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Abstract. In this paper, the second order expansions for the first two mo-
ments of the minimum point of an unbalanced two-sided normal random walk
are obtained when the drift parameters approach zero. The basic technique is
the uniform strong renewal theorem in the exponential family. The compari-
son with numerical values shows that the approximations are very accurate. It
is shown, particularly, that the first moment is significantly different from its
continuous Brownian motion analog while the second moments are the same
in the first order. The results can be used to study properties of the maximum
likelihood estimator for the change point.
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1. Introduction

Let {Z;} be independent and identically distributed normal variables with
variance 1 and mean 6y < 0 for ¢ < 0 and § > 0 for ¢ > 0. We define the following
two-sided normal random walk:

/' n
ZZi for n>0
=1

anJO for n=0

-1
—ZZi for n<0
i=n

\

and denote the minimum point vy of W, as

Wy = min W,.

—oo<n<oo
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The behavior of vy is of particular interest in the change point problem as it can be
considered as the maximum likelihood estimator of the change point in the large
sample case (Hinkley (1971) and Siegmund (1988)).

The goal of this paper is to give second order expansions for the first two
moments of vy when the drift parameters 6 and 6 approach zero at the same
order. These results can be used to study the bias and variance of the maximum
likelihood estimator for the change point. The strong renewal theorem will be used
extensively in our discussion. It is shown in particular that the first moment of vy
is fundamentally different from its continuous Brownian motion analog although
the second moments are the same in the symmetric case.

For the convenience of presentation, the following standard notation will be
used. Denote

mo= inf W,=- sup (-W,)=-My; and my=_inf W,
—oo<n<0 —00<n<0 0<n<oo
and
m}, = min(0,mg), Mg = max(0, Mo and m} = min(0,m,).
0 0 1

Further, we denote by v, the minimum point of S, = W, forn > 0, i.e. W,, = my,
and

T =inf{n >0:5, <z}, for <0
7, =inf{n >0:8, >z}, for z>0;
r—=inf{n >0:8,<0}, and 74 =inf{n>0:S5, >0}

We also denote by R, = Sr, —z the overshoot at the crossing time at the boundary
z, and Roo = limg_.o(Sy, — 7). Finally, for notational convenience, we denote by
Py(-) the probability measure associated with the random walk {S,} for n > 0,
and P(-) the probability measure associated with {W,} for —oo < n < oo when
there is no confusion.

The rest of the paper is organized as follows. In Section 2, we first give
some preliminary results related to strong renewal theorem about the crossing
time 7, the overshoot R, and their covariance. The second order expansions for
Evg, E|vg| and Evd will be given in Sections 3 and 4. Continuous analog in the
continuous Brownian motion case is given in Section 5 along with some numerical
comparisons. The results show that E|vp|’s are significantly different while Evd's
are the same in the first order.

2. Some preliminary results from renewal theory
Under the assumption of strong nonlattice, i.e.

lim sup |Egexp(itZ;)| <1,

[¢]—o00

Stone (1965) showed that the convergence rate for the renewal function is expo-
nentially fast. Siegmund (1979) further showed that in the exponential family, the
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result holds uniformly in a neighborhood of 0 if the baseline distribution function
is strong nonlattice. This covers our case since the carrier distribution function
has a continuous component.

The first result gives the convergence rate for the distribution function of the
overshoot R, given by Theorem 2.2 of Chang (1992).

THEOREM 1. There exist positive 8*, v and C such that
|Po(Rs < y) — Po(Reo < y)] < Ce™7("H¥),
uniformly for 6 € [0,6*] and z,y > 0.

The second result gives the convergence rate for the boundary crossing prob-
ability Py(7-, < 00) which can be proved by using Wald’s likelihood ratio identity
and Theorem 1. Related results are given by Carlsson (1983) and Klass (1983).

THEOREM 2. There exist 68* > 0 and positive constants C and r such that
uniformly for 6 € [0, 6*],

|Po(T_p < 00)/e 2% Epe=20R> _ 1| < Ce™ ™.

The third result is a modified version of Theorem 3.1 of Chang (1992) which
generalizes a result of Lai and Siegmund (1979) about the limit of the covariance
between the crossing time and the overshoot.

THEOREM 3. There exist positive 0*, v and C such that uniformly for 8 €
[0, 6],

6 Covo(rs, Ry) — / (EoRa — EgRoy) Py(7_y = o0)da| < Ce==.
0

Related second order expansion can be seen in Alsmeyer (1988). In the next
two sections, we shall use these results to derive the second order expansions for
the first and second order moments for vg.

3. Second order expansion of E(1vg) and E|vp|

We first write
E(v) = Elvo;vo < 0] + Evo; v > 0]
= Elvo;me < mi] + Elvg; my < my).

As the two terms on the right hand side have similar structures, we shall only give
the detailed derivation for Efvg;m; < mg]. From the strong Markov property of
Sp =311 Z; for n > 0, we can write

(3.1) Elvg;my < mg) = E[vg; Ty, < 00

= E[Tm}; Tmy, < 00] + E[12] P(Try < 00),



190 YANHONG WU

where we assume that 79 = 7_ when mg = 0 as in the following discussion.
We first give some expansions related to the ladder time 7_.

LEMMA 4. For0< 6 — 0,
Pa(r— = 00) = V20e7% (1 + O(6%)),

2
Eglr_;7- < o0] = 7129-6_9” (1 - % + 0(93)> ,

where p = EyRy, =~ 0.583.

The result can be proved by using (10.26) of Siegmund (1985) or Theorem 4.2
of Chang (1992) combined with Wald’s likelihood ratio identity.

Next three lemmas give the second order expansions for the three terms in
(3.1) respectively.

LEMMA 5. As0< 8 —0,

Eglr_;7_<oo] 1 1

Eo(v2) = —p oy ~ 202 1

+0(8).

PROOF. We only have to note that vy is a geometric sum of iid random
variables with the same distribution as [r_;7_ < oo] and stopping probability
Pg (T _ = OO)

LEMMA 6. As8,]0p| — O at the same order,
fo

P(Tma < o0) = ——m + 06 + 0(98).

ProOOF. We first write

(3.2) P (T < 00)
= Py(1- < 00) Py, (T4 = 0) + P(T_p, < 00; Mg > 0).

The first term of (3.2) can be evaluated by using Lemma 4 and the symmetric
property of the normal distribution. For the second term, by using Theorem 2
and (10.6) of Siegmund (1985), it can be shown that as ¢ — 00, 0 < 8 — 0,

(3:3) Py(r—q < 00) = € 20 (1 4 0(6%) + O(e ™).
By using (3.3), we can write
(34) — P(7-m, < 00, Mo > 0)

=/ Py(1_z < 00)d Py, (17 < 00)
0
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o0
:/ e~ 20(z+p) Jo200(z+p)
0
o0

+ / (Py(T_y < 00) — e~ 20@+P))je200(z+p)
Ooo

+/ 6—20(I+P)d(Pao (T:z; < OO) _ e290(a:+p))
000

+ [ (Pa(rs < 00) = PP (7, < 00) - 2009,
0

The first term of (3.4) can be obtained by routine calculation. For the fourth term,
by using the Wald’s likelihood ratio identity and the symmetric property of the
normal random walk, we have

Py(1—yz < 00) — e~ 20(z+p) — 6—29(m+p)(Eee—20(Rz—p) —1)
= —20Ey(R; — p) + 0(6),

as § — 0. From Theorem 1, we have
IE@Rm - EgRool < Ce™ ™,

for some C,r > 0 uniformly for 6 € [0,6*) for some 6* > 0. This implies that
Eo(R; — p) is integrable as EgRs = p. On the other hand, from the Appendix
we can show

d
(35) o (Pay(mz < 00) — €)= 260(EoRo fr. (0) — 1) + o(60)
d
= 290£E0R$ + 0(00),

where fr_(y) is the density function of R;. Thus, the fourth term of (3.4) equals
to

— 466, / Eo(Ry — p)dEg(R, — p) + 0(62)
= 2000(EoRo — p)? + 0(62)
1 2
= 266, (% - p) + o(62),

since E()R() = 1/\/5
Similarly, the second term of (3.4) is equal to

*-4090/ Eo d.Z‘ + 0(90)
The third term of (3.4) can be rewritten by integration by part as

oo
—6_29p(P90(T+ < 00) — 629‘”’) — / (Poy (1 < 00) — 6290(””))(16_20(“"“’).
0
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The second term on the right hand side of the above equation is approximately
equal to

00
4900/ EQ(R:,; - p)d:v + 0(92),
0

which is canceled with the second term of (3.4). The proof is completed by com-
bining the above results and some simplifications.

LEMMA 7. As |6y and 8 — O at the same order,

6o )

~586 - a5 20 T

E[Tmf,;'rm() < oo =
PROOF. Since the proof is similar to that of Lemma 6, we only give the main

steps. Write

(3.6) E[Tm6,7m6 < o0]
= Eg[r_;7_ < 00| Py, (T4 = 00)

—/ Eg(T_3;7-5 < 00)dPpy (15 < 00).
0

The first term of (3.6) can be evaluated by using Lemma 4. By using Theorem 2
and Wald’s likelihood ratio identity again, we can write the second term of (3.6)
as

o0
(3.7) / Eolr—a; s < 00]dPay (75 < 00)
0 o0
= / E_glr_ge ®@+HR)|dPy(r, < 00)
000
= / E_g(T_z)e—29(z+p)de2oo(x+p)
0 o0
+ / E_a(T_z)€_29(2+p)d(Pgo(Tx < 00) — e”‘)(““’))
0
N /oo E_O[T_z (6_29(R1 -p) _ 1)6—20(z+p)]de200(z+p)
OOO
+ / E_g[r_o(e”20(B==P) _1)]
0
- e~ 20 g( Py, (15 < 00) — e200(=+P)y,

The first term of (3.7) is equal to

26y

2 e—2(8-60)p /oo(x + Eng)e_z(e_o")zdx
0

_ 290 —2(0“00)9 1 p /OO
— 9 € 4(0 _ 90)2 + 2(9 — 00) + o (E()Rl- — p)d],‘+ o(]_) N
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By using (3.5), the second term of (3.7) is equal to

2%

7 /Ooo(x + EoR;)d(Eo(Ry — p)) + 0(1)

_ 2% (_ /OOQ(EOR:c ~p)dz 2 (% - pz) + 0(1)> .

For the third term of (3.7), we first note from Theorems 1 and 3 that as § — 0 by
the dominated convergence theorem,

8 Covo(re; Ry) = 20 /0 " (¢ + BoRu)(BoRs — BoRuo)dz + o(8) + 0(e=™).
Thus, as § — 0, the third term of (3.7) is equals to
466, /0 " By (ra(Ba — p))E-20-00)40) gy 1 5(62)
= 4606, [/Ooo Cove(Tz,Tz)e_2(9-00)(z+/’)dx
+ [ B BB, — e s 1 o)

= 0(0).

Similarly, one can prove that the fourth term of (3.7) is O(6?). The proof is
completed by combining the above approximations.

Combining the results of Lemmas 4 and 5-7, we get
THEOREM 8. As |6y| and 6 approach zero at the same order,

62 -62 10+6,

Elwl = -5gg + 15=%,

+ o(1).

In particular, if 6 = —6y — 0,

3 1
Ell/()l = &W - Z + 0(1)

4. Second order expansion for E(12)

In this section, we further explore the techniques used in the last section
and derive the second order expansion for E(13). As the techniques are basically
the same, we only provide the details in the balanced case by assuming that
6 = —60y = 6/2 — 0. For notational convenience, we shall drop the subscript for
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the parameter when there is no confusion. Same notations will be used. First,
from the strong Markov property of W,,, we have

E[] = E[V3;v0 < 0] + E[1g; v0 > 0]
=2E[v3;mo < m})
= 2E[(Tm{) + V2)2§Tm6 < o0]
= 2[E[T72n:];7'm6 < 00] + 2E [Ty V2; Ty, < 00] + E[l/%;'rm:J < 00]]
= 2[E[T,,2na; Ty, < 0] + 2E[V2] E[Tmy; Ty, < 00] + EV3)P(Tymy, < 00)].
Therefore, there are five terms to be evaluated separately. Approximations for
E(vy), P(Tmy < 00) and E[Tp;Tmy < oo] have been given in Section 3. The

expansions for the other two terms will be given after three lemmas. The first
lemma comes from Chow et al. (1965) and Theorems 5.2 and 5.3 of Gut (1988).

LEMMA 9. For any stopping time N adapted to S, such that EN? < oo,

EN? = 545 %ESN +8E(NSy) — ES%| .

The second lemma is given in Lemma 10.27 of Siegmund (1985) and further

extended in Theorem 4.3 of Chang (1992).

LEMMA 10. As 6 — 0,

6 1 P
§E6[T+ST+] — §E053+ =5

BoS,, = e/ + 0(8"),

where p = 0.583.

LEMMA 11.

4v2 6 1
2, — (6/2)p _ ht
Ey[m2;7- < o0] 53 € (1 \/5) (0] (6) .

PrOOF. From Wald’s likelihood ratio identity and symmetry, we have
E[r?;7_ < oo = E[r}e™*%+] = E[r}] - 6E[1}5.,]+ O (%)
2 2 2 1
= E[r{] — 6E(1{)ES., — 6Cov(r},S-,) +O (5>

1
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as the covariance between 5., and 7',,2_ is of smaller order. From Lemma 9, we have

4
62
4121 /20 2

— 5[5 5(e + o6 + olt)| -

6v2
Bin. <ol = 22000 (1 2) 4o (1).

This completes the proof.

E[r2] = [ $ES:, + SE(14.S:,) — ES,2.+]

45@[6(6/2)'7 + 0(8)].

Thus,

By using the same argument as in the proof for Lemma 5, we have

LEMMA 12.
Ep[r2;7_ < 0] Eglr_;7_ < 0]\ ?
2 9 ’
Eolv] = Py(1— = 00) + ( Py(1- = 00)
8 8 _s(1/v3— 1

LEMMA 13. Asf — 0,
3 1
Eg[T /,Tm0<00] 1604+O<5_2>

ProoOF. We first write
E[T,i,  Tmy, < 00]

= E[r2;7_ < 00]P(1_ = o0) — /000 E[r2 ;75 < 00]dP(T_5 < 0).

The first term can be shown at the order 0(315). By using (3.2) and Wald’s
likelihood ratio identity again, we can write the second term as

oo
(4.1) / E[Tﬁe"”fr]dP(T_z < 00)
0
= /Oo E[Tg]e_s(x+p)d6_6(z+p)
0

+/ E(Ta?)e"s(“"")d(P(‘r_ac < 00) — e_‘s(“”"’))

0
o0

+ / Ejr2(e~5Rer) _ 1)]g-5(+0) go=b(=+0)

0

+ / E[r}(eR==r) _ 1)]e "0+ d(P(r_, < 00) — e78(=+0)),
0



196 YANHONG WU

We only give the detailed evaluation for the first term of (4.1) and the other three
terms can be shown of lower orders by using the same technique as in the proofs
for Lemmas 6 and 7. From Lemma 9, we have

4T 2
= 3‘.15 22 + 22ER, + (ER;)? + %(m + ERg) + 6 cov(tz, Rg) — Var(Rz)]
=5 -x +2zp + 6($+P)+"':l )

where the neglected terms are of lower orders. Substituting the above expansion
into the first term of (4.1), we get

/oo E[Tf]e_é(””)de"s(””)
0

4 bt 2
= —56‘25”/ [I2 +2zp+ 5(:5 +p)+-- ] e 2% dr
0

(2 2 201 )
3¢ ((25)3*(25)2%((25)2*252 +
3 1

50 ()

which completes the proof.

Combining the results of Lemmas 5-7 and 12-13, we get

THEOREM 14. As é§ — 0,

26 2 1
2y _
E(VO)— ﬁ._6_3+0(5_2> .
5. Continuous analog and numerical comparison

In this section, the notations may be different from the last two sections.
Denote vy as the maximum point of the unbalanced two-sided Brownian motion

Wit ii<o) + Watdji>0)
where Wi; has drift 8y and Wy, has drift —8. Write

M = ma.xOWu; and M’ = max Wa,.

—oo<t< 0<t<oo

Then,
E[vo) = E[vo; M' > M) + E[vo; M > M').
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As the two terms on the right hand side has the same structure, only the first term
will be evaluated.
Define
Ty = inf{t > 0: Wy > z}.

By using the strong Markov property of Wy, it follows that
Elvg; M' > M| = E[rp; i < 00] + E[vo] P(Tpy < 00),

where v, is the maximum point of Woy;.
First, by noting that Py(1, < 00) = e~2%% and Py,(M > 1) = e%%% we get
bo
6—06y

P (7‘ M < OO) = —
Second, we note that

Py(vy >t) =Py (ma,x Wy < ,max W2t>

0<s<t

=PF <Orgg§t(313 +6s) < Og.lsixoo(st - 95)) )

where By, and By, are two independent standard Brownian motions.
Since

Py ( max (Bgs — 618) > z) = ¢ %=
0<s<oo
and

Py (Olilgi(t(Bu +0s) > a;) =1-¢ (—% - 0\/2) + 2@ (—% - 0\/2‘) ,

which is the inverse Gaussian distribution. A straightforward calculation gives
Eglva] = 1.5/(26)%.

Finally, by using Wald’s likelihood ratio identity, we get

E[tam; i < 00| = EO[TM€_29W27M]

M
_ —20Mm M
=F [e 7 ]
- 20(60 — 6p)2"

Combining the above results, we get the expression for E[vy; M’ > M]. E[vg; M >
M'] can be evaluated similarly. The result is summarized as follows:

THEOREM 15.

—-3(6% + 63) N 6 + 6o

Elvol = 5205 —09) * 280606 = 8)
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In particular, if @ = —6y,
1
Ely| = —.
ol = 2

One can see that even at the first order the continuous analog gives totally
different result from the discrete case. However, the second moment in the discrete
time case is the same at the first order as the exact result in the continuous time
case which is 2¢ (Ibragimov and Khasminskii (1981)).

To show the accuracy of the second order expansion given in the discrete time
case, Table 1 gives some numerical comparison among the second order expansion,
the continuous analog and the numerical values provided by Hinkley (1971). One
can see that the second order approximation is generally good.

Acknowledgement

The author is grateful to the referees’ comments which corrected some tech-
nical errors and the Editor’s suggestion which improved the presentation.

Appendix

PROOF OF (3.5). We first write

d d o
%(POO(TI < oo) _ 6200(x+p)) — E(e2eo(x+p)(E_ooe200(Rz P) 1))

— 2906200(14—10) (E_goezao(Rz—P) -1)

d
+ 20007 ——E_g e =,

Conditional on {R, < Az} or {R, > Az}, we have

E_gye*tofetaz — B g (e20Rataz. R > Ag] 4+ E_g [e200R=+a2; R, < Azx]
= E_g,[e¥0(R==82). R > Az] + E_g,[e?°Rias-ra); R, < Azx]
= E_g,[e?%R=; R, > Az] — 200AzE_g, [e?F=]
+ E_90620°R°P_90 (R; < Az) + o(Ax)

where R is the overshoot at the boundary x for another independent copy of
{S.}. Similarly, we can write

E_g,e*®F= = E_g [e?R=; R, > Az] + E_g,[e*%F=; R, < Az]
= E_g,[e*®F=; R, > Az] + P_g, (R < Az) + o(Ax).

We thus have

d
%E—GOGW%RI = _200E_006200Rz + fo (0) (E_00€200R0 _ 1)7
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where fg_(y) is the density function of R;. As 6y — 0, we have

d
EE—GOGM’R’ = 200((EoRo) fr.(0) — 1) + o(6o)

d
= 290d—on(Rg; - p) + 0(90).
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