
spaced design. They assume particularly mild conditions on the error distribution,
however, and like us, employ a two-stage procedure. Their first stage is based on a
“generic” pilot estimator, which they show may be taken to be of the kernel type.
Their second stage refines the estimate in the first stage by comparing heights of
function estimators on either side of a candidate value for the jump point.

Wang (1995) offers such a good literature survey that we note here only those
items that involve methods which are relatively near to ones in the present paper,
as well as some not mentioned by Wang. Korostelev (1987) considered estimation
of jump points in a Gaussian white noise model, and introduced in that setup a
two-step procedure which has some similarities with our approach. The important
contribution in our approach, which is proposed in a general setting, is the least
squares step which allows for generalizations to fitting locally other parametric
models (for example polynomials of a certain degree). The work of Korostelev and
Tsybakov (1993) on optimal methods for image analysis is in concept close to ours,
although this is arguable. They provide a detailed discussion of likelihood-based
methods for jump-point detection in the context of data that are generated ei-
ther in the continuum or discretely. In their account of one-dimensional problems,
Korostelev and Tsybakov (1993) are interested predominantly in optimality in a
parametric sense, and their approach to obtaining optimal performance is unavail-
able in the nonparametric setting that we address. Nevertheless, the convergence
rates that they derive under parametric assumptions are identical to ours under
nonparametric ones. Korostelev and Tsybakov ((1993), p. 45) do suggest that
some of their ideas may have nonparametric counterparts, but the assumptions
that they have in mind, such as their condition (1.50), would be quite restrictive
in a statistical as distinct from image-analytic setting.

Recent work of a more statistical nature includes that of Miiller (1992) and
Eubank and Speckman (1993), who employ kernel methods. Theoretical analysis
not unlike the one given in the present paper shows that their techniques, in
the forms that they discussed, achieve convergence rates of only n~1*% for some
6 > 0. A conference proceedings edited by Carlstein et al. (1994) addresses a
wide variety of estimation problems in the context of change and jump points. It
includes an article by Eubank and Speckman (1994), extending ideas of Eubank
and Speckman (1993) to the estimation of jumps in derivatives. Techniques based
on kernel estimators are also used by Hall and Titterington (1992) and Wu and Chu
(1993). The paper of McDonald and Owen (1986), treating general but particularly
sophisticated curve estimation methods for functions with jumps, employs (like
ours) local least-squares methods in parts of its estimation algorithm.

Section 2 will introduce our techniques and discuss their properties, including
theoretical and numerical performance. Details of technical arguments will be
given in Section 3.
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2. Methodology

2.1 Introduction and summary
Assume that data pairs (X1,Y1),...,(Xn,Ys) are generated by the model

(2.1) Yi=9(Xi)+e, 1<i<n,

where the function ¢ is smooth except for a known finite number of jump dis-
continuities, and the errors ¢; are independent and identically distributed. In our
theoretical analysis and simulation study, the design points X; will be taken to
be either regularly spaced or ordered values of independent and identically dis-
tributed random variables. In each case, the design is assumed to be on the
interval Z = [0, 1].

Subsection 2.2 suggests and discusses our kernel-based jump-point diagnostic,
and Subsection 2.3 proposes methods that combine it with least-squares fitting.
Theoretical properties of our methods are outlined in Subsection 2.4, and numerical
performance is summarized in Subsection 2.5.

2.2 Diagnostic

We suggest using as a diagnostic a function that is proportional to an esti-
mator of the first derivative of either the regression mean or its product with the
design density. Arguably the simplest quantity of this type is

(2.2) D(z,h) = Dy(x,h) = (nh?)™! Z K'{(z — X;)/h}Y;,

where K is a kernel function and h a bandwidth. It may be interpreted as the first
derivative of the numerator of a Nadaraya-Watson kernel estimator. Alternatively,
one could differentiate the entire estimator, obtaining

iy K{(z - Xi)/h}Y;)
i K{(z - Xi)/h} /-~

(2.3) D(z,h) = Da(z,h) = 8%: <

The diagnostic D; is recommended for equally-spaced design, whereas Dy is prefer-
able for stochastic design, although in first-order asymptotic terms both perform
equally well. In the present context we would argue that it is not a good idea to
use a diagnostic based on local linear smoothing, since that method is relatively
sensitive to the problem of sparse design (see Seifert and Gasser (1996)).

We propose plotting |D(z, k)| as a function of z, for a range of values of A,
and identifying jumps as points z in the vicinity of which |D(x, h)| is consistently
large for a range of values of h. Properties of D are easily translated into explicit
estimators of the positions of jumps, as follows. Here and in some of our later
discussion we shall suppose for the sake of simplicity that there is a single discon-
tinuity of g, occurring at an unknown point zo € (0,1). The case of two or more
jumps will be discussed in Subsection 2.5. Let (—v,v) denote the support of K.
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Given a sequence {7,} which decreases more slowly than n~!logn, let Z(h) de-
note the point which produces a global maximum of |D(-, h)| in an interval slightly
smaller than Z (to avoid edge effects). Put

i_(h)= sup {Z(h1)—2vh1}, Z4(h)= inf {Z(h1)+ 20k},
h1€[h,nn] hi€lh,nn]

for h < 1. Let h denote the infimum of values h such that #_(h) < %4 (h), and
define o = Z(h).

2.3 Enhancement of the diagnostic

The diagnostic may be enhanced in several ways. One is by iteration, as fol-
lows. First use the diagnostic to identify an interval of width 2vh = Op,(n~!logn)
within which z¢ lies with high probability. This interval contains n’ = Op(logn)
data values. Rescale it to an interval of length 1, and apply the diagnostic again,
this time using n’ instead of n. The resulting estimator of zo will have con-
vergence rate n'~!(logn’)'/2 on the new scale, and n~!(logn) x n'~!(logn')'/2 =
O{n~'(log, n)!/2} on the original scale, where the subscript 2 indicates the second
recursion of the logarithm function. A third iteration will produce an estimator
with convergence rate O,{n~*(log; n)!/2}, and so on.

The envelope of these rates, Op(n~!), may be achieved by using the diagnostic
to identify a relatively wide interval in which the discontinuity lies with high
probability, and then applying least-squares to estimate the position of the jump
within the interval, as follows. Let h = cn™* denote a bandwidth, with ¢ > 0 and
0 < a < 1. Let % denote the point at which |D(-, )| is maximized, in an interval
a little shorter than Z (to avoid edge effects). Assuming as before that the kernel
K is supported on (—v, v), pretend that g is a step function on (I3 —2vh, I3 +2vh),
and use least squares to estimate it. That is, we estimate the jump discontinuity
to occur between design points X, and X;,41, where i is chosen to minimize the
sum of squares

(24) Y (Yi-Go-a+)™ DY

i1 <i<ig i1 <j<i0

+ Y (Yi-(e—i)t Y V¢,

t0+1<i<io to+1<5<i2
and {iy,iy +1,...,i2} is the set of integers ¢ such that X; € (Z§ — 2vh, Z§ + 2vh).

2.4 Theoretical results

To simplify matters we analyze the case of a single jump discontinuity, at zo €
(0,1), since that of several peaks differs only in notational complexity. Assume K
has support (—v,v), and put Z, = [vh,1 — vh]|. To be completely explicit in the
definition of %, let the global maximum of |D(-, h)|, which defines Z(h), be taken
over z € T;. We begin by developing theory describing the performance of this
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estimator, and, more generally, the fluctuations of the curves D(-,h) for a range
of sizes of bandwidth.

Next we introduce regularity conditions. Since there is a single peak at zg
then we assume that the regression mean in the model at (2.1) may be expressed as
g(z) = g1(z)+g2(z)I(z > zo), where g; and gz are smooth functions. More specif-
ically, we make the following assumptions: g; and g2 have bounded derivatives on
Z, and g2(zo) # 0; K is compactly supported and has two Holder-continuous
derivatives on Z, K(0) > K(z) > 0 for all z # 0, K'(0) = 0, and K"(0) < 0;
the errors ¢; are independent and identically distributed with zero mean and a
distribution that has finite moment generating function in some neighbourhood
of the origin; and the design points X; are either regularly spaced, in which case
they are taken equal to (i + ¢)/n for a constant ¢ € [—1,0], or they are ordered
(in increasing size) values of independent and identically distributed random vari-
ables whose distribution is supported on Z and has a density that has a bounded
derivative and is bounded away from zero on Z. In the latter case the X;’s are
assumed independent of the errors. Collectively we call these conditions (C;).

To obtain a lower bound to the rate of convergence we ask that the tails of
the error distribution not be too short. Specifically, we assume that there exist
constants A;, Ay > 0 such that P(le;] > u) > exp(—A;u?) for all u > Ay. This
condition is of course satisfied if the errors are Gaussian. We call it (Cy).

Now we describe limit theory for D and Z,. Let B,B;,B; > 0, and as
before, let {n,} denote a sequence of constants decreasing to zero more slowly than
n~llogn. Define p,(B) to be the probability that for each h € [Bn~!logn,n,],
the maximum of |D(z, h)| on Z,, occurs at a point z satisfying |z — zo| < vh; let
¢n(B1, B2) be the probability that the maximum of |D(z, h)| over all (z,h) € Z}, x
[Bin~1logn,n,] occurs when |z — zo| < Byn~!(logn)!/?; let r(B1, Bz) equal the
probability that the maximum of |D(z, h)| over all (z,h) € Z), x [Byn~!logn, ny]
occurs when |z — 29| > Ban~1(logn)'/?; and let s,(B) equal the probability that
|#o — xo| < Bn~1(logn)'/2.

THEOREM 2.1. Assume (C1), and let D be defined by either (2.2) or (2.3).
Then

(a) Blim liminfp,(B) =1, (b) hm lim inf lim inf ¢, (B;, B2) = 1.
—00 N—00

By—00 By—o0o0 n—oo

If in addition (Cg) holds then

(c) lim limsuplimsupr,(B;,B2) =0, (d) Blim liminf s,(B) = 1.

B2—0 B, 50 n—oc

The theorem provides theoretical support for the properties noted in our
simulation study in Subsection 2.5; see for example Fig. 1. In particular, parts
(a) and (c) of the theorem show that the function |D(:, h)| has its peak close to
o, except in the case of bandwidths h of size Cn~!logn for a small constant C,
where erratic fluctuations of stochastic error cause peaks to arise some distance
from zo. Part (b) shows that for large C, the pair (z,h) that maximizes D(,")
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Performance of the diagnostic in the case g = g;, for n = 100 and ¢ = 0.5.

Panel (a) is a scatterplot of a typical data set, and panels (b)—(e) depict plots of | D2(-, h)|

for h = hg = 0.2, h = 0.08, h = h = 0.02188 and h = 0.02, respectively.
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over {(z,h) : x € I, and Cn~'logn < h < n,} is such that the z-component is
within order n~1(logn)!/? of zo with high probability. Part (d) refines this into
an explicit rate-of-convergence result for the estimator £o, under the additional
condition (Cz).

In the case of Gaussian errors the O,(n~!) rate of convergence evidenced by
(d) may be shown to be best possible for this particular estimator, in the sense
that

Bl:r—r}O llrl;li»solip sn(B1) = 0.

For heavy-tailed error distributions, such as Student’s t with d degrees of freedom,
the rate may be shown to be no better than O,(n~1*%), where § > 0 is a decreasing
function of d.

Next we describe performance of the second estimator suggested in Subection
2.3, derived using least squares. For explicitness, use some rule (which may be
arbitrarily chosen) for breaking any ties that might arise in defining i by min-
imizing the series at (2.4), and put &§ = 1(Xi, + Xi,+1)- By way of regularity
conditions, assume as in Subsection 2.3 that h = en™*, wherec > 0and 0 < a < 1.
(Recall that the first step in constructing £ is to find the local maximum, 7, of
the diagnostic |D(-, h)| on Iy, with b = ecn™®. If the error distribution has finite
moment generating function then we may take h = c(n)n~!logn for any sequence
¢(n) — oo such that ¢(n)/n = O(n~?) for some § > 0.) Assume the same condi-
tions on g and the design set {Xi,...,Xn} as in (Cy); let K have two bounded
derivatives and be supported on (—v,v), and satisfy K(0) > K(x) > 0 for all
z # 0; and suppose the errors ¢; are independent and identically distributed with
zero mean and E|e;|? < oo, for some 3 > max{2,1/(1 — a)}. Collectively we call
these conditions (Cs).

Given B > 0, define t,(B) to equal the probability that |#§ — zo| < Bn™".

Our next result shows that &3 converges to zo at rate n='.

THEOREM 2.2. Assume (C3), and let D be defined by either (2.2) or (2.3).
Then
lim liminft,(B) = 1.

B—oo n—oo

An identical conclusion may be reached if r-th degree polynomials are fitted
locally on either side of the jump point, provided that g has at least r+1 derivatives
on either side. There are many other modifications of the algorithm which enjoy
the convergence rate n~!. One of these will be explored in Subsection 2.5.

It is easy to see that the rate n~! is minimax optimal, for either regularly
spaced or stochastic design. The “average” spacings between design points are of
order n~1, and so jump discontinuities cannot be determined with greater accuracy
than this.

As in the case of the estimator Zo, the limiting distribution of the rescaled
estimation error n(Zj — xo) is particularly complex and depends intimately on the
distribution of ;.
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2.5 Numerical performance

We conducted extensive simulations in a variety of settings, leading to the
following conclusions.

(a) In cases where design is regularly spaced, the diagnostics D; and D,
perform virtually identically; but if design is stochastic then D, is preferable,
since it is better calibrated to counteract fluctuations in the density of design
points.

(b) Performance of both Zo and &j deteriorates as the tail weight of the error
distribution increases. The deterioration is less marked in the case of £, however.

(c) If there is a jump discontinuity at zo, if g approaches and departs from
the jump at not too steep an angle, and if g is not particularly steep in other
places in Z, then the method based on fitting step functions performs well, and
the estimator £} is a little better than &, even in small samples. If g(z) approaches
or departs steeply, however, then fitting straight line segments (rather than simply
horizontal lines) on either side of the jump can improve performance significantly
in small to moderate samples. We expect, but have not attempted to verify, that
performance in general settings could be further enhanced by adaptive choice of
the degrees of polynomials fitted on either side of the jump.

(d) If g has several different steep sections, or if it possesses more than one
jump, then difficulty can be experienced keeping track of different local maxima of
| D| as h decreases. A simple algorithm, introduced below, overcomes this problem.

(e) If there are k > 1 jumps and k is known then their positions may be iden-
tified, and then enhanced using local least-squares, as in the case k = 1. If k is not
known, however, then preliminary identification requires selection of a threshold
for the diagnostic, and for that we do not yet have a general recommendation.

We do no more than summarize our numerical work here. In particular, we
report only results in the case of uniform stochastic design, using the diagnostic
D, with biweight kernel K(z) = (1 — z2)? for |z| < 1; employing least-squares
fitting of horizontal lines (the method addressed in Theorem 2.2); using n = 100,
250 or 500 and ¢ = 0.1 or 0.5 (with o the variance of the errors); and considering
three functions, g1 (z) = 422 +I(z > 1), go(z) = cos{87(0.5— z)} — 2 cos{8(0.5—
z)}I(xz > 0.5) and

exp{—2(z — 0.35)} — 1 if z€[0,0.35)
g3(z) =  exp{—2(z — 0.35)} if z€[0.35,0.65)
exp{2(z — 0.65)} + exp(—0.6) — 2 if z € [0.65,1].

Both ¢g; and g2 have a single jump discontinuity of size 1 at zo = %, whereas g3
has two jump discontinuities, both of size 1 and occurring at o = 0.35 and 0.65.
All bias and standard deviation approximations in the tables were computed by
averaging over the results of 200 simulations.

When calculating h, as a prelude to deriving £y, we suggest searching over a
discrete set of bandwidths h; = hop® for i > 0, where hg > 0and 0 < p < 1. We
took p = 0.9, and hg = 0.1 or 0.2, throughout. (More generally, one could take
ho to be an empirical bandwidth selector for smooth parts of the curve.) When
g = g1 and the error distribution was Normal N(0,0.1), choosing hg = 0.2 and
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Table 1. Performance of o and & when g = g1, for Normally distributed errors.

Zo x4
o n
bias x 100 s.d. x 100 % in [0.4,0.6] bias x 100 s.d. x 100 % in [0.4,0.6]
100 0.2 4.0 95 0.1 1.8 100
0.1 250 -0.1 1.1 100 0.0 2.1 99
500 0.0 0.5 100 0.0 0.1 100
100 1.6 9.3 74 0.8 5.9 90
0.5 250 1.0 4.6 94 0.3 1.6 100
500 0.0 1.5 100 0.1 0.6 100

p = 0.9 gave average values (and standard deviations) of h, for sample sizes 100,
250 and 500, equal to 0.024 (0.007), 0.012 (0.003) and 0.007 (0.002), respectively.
To compute £} we took h = 2h in the algorithm for finding 7, the factor 2 arising
from the fact that A is already at the threshold, in a sense, and we wished to be
above that value.

Table 1 lists biases, standard deviations, and the percentage of estimates
in the interval [0.4,0.6], for the estimators £, and Z§, in the case of Normally
distributed errors and for g = g;. The gradient of this function is only 4 at the
jump, and never exceeds 8 on Z = [0,1]. Therefore it is to be expected that both
estimators will perform well. In almost all cases Zj, is a little better than Zo.
Results are similar for Student’s ¢ errors, except that error rates for both methods
increase somewhat, and the superiority of £y over Zo is more evident. In the case
of Student’s ¢ with 3 or 6 degrees of freedom, and with n = 100, 250 or 500, the
increase in root mean squared error for either o or Zj is usually less than three
fold when o = 0.1, but can be six fold (or occasionally more) when o = 0.5.

For the parameter settings used to produce Table 1, Fig. 1 depicts a typical
scatterplot of the data, and graphs of the function |D2(-, k)| for several values
of h. Observe that when h is either too small (meaning that asymptotically,
h = Cn~llogn for small C) or too large (asymptotically, h = C), the plot of
| Da(-, h)| shows large peaks well away from zo.

The function g, presents special difficulties, since as well as having a jump,
the absolute value of its gradient is as large as 87 = 25 in eight distinct places.
As a result, |Da(-, h;)| exhibits many local maxima, and (depending on choice of
bandwidth) the largest of these may represent a steep gradient rather than the
jump. We suggest below a four-step algorithm for overcoming this difficulty. It
monitors all the local maxima of |Dz(:, h;)| in (vhe,1 — vhg), until one or more
clearly provide a dominant improvement over the case i = 0; and it selects the
locations of those as preliminary estimates of the sites of jumps. See Fig. 2. The
algorithm uses the definition of h; given two paragraphs above.

Step 1. Initialization. Let M denote the number of local maxima of
|D2(-, ho)| on (vho,1 — vhe), and let {{o;,1 < j < M} denote the points at which
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Fig. 2. Performance of the diagnostic in the case ¢ = g2, for n = 250 and o = 0.5,
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Table 2. Performance of ¢ and & when g = g2, for Normally distributed errors.

x, ~ %

o To
o n
bias x 100 s.d. x 100 % in [0.4,0.6] bias x 100 s.d. x 100 % in [0.4,0.6]
100 -1.0 14.4 70 -1.4 16.1 60
0.1 250 -0.1 3.8 98 -0.1 4.0 98
500 0.0 0.5 100 0.0 0.1 100
100 -1.5 15.8 64 -2.0 17.4 52
0.5 250 -0.3 7.4 92 -0.4 7.5 92
500 0.0 0.7 100 0.0 0.5 100

they are achieved.

Step 2. [Iteration. Givenaset {£;;,1 < j < M} oflocal maxima of | D2 (-, h;)|
in (vho, 1—vhy), let £;+1,; denote the local maximum of | Da(-, hiy1)| that is nearest

to 5”

Step 3. Termination. Stop the algorithm at iteration ¢ = %, say, where the
number of data values in some interval (z — h;,z + h;) C (vho,1 — vho) first falls
below a predetermined value v. If we seek the locations of k jump points z1, ..., Zk,
we take the preliminary estimates Z, ..., % of these to be those values of &;; for
which |D2(&;;, hi) — D2(&oj, ho)| is one of the k largest.

Step 4. Least squares. Refine these preliminary estimates to Z7,..., &%, by
least-squares fitting of an I-th degree polynomial within (&; — vh;, Z; + vh;) for
1<j<k.

It is straightforward to modify the proof of Theorem 2.2 to show that if v =
enl~@ then, under identical conditions except for the assumption of k¥ > 1 jumps,

i} -z = b(n1) for 1 < j < n. (If the error distribution has finite moment

generating function then v = ¢(n)logn, for ¢(n) — oo such that c¢(n) = O(n®), is
permissible.) In the case of the function g> and Normal errors, Table 2 describes
the result of applying this method with h; = 0.1 0.9}, v = %(log n)2, k = 1 and
I = 0. The estimators (%o, Z3) do well at selecting the correct local maximum,
and significantly better than the estimators (Zo,Z3) (for which results are not
tabulated here). Since the first derivative of g, is so great on either side of the
jump then the least-squares fitting step makes hardly any difference to the result,
although for larger n it gives noticeable improvement.

The case of g3 is similar, as Table 3 illustrates. There, all parameter settings
are as for Table 2, except that now hg = 0.2 and of course g = g3 and k£ = 2. Since
g3 changes relatively slowly near the jumps then the least-squares fitting step does
improve accuracy.
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Table 3. Performance of £o and & when g = g3, for Normally distributed errors.

> 5%

o &5
o n
0.35 0.65 0.35 0.65
bias x 100 s.d. X 100 bias x 100 s.d. x 100 bias x 100 s.d. x 100 bias x 100 s.d. x 100

100 0.3 1.8 -0.8 2.9 0.1 0.7 -0.2 21
0.1 250 0.0 0.9 0.0 0.9 0.0 0.2 0.0 0.3

500 0.0 0.6 0.0 0.5 0.0 0.1 0.0 0.1

100 0.8 4.2 -1.7 4.3 0.2 3.9 -13 4.0
0.5 250 0.1 2.7 -0.9 3.8 0.2 2.7 -0.9 3.6

500 0.1 1.1 -0.2 1.6 0.0 0.8 —-0.2 1.6

3. Technical arguments
The symbols C,Cy,Cs, ... will denote positive constants.

3.1 Proof of Theorem 2.1
For the sake of brevity we give the proof only in the case D = D; (see (2.2)).
The case of D, is similar. Indeed, note that if we define

A;(z,h) = (nh)™? zn:K{(a: - X;)/h}Y; and
i=1

Ag(z,h) = (nh) ™' Y K{(z — X:)/h},
i=1

then Do(x,h) = As(z,h) — Aa(z, h), where

As(z,h) = Dy(z,h)/A2(z,h) and
A4q(z,h) = {0Az(z,h)/Ox}As(z, h)/Ax(z, h).

It may be shown that if h is of size equal to a large constant multiple of n~! logn,
or larger, then with probability tending to 1 as n — 0o, the supremum of |A3(-, k)|
dominates that of |A4(-, h)|. Therefore, the technical argument for deriving prop-
erties of D5 is in effect that for deriving properties of D;.

Step 1. Bias contributions. Let f denote the design density in the case of
stochastic design, and put f = 1 for regularly spaced design. It may be proved by
Taylor expansion and integral approximations to series that for either regularly
spaced or stochastic design,

(3.1) B(z) = E{D(z,h)} = h™" f(z0)g2(z0) K{(z — 0)/h}
+O{(nh®)™' + (R?r%) 1 + 1},

uniformly inz € 7,0 < A <landn > 1.
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Step 2. Stochastic contributions. In the case of regularly spaced design there
is a single stochastic contribution,

= (nh?)~ Z K'{(z — X;)/h}e;.

Then, D = 8 + &. With stochastic design, however, there is also a contribution
from the design, through the term

&a(z) = (nh?) ™! Z[K'{(m — X;)/h}9(X:) - h*B(z)]-

i=1
In this setting, D = 8+ & + &.
Step 2(i). Approzimation to the process &;. If the errors are not Normally
distributed, we approximate to £; using partial sums constructed in the Hungarian
fashion. Define S; = )., €;, and let 0? denote the variance of ¢;. There exists

a standard Brownian motion W, and positive constants ¢;, ¢2 and c¢3, depending
only the error distribution, such that, with

A= e |S; — e W (3|,

we have for j =1,
(3.2) P(Aj > ¢y logn + z) < coexp(—caz)

for all z > 0. See for example Shorack and Wellner ((1986), p. 66 ff.). Putting
w; = W) - W( — 1),
(3.3) ba(z) = |K'{(z — Xi)/h} — K'{(z — Xi-1)/h}|
< (5,_2(27) C1h™ (X,' — Xi-l)
AI(lz = Xi1| < Coh) + I(|z - X;i| < Coh)}

(where C; and C; are constants depending only on K, and X, = 0), and
&(x) = (nh?) ™' Y K'{(z — X)/h}Yows,
i=1

we have

(3.4) nh?|&1(z) — &3(x)| — K(z/h)Ar < 24, z bi1(z) <244 251‘2(23)

1=1 i=1

We bound the right-hand side using somewhat different arguments in the cases
of regularly spaced and stochastic design, respectively, and treat only the latter
here. There, first define &£ (C) to be the event

{ZI(IZE — X;| < Cyh) > Cnh for some z € Z or h € [n"!logn, 1]} .

i=1
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Use Bernstein’s inequality, and an approximation to £;(C) on a lattice of pairs
(z,h), of fineness O(n~F) for fixed but arbitrarily large k¥ > 0, to show that if
C3 > 0 is given then Cy > 0 may be chosen so large that P{&(Cy)} < n=%s for
all sufficiently large n. Let F denote the distribution function corresponding to
density f. If the complement of £,(Cjy) holds then

n 12
hz&'z(w) < 2Cimax”* Z(Xi — X;—1) < 2Ci(sup fHmax* (Ui, — Ui, 1),

i=1 =11

where max* denotes the maximum over integer pairs (i1,i2) such that 1 < 4; <
iy < n and iy — i1 + 1 < Cynh, and where U; = F(X;) are the order statistics
of a Uniform random sample on the interval Z. Let £(C) denote the event that
Ui, — U;,_1 > Ch for some pair (i1,%2) such that 1 < i; < i3 < n and iy —
i1 + 1 < Cynh, and some h € [n~!logn,1]. It may be proved from the “other
Hungarian construction” (see Theorem 3, p. 495 of Shorack and Wellner (1986))
that Cs > 0 may be chosen so large that P{£2(Cs)} < n~% for all sufficiently
large n. Combining the results in this paragraph we deduce that if C3 > 0 is given
then Cg may be chosen so large that

(35) P {E 6i2(z) < Cg forallz € 7 and all h € [n" " logn, 1]} >1-n"0

i=1

for all sufficiently large n.
From (3.2)-(3.5) we deduce that in the cases of regularly spaced and stochastic
design, given C3 > 0 there exists C7 > 0 such that for j =1,

(3.6)  P{|&(z) — &a(2)| < Cs(nh*) tlogn forallz €T
and all h € [n"llogn,1]} >1—n~%

for all sufficiently large n.

Step 2(ii). Approzimation to the process £;. Here the design is assumed to
be stochastic. The “other Hungarian construction” (Shorack and Wellner (1986),
p. 495) may be employed to show that there exists a standard Brownian Bridge B
such that, defining

£a(z) = n~1/2h2 / B{F(z - h2)}d{K'(2)g(z — h2)},

(3.6) holds for j = 2 and some C7 = C7(C3) > 0.

Step 2(iii). Upper bounds for the processes & and &. Fernique’s lemma
(Marcus (1970)) may be employed to prove that for each given C3 > 0 there
exists Cg > 0 so large that for j = 3 and 4,

(3.7) P[l¢;(z)| < Cs{(nh3)™" logn}/2 forallz €T
and all h € [n"'logn, 1]} > 1 —n~%5.
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In view of (3.6), which holds for j =1 and 2, (3.7) is also valid for j =1 and 2.

Step 3. Upper bound to convergence rate. We may write D = 3 + &5, where
&5 = & if design is regularly spaced, and &5 = &; + & in the case of stochastic
design.  Furthermore, from (3.1) we have 8 = f; + B2, where Bi(z) =
h=! f(20)g2(z0) K{(z — x0)/h} and

(3.8) sup |B2(z)| < Co(6){(nh?) ™! + 1}

€L

for all h € [n71,1]. In view of (3.7) and (3.8), for each C3,n > 0 and § €
(0, min(zg, 1 — z0)) there exists C1¢ > 0 such that for all sufficiently large n,

P{|¢5(z)| < nph~ ! forall z € T and all h € [Cygn"tlogn,1]} > 1 —n",
sup |Bz(z)| < nh~! for all h € [n"1logn,1].

z€l,

Together these results imply that if ,, denotes any sequence of positive numbers
decreasing to zero more slowly than n~!logn, if » > 0, and if the support of K is
contained within (—v,v), then

(3.9) hm lim inf P{ sup |D(z,h)| > sup |D(z, h)| for all
—00 Moo fx—zo|<vh TE€ZLh,|z—x0|>Vh
h € [Cn~!logn,n,); and the maximum of |D(z, h)|
over all z € T, and all h € [Cn~!logn,n,]
occurs at a pair (z, h) satisfying |z — 0| < vh and

he[Cntlogn,C(1 + n)n~t logn]} =

Part (a) of the theorem follows. Result (3.9) also implies that if & is as suggested
in the definition of Zg then

(3.10) hm inf liminf P(h < Cn"'logn) = 1.

C—o00 n—oo

In view of (3.9), if h; = Cn~!logn and C is large then with high probability
the value of z that maximizes |D(z, k)| over z € Z, and h € [Cn~llogn,n,] is
within vh; = O(n"!logn) of zo. In the next step we show that it actually occurs
within O{n~!(logn)'/2} of z.

Step 4. Refined upper bound to convergence rate. Our argument is by Taylor
expansion. Let a@ = (z — z¢)/h, where we shall assume that |a| < v and h €
= [C11n~!logn, Cion~1logn] for positive constants Cy; < Cjz. Observe that
Bi(z) = h™1f(zo)g2(z0){K(0) — 3a?K"(0) + o2p(c)}, where the function p is
bounded in |a| < v, and satisfies p(a) — 0 as a — 0. Also, &5(z) = &5(zo) +aR(z),
where R(z) = &4(zo + af) for some 0 < 8 < 1, and R(z) = O,{(nh3)~1/?}



CHANGE POINT ESTIMATION 247

uniformly in |z — z¢| < vh and h € H. It follows that, uniformly in |a| < v and
heH,

D(z,h) = h™" f(z0)g2(z0) {K(O) - %Q2K"(0) + a2p(a)} + Op{la](nh3)—1/2}'

Hence, the pair (Z, k) that maximizes |D(x, h)| over (—v,v) x H has the property
that o = a(Z) = Op{(logn)~1/2}. Hence, T — 7o = ha = Op{n~'(logn)/?}.
Equivalently,

(3.11) hmmf liminf P{|Z — zo| < C13n~!(logn)'/2} = 1.

C13—00 n—00
Results (3.9) and (3.11) together imply part (b) of the theorem.

Step 5. Lower bound. Let Z(h) denote the value of z that maximizes
|D(-, k)| on Z,. We shall prove that under condition (Cs),

(3.12) hm hm mf hm 1nf P{|#o(Cn~'logn) — zg| > C14} = 1.

14‘—>

This implies that

(3.13) lim liminf P(A > Cn~llogn) = 1.

C—0 n—oo

Parts (c) and (d) of the theorem follow from (3.9) and (3.11). In the case of part
(d) we need to show that with high probability, h in the definition of Z¢ lies in the
interval ‘H defined in Step 4, for small C; and large C,. That this is indeed true
follows from (3.10) and (3.13).

For the sake of simplicity we shall treat only the case of regularly spaced de-
sign. If Y3,...,Y,, are independent random variables and P(Y; > y) > exp(—(1y?)
for all ¢ and all y > (2 > 0, then if y > m1/2(,,

(3.14) P( ‘1/2ZY > y) > HP(Y >m~2y) > exp(~G1y?).

i=1

For each = € I, the quantity nh?¢5(z) equals a weighted sum of approximately
2vnh independent values of ¢;, the weights being of course derived from K. From
this result and (3.14) (implied in the present context by (Cs)) it follows that if
h = Cn~'logn then for each (3 > 0 and some {4 > 0 not depending on (3,

1€n} P{|nh?¢5(x)| > (3(nhlogn)1/2} > exp(—{%@ logn)

for all sufficiently large n. Hence, since the variables &5(2jvh), 7 > 1, are indepen-
dent, then, writing j; and j for the integer parts of {§/(2vh)}+1 and (1—6)/(2vh)
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respectively,

P [sup 165(@)] < Ga{(nh®) " logm} /2

x€I}

< H P[lgs(2jvh)| < Ca{(nh®) logn}'/?]
Jj=j1
J2
< H {1 - exp(—(3¢slogn)} < (1 - n ¢3¢y {(1-26)/(2vh)} -2
J=h

For large n the right-hand side is dominated by (1 — n—Ci¢s)Crzn/logn where Cyq

is any constant strictly less than (1 —26)/(2vC). Therefore, if (3 is chosen so small
that (3¢4 < 1,and h = Cn~llogn, then for all C > 0,

(3.15) P [sup €s(2)] > Co{(nh%) " logn} 2| 1
€Ty

as n — 0o.
A minor modification of the argument leading to (3.15) shows that for any
sufficiently small ¢z > 0, and for h = Cn~!logn and all C > 0,

(3.16) lim hmmfP[ sup [&5(z)| > ¢a{(nh®) " logn}'/%, and the

{s—0 n—oo €Ty

supremum occurs at a point = such that |z — zo| > (5| =1

for each C > 0. The desired result (3.12) follows from (3.1) and (3.16).
3.2  Proof of Theorem 2.2
Again, we confine attention to the case where the diagnostic D is the function

D, defined at (2.2).

Step (i). Performance of diagnostic. We outline a proof of the following
analogue of (3.9) for the single bandwidth h = cn™* used here:

(3.17) P{ sup |D(z,h)| > sup |D(x,h)|} -1

|z—zo|<vh €Ty, |lz—xz0|>Vvh
This result implies that
(3.18) P(|Z§ — zo| < vh) — L.

Result (3.1) continues to hold under the present weaker conditions on K, since
it does not require a second derivative. Under the condition Ele;|® < oo, rather
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than existence of a finite moment generating function, the embedding result (3.2)
in the case 7 = 1 should be weakened to
_ N = (1/8)+n
max |8i = oW (i)| = Op(n/P*7)

for each n > 0. See for example Shorack and Wellner ((1986), pp. 60-61). This
leads to the following weaker version of (3.6) (for j = 1):

(3.19) sup [€1(z) — &3(z)] = Op(nt/AI+1=1p=2),
zel

In the case j = 2, (3.6) holds without change; and (3.7) is valid for j =1 and 2,
without alteration. (We define &;,...,& as in the proof of Theorem 2.1.) When
j = 2 we obtain from (3.6) and (3.7) that

sup [€2(z)| = Op[{(nh®) " logn}!/2 + (nh?)~" lognl;
el

and by (3.7) in the case j = 1, and (3.19), we have

sup [61(z)| = Op{n/P*771h~" + (nh?) " log n}.
x€

Combining the last two displayed formulae, and assuming that 8 > 1/(1 — ), we
see that for j = 1 and 2, and hence for j = 5, 7 > 0 may be chosen so small that
the result

sup |€;(z)| = op(h™")

xel

obtains. The claimed formula (3.17) follows from this and (3.1).

Step (ii). Performance of least squares. Let U denote the set of all pairs
(u1,uz) such that u; € [xo — 3vh,zo — vh] and up € [0 + vh,zo + 3vh], and let
#8(uy,u2) denote the version of 2j defined by minimizing the sum of squares at
(2.4) when {i1,i1 + 1,...,12} is redefined to equal the set of integers i such that
X; € [u1,ug). In view of (3.18), the proof of the theorem will be complete if we
show that

(3.20) lim limian{ sup |25(u1,uz) — zo| < Bn_l} =1.

B—oo n—oo (U1,U2)€u

The proof will be given only in outline.
It is straightforward to show that for each n > 0,

P sup |&g(u1,u2) —xo| <mp — 1.
(u1,u2)€U

Therefore, in establishing (3.20) it suffices to confine attention to the case where
the series at (2.4) is minimized over integers i that satisfy |F(io/n) — Zo| < 7
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for a sequence 7, converging to zero arbitrarily slowly (certainly more slowly than
h), where F is the distribution function of the design density. (We take F(u) = u
if the design is regularly spaced.)

Given (uy,u2) € U, let 41,43 + 1,...,i2 be the set of indices ¢ such that
X; € [ur,ug], let Jo = {io : |F(io/n) — zo| < npn}, and let J = J(u1,usz) denote
the set of triples (ig,%,42) arising in this way, with 47 < g < i5. We estimate the
change point in the data set (X;,,Y;,),...,(X;,,Y:,) by minimizing over iy € Jo
the sum of squares,

S(io) =Y (G =¥’ + ) (¥; - Ta)%,

where »; and ), denote summation over indices j with i; < j < 49 and iy +
1 < j < iy, respectively, and where Y1 = (ip —i; + 1)~! Y., Y; and Yy = (ip —
i0)"1 >, Y, with 43 < ip < ip. We estimate the changepoint to occur at %(X;O +
Xio+1) if S(i0) < S(éo) for all i3 < ig < i3. (Ties for the definition of 3y may be
broken in an arbitrary manner.)

Suppose the changepoint zg really lies between X, and X;,,+1. With prob-
ability tending to 1, iy < igp < 42 uniformly in all triples (ig,%1,%2) € J(u1,us)
and all (uy,us) € U, and so we may suppose without loss of generality that this
inequality holds. Let >, and > ,, denote summation over integers j satisfy-
ing 43 < j < 190 and g0 + 1 < j < i, respectively, and put m = iy — igg,
A= ZI}IJ - ZOI Yj, 61 = m/(io() -~ +1), 6 = m/(lg — i()o), A = (’io() —i1 +
1)713 0 Y and Ay = (i2 —i00) "' D_g; ¥j. We may prove that in this notation,
S(ioo) - S(Zo) =T+ U, where T = (A1 - A2){2A - m(A1 + Az)} and

U= —20{A;(6: =82+ 68— )+ Ax(b2+ 62+ 63+ --)}
+ A% {(igo— i1 + 1)1 -6+ 68 —--1)
+ (g —d00) M (L + 62+ 83 + - )}
+ (oo — i1 + 1)(67 — 63 + - ) AT + (i2 — i00) (65 + &5 + - -) A3

Given any large constant C5 > 1, and a statistic W such as |U/m/, let sup* W
denote the supremum of W over all triples (g, 1,12) € J(u1,us2), all (uy,us) € Y
and all integers m with 1 < |m| < Cisnn,. Let supf, denote the same supremum
when the range of m'’s is restricted to C < |{m| < Cisnn,, for some C > 1. Put
a; = g(zo—) and a2 = g(zo+), and let X = {Xi,...,X,} denote the set of
design points. It may be proved that for each ¢ > 0, the conditional probabilities
P(sup* |(U/m| > ¢ | X), P(|A1—a1] > ¢ | X) and P(|Az—a3| > ¢ | X) all converge
to zero in probability. Hence, the unconditional probabilities converge to zero as
well. Therefore, defining V' = (a; — a2){2A — m(a; + a2)}, we have

P(sup®|[{S(ioo) — S(é0)} — V]/m| > (| X) — 1
in probability. Furthermore, for each { > 0,

lim liminf P{suptm™'V < —(a; — a2)®+ ¢} = L.

C—00 n—o0
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Combining the last two displayed formulae we see that for all { > 0,

lim liminf Plsuptm ™ {S(ioo) — S(i0)} < —(a1 —az)? +¢] = 1.

C—o0 n—oo

Hence, the probability 7,(C) that the minimum of S(ig) over (ig,i1,i2) €
J(u1,u2), (u1,u2) € U and integers m with |m| < Ci5nn,, occurs with |m| =
lio — 00| < C, satisfies

(3.21) lim liminf7,(C) = 1.

C—00 n—00

Formula (3.20), in the modified form suggested in the paragraph below that result,
follows from (3.21).
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