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Abstract. Poisson mixtures are usually used to describe overdispersed data.
Finite Poisson mixtures are used in many practical situations where often it is
of interest to determine the number of components in the mixture. Identifying
how many components comprise a mixture remains a difficult problem. The
likelihood ratio test (LRT) is a general statistical procedure to use. Unfortu-
nately, a number of specific problems arise and the classical theory fails to hold.
In this paper a new procedure is proposed that is based on testing whether a
new component can be added to a finite Poisson mixture which eventually
leads to the number of components in the mixture. It is a sequential testing
procedure based on the well known LRT that utilises a resampling technique
to construct the distribution of the test statistic. The application of the pro-
cedure to real data reveals some interesting features of the distribution of the
test statistic.

Key words and phrases: Poisson mixture, k-finite mixture, number of compo-
nents, likelihood ratio test, resampling.

1. Introduction

It is widely accepted that the Poisson distribution can describe adequately
situations where only randomness is present. In a variety of applications, however,
the data manifest some sort of overdispersion in the sense of having a variance that
is larger than their mean. Such situations can be modelled by a mixed Poisson
distribution. We will restrict our attention to finite mixtures, assuming that the
parameter of the Poisson distribution takes only a finite number of distinct values.

In the sequel, we use the term k-finite mixture of Poisson distributions to
refer to the distribution defined by the probability function

k
exp(— A )AF
(1.1) fok(x)zzpi——z!—’i, £=0,1,2,...
i=1
where k is the number of Poisson components, A\; > 0, Vi = 1,2,...,k, p;, ¢ =
1,...,k, are the mixing proportions with Zle p; = 1 and 8}, represents the vector
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of parameters of the above mixture, namely 8, = (p1,D2,. .-, Pk—1, A1, A2, - -, Ak)-
We also assume that 0 < A\; < Ay < -+ < At s0 as to avoid identifiability problems
(see Teicher (1961)).

Such a distribution may arise when the entire population can be thought
of as consisting of k subpopulations, each following a Poisson distribution with
some parameter. The value of the Poisson parameter is assumed to vary from
subpopulation to subpopulation according to a distribution function P with jumps
of size p; > 0, at the points A;, j = 1,2,...,k. P is usually referred to as
the mixing distribution. Obviously, the number of support points can give us
information about the number of subpopulations comprising a finite mixture of
Poisson distributions. It would, therefore, be interesting to determine this number.

A common method of testing for the number of components in a model is the
likelihood ratio test (LRT). Unfortunately, the general theory of the test fails for
mixture models as noted by several authors (e.g. Self and Liang (1987)). All the
test procedures suggested by various research workers have been restricted to the
simplest case of testing for a one-component model versus a 2-component model.
The test procedure that is proposed in this paper generalises such tests so as to
test for a model with k components against a model with k¥ + 1 components.

Following a brief review of results on the use of the likelihood ratio procedure
for 2-finite mixtures provided in Section 2, a new method for determining the
number of components in a mixture is introduced in Section 3. This is based on
a sequential approach and can serve both as a method for general testing for &k
components against k¥ + 1 components in a finite Poisson mixture as well as a
method for determining the optimal number of components. In Section 4, the
performance of the new method is examined via simulation. The new procedure is
illustrated on a real dataset in Section 5. Our findings are summarised in Section 6.

2. The likelihood ratio test for mixture models

The LRT is used for testing nested hypotheses. The test statistic is —2 log A,
where A\ = Lo/L, is the ratio of the maximised likelihood Lo under the model in
Hy to the maximised likelihood Ly under the model in H;. Under some regularity
conditions, this statistic follows asymptotically a x? distribution with a number of
degrees of freedom equal to the difference in the numbers of parameters between
the two models.

Suppose that we want to test the hypothesis Hy: The data come from a
Poisson distribution, against the hypothesis Hy: The data come from a 2-finite
mixture of Poisson distributions. From (1.1), for k¥ = 2, we can see that we
may rewrite the hypotheses to be tested as Hy: p1 = 1 or p1 = 0, against Hy:
0 < p1 < 1. A common testing procedure for such hypotheses would employ an
LRT statistic. However, carrying out this test for mixture models presents some
difficulties. The reason for this is that the value of p; under the null hypothesis is
on the boundary of the parameter space and hence the regularity conditions fail.
(See for example Self and Liang (1987).)

Many attempts have been made in the literature to determine the asymptotic
distribution of the test statistic in the general framework of finite mixtures. A few
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of them were focused on Poisson mixtures (e.g. Symons et al. (1983) and Bohning
et al. (1994)), while the majority of them were in relation to the case of normal
mixtures. Titterington et al. (1985), Self and Liang (1987) and Bohning et al.
(1994) showed that the asymptotic distribution of the test statistic is a mixture
of a distribution degenerate at 0 and a x? distribution with one degree of freedom
in equal mixing proportions. Alternatively, the distribution of the test statistic
can be derived via simulation as in Aitkin et al. (1981), Symons et al. (1983),
McLachlan (1987), Thode et al. (1988), Mendell et al. (1991, 1993), and Feng and
McCullogh (1994, 1996) among others. See also the work of Beran (1988) for a
thorough justification of bootstrap tests. Feng and McCullogh (1996) showed that
the loglikelihood is identifiable even when the parameters are not and hence the
fact that the ML estimates are not consistent under the alternative hypothesis
does not affect the procedure.

3. Determining the optimal number of components—The new approach

The unknown form of the null distribution causes problems in the application
of the LRT. The test procedure that we propose in this section aims at overcoming
these problems. The procedure makes a sequential use of the LRT adopting the
bootstrap approach for constructing the null distribution of the test statistic at
every stage. The proposed test procedure constitutes the first attempt to use
bootstrap tests for such kinds of hypothesis testing. It can also serve as a method of
determining the number of components in a mixture. The utility of this possibility
is obvious, as it gives us an insight into the structure of the population under
investigation.

Consider the hypothesis Hy: the number of components in a Poisson mixture
is k versus the hypothesis H;: the number of components in the mixture is k£ + 1.
The proposed procedure tests Hy against H; sequentially for £ = 1,2,... using
the LRT statistic until Hy is accepted for the first time at the chosen significance
level. The value kpax of k& which does not lead to the rejection of Hy represents
the optimal number of components in the mixture. Due to the fact that the
standard asymptotic result is not applicable, we adopt a resampling approach
for the construction of the null distribution of the LRT statistic. The steps for
carrying out the proposed test are:

Set k=1

Step 1. Find the ML estimates of the parameters of the finite Poisson mix-
ture for k and k + 1, say 0 and @41 respectively and calculate the LRT statistic,
say Lobs. Note that for £ = 1 the MLE is the sample mean.

Step 2. Simulate B bootstrap samples of size n, (n is the sample size from
the data set) from the k-finite Poisson mixture with parameter vector @, and for
each bootstrap sample calculate the value of the LRT, say w;, j =1,...,B.

Step 3. Estimate the a-percentile of the distribution of the test statistic by
the (100a)-th order statistic from the bootstrap values w;, j = 1,..., B. Let this
percentile be denoted by C,.
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Step 4. If Lops > C, then set k = k+ 1 and go to Step 1, else deduce that
the optimal number of components is k¥ and stop.

The procedure terminates when Hg cannot be rejected for the first time,
i.e. when there is no sufficient evidence that adding one more component will
significantly improve the likelihood.

As will be illustrated in Section 5, this procedure achieves a dual goal: it
reveals the number of components in the assumed mixture model while at the same
time it provides the appropriate goodness-of-fit test. Approaches alternative to the
one proposed for determining the number of components in a mixture that already
exist in the literature have been based on penalized estimation methods (Henna
(1985), Leroux and Putterman (1992), Leroux (1992) and Chen and Kaldbfleisch
(1996)), moment based methods (Lindsay (1989) and Fruman and Lindsay (1994)),
graphical method (Lindsay and Roeder (1992)), Bayesian methods (Richardson
and Green (1997)). Wolfe (1970) proposed the use of a chi-square distribution as an
asymptotic approximation to the distribution of the LRT statistic. Izenmann and
Sommer (1988) adopted this method. Other methods include the SEM algorithm
described by Celeux and Diebolt (1985), the method based on Fisher information
matrices proposed by Windham and Culter (1992) and the posterior Bayes factors
method used by Aitkin et al. (1996).

The proposed procedure is based on a forward search technique aiming mainly
at reducing the computational effort. In their concluding remarks Bohning et al.
(1994) proposed a backward search type. In fact, we expect that both backward
and forward elimination techniques will produce the same results. The reason is
that the improvement of the likelihood between two successive models decreases
as the number of the already fitted components increases (Lindsay (1983)). The
results of our simulation show that the critical values decrease also, thought slower
than the observed value of the LRT statistic. Based on this, one would expect that
if the k-component model hypothesis is not rejected when tested versus the (k+1)-
component model hypothesis, then neither will the (k + 1)-component hypothesis
when tested versus a (k+ 2)-component hypothesis and so on. So, we expect that a
backward technique will produce almost the same results as the forward technique.
On the other hand, for small values of k, the ML estimates are derived easier and
faster. Hence, the forward technique can save a lot of computational time. Note
also that with a backward technique the starting value of k is not known. Thus,
we have either to choose it arbitrarily or to determine it using sophisticated and
computationally demanding methods (for such methods see Bohning (1995)).

4. Simulation results

In this section an extensive simulation study of the newly proposed method is
made. Two issues are of special interest. The first is the ability of the procedure
to determine the correct number of components and the second is the power of
the sequential tests used for obtaining the optimal number of components.

In order to use the LRT we need the ML estimates of the mixing distribution
under each of the two hypotheses. The EM algorithm for the ML estimation
in finite mixture models was used (e.g. Hasselblad (1969), see also Dempster et
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al. (1977)). The details can be found in the Appendix. We also employed the
conditions introduced by Karlis and Xekalaki (1996a) for checking if the LRT
statistic is equal to 0.

In the sequel, some k-finite Poisson mixtures were considered for selected
values of k (k = 2,3,4) so as to allow the representation of models with well
separated components, models with components close together and models that
result in skew distributions. For each distribution three sample sizes were used
(n = 50, 100, 500) and 500 samples were generated from each distribution, for each
sample size. The sequential method proposed was then applied using 500 bootstrap
samples (B = 500) for constructing the null distribution of each test statistic. For
all the tests we used @ = 5%. Table 1 presents the relative frequencies of the
numbers of components which the new method detected.

Table 1 reveals that the method is quite successful in determining the number
of components when the latter are not close and the sample size is large enough.
How large the sample size must be depends on the value of k. So, for k = 3 a
sample size of 500 is sufficient for the accurate determination of the number of
components. For k = 4 larger sample sizes are needed. Clearly, when the compo-
nents are very close the method cannot distinguish between them. On the other
hand, components with small mixing probabilities are usually ignored especially
in the case of small sample sizes. It is interesting that the method seldom overes-
timates the number of components. For small sample sizes it performs better for
models with small numbers of components. This may be connected with the high
variances of the ML estimates for finite Poisson mixtures with not well separated
components and with a small sample size first reported by Hasselblad (1969). For
our simulation purposes, only cases plausible in practice and small sample sizes
were considered. Selecting cases with extraordinarily large separation between
the components would only lead to more impressive results but of little practical
interest as most often count data consist of small positive integer values.

The sequential nature of the tests employed makes the calculation of the
power of the method (in the sense of the term used in hypothesis testing) very
difficult. The simulation results reported in Table 1, however, can also be regarded
as revealing the power of the proposed method.

The power of each separate test proposed is also examined. Thode et al.
(1988) and Mendell et al. (1991, 1993) have examined the power of the LRT for
testing a one-component model versus a 2-component model in normal mixtures
with equal variances via simulation. Recently, Berdai and Garrel (1996) examined
the power of the LRT deriving an asymptotic distribution. All the authors agree
in that the power of the test is susceptible to the sample size and to the closeness
of the components. The power for the LRT in the case of finite Poisson mixtures
has not been examined, up to now. So the results given in this section on the
power of such tests are new and they are reported for the first time in the present
paper.

In order to investigate the power of the proposed method the empirical power
of the test for k components versus k+ 1 components was examined for k = 1,2, 3.
We define as the empirical power of the test the proportion of times we rejected
the null hypothesis when the data actually were generated from the alternative
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Table 2a. The empirical power of the LRT for testing k = 1 versus k = 2 (a = 5%).

sample size

Null n=50 n=100 n=500 n=1000 n = 2000
distribution
alternative
1A 0.063 0.068 0.064 0.050 0.048
A=1 1B 0.340 0.526 0.974 0.999 1.000
1C 0.225 0.327 0.753 0.936 0.997
1D 0.081 0.089 0.087 0.080 0.095
1A 0.041 0.048 0.039 0.031 0.035
A=3 1B 0.868 0.989 1.000 1.000 1.000
1C 0.538 0.793 1.000 1.000 1.000
1D 0.061 0.070 0.094 0.100 0.147
1A 0.033 0.039 0.035 0.027 0.034
A=5 1B 0.992 1.000 1.000 1.000 1.000
1C 0.802 0.972 1.000 1.000 1.000
1D 0.062 0.074 0.132 0.171 0.294
1A 0.027 0.034 0.042 0.035 0.060
A=10 1B 1.000 1.000 1.000 1.000 1.000
1C 0.988 1.000 1.000 1.000 1.000
1D 0.073 0.107 0.320 0.511 0.813

distribution. The level of significance was o = 5%. The critical value of each test
was calculated via simulation of 50000 samples of given size from the null distri-
bution. For each value of k several distributions were chosen so as to represent
various cases. For every distribution considered, several alternatives were consid-
ered. As Karlis and Xekalaki (1996b) have shown, the alternative distributions
have to be chosen so that they have the same mean with the distribution under
the null hypothesis. The reason is that when applying the test to real data sets
the MLE for k-finite mixtures must satisfy the first moment equation whatever
the value of k.

For the case where k = 1, the null distributions used were Poisson distri-
butions with parameters A = 1,3,5,10 respectively. Then the vectors of pa-
rameters for the 2-finite mixture alternatives were: (1A) (0.5,0.95),1.05)), (1B)
(0.5,0.5X,1.5), (1C) (0.8,0.8X,1.8)) and (1D) (0.2,0.8X,1.05)). Alternative (1A)
is very close to the null distribution while (1C) and (1D) result in distributions
more skew to the left and to the right respectively.

For k = 2 the distributions considered in the null hypothesis had vectors of pa-
rameters of the form (p, A1, A2): (2a) (0.5,1,5), (2b) (0.8,3,11), (2c) (0.5,2,2.2),
(2d) (0.5,5,15). The four alternatives to each null hypothesis considered were
of the form: (2A) (0.5p1,0.5p1,0.95A1,1.05A1, A2), (2B) (0.5p1,0.5p1,0.5A1, 15X,
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Table 2b. The empirical power of the LRT for testing k = 2 versus & = 3 (a = 5%).

sample size

Null n=50 n=10 n=500 n=1000 n = 2000
distribution
alternative
2A 0.046 0.059 0.065 0.052 0.044
2B 0.052 0.090 0.222 0.314 0.514
2a 2C 0.027 0.035 0.026 0.006 0.000
2D 0.066 0.080 0.078 0.063 0.049
2E 0.104 0.197 0.544 0.764 0.949
2A 0.049 0.067 0.051 0.039 0.040
2B 0.393 0.697 0.999 1.000 1.000
2b 2C 0.060 0.074 0.084 0.080 0.075
2D 0.108 0.123 0.166 0.174 0.190
2E 0.152 0.192 0.347 0.502 0.755
2A 0.034 0.038 0.077 0.085 0.077
2B 0.097 0.119 0.190 0.287 0.460
2c 2C 0.002 0.001 0.000 0.000 0.000
2D 0.011 0.011 0.003 0.002 0.002
2E 0.012 0.020 0.045 0.033 0.018
2A 0.051 0.065 0.050 0.040 0.037
2B 0.422 0.723 1.000 1.000 1.000
2d 2C 0.048 0.056 0.061 0.044 0.044
2D 0.084 0.100 0.104 0.113 0.119
2E 0.105 0.130 0.198 0.272 0.447

/\2), (20) (1l’p1, 7,0.95), (/\1 + /\2)/2, /\2), (2D) (7rp1, w2, 0.95A1, Ag, 1.5/\2) and
(2E) (0.33,0.33,1,1 + a, A2 + 1), where = is the probability assigned to the third
component so that the mean does not change and a is chosen so that the alter-
native distribution can have the same mean as the null distribution. Again (2A)
differs very little from the null distribution, (2B) differs more, while (2C) and (2D)
add the new component in the left and the right tail respectively.

Similarly, for & = 3 the distributions used under the null hypothesis had
vectors of parameters of the form (p;, p2, A1, A2, A3): (3a) (0.33,0.33,1,5,12), (3b)
(0.8,0.1,1,5,12), (3¢) (0.1,0.4,1,5,12), (3d) (0.5,0.25,1,8,8.5) and (3e) (0.33,
0.33,1,10,20). The alternatives to each of them considered were of the form: (3A)
(0.5p1, 0.5p1,p2, 0.95/\1, 1.05)\1, )\2, /\3), (3B) (0.5p1, 0.5p1,p2, 0.5)\1, 1.5/\1, /\2, /\3),
(30) (pl,pz, 0.5p3, /\1, /\2, 0.5)\3, 1.5/\3), (3D) (’R'pl, mp2,TP3, )\1, )\2, /\3, 15/\3) and
(3E) (0.25,0.25,0.25,1, 1+a, 14+2a, A3+1), where a and 7 are defined as previously.
Again (3A) differs very little from the null distribution, (3B) differs more, while
(3C) and (3D) add the new component between the 2nd and the 3rd component
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Table 2c. The empirical power of the LRT for testing k = 3 versus k = 4 (a = 5%).

sample size

Null n=50 n=100 n=>500 n=1000 n = 2000
distribution
alternative
3A 0.032 0.068 0.097 0.085 0.047
3B 0.025 0.064 0.183 0.232 0.355
3a 3C 0.015 0.030 0.058 0.053 0.032
3D 0.092 0.180 0.551 0.764 0.941
3E 0.029 0.068 0.225 0.302 0.462
3A 0.050 0.067 0.112 0.121 0.109
3B 0.063 0.123 0.424 0.632 0.831
3b 3C 0.013 0.027 0.104 0.126 0.126
3D 0.050 0.123 0.528 0.766 0.937
3E — — — — —
3A 0.021 0.050 0.107 0.082 0.036
3B 0.017 0.040 0.114 0.138 0.142
3c 3C 0.016 0.031 0.008 0.001 0.000
3D 0.032 0.066 0.092 0.087 0.115
3E 0.025 0.043 0.081 0.070 0.063
3A 0.049 0.060 0.071 0.063 0.074
3B 0.080 0.125 0.368 0.575 0.808
3d 3C 0.001 0.003 0.001 0.000 0.000
3D 0.008 0.017 0.064 0.140 0.303
3E 0.041 0.058 0.113 0.122 0.129
3A 0.046 0.057 0.064 0.047 0.041
3B 0.082 0.152 0.431 0.644 0.893
3e 3C 0.036 0.045 0.051 0.036 0.013
3D 0.146 0.252 0.297 0.537 0.761
3E 0.244 0.471 0.962 0.999 1.000

and at the right tail respectively. Tables 2a-2c¢ contain the values of the empirical
power for all the cases.

For testing a one component mixture versus a two component mixture the
power of the test increases with the distance of the components. This result is
similar to the one obtained for normal mixtures by Mendell et al. (1991) and it
was expected. For testing k = 2 versus k = 3 the power is increased only when
the sample size is large and the components are well separated. Adding a well
separated new component, but with a small probability, does not improve the
power of the test. This is also the case when testing for ¥ = 3 versus k£ = 4.
Concluding, we can say that the LRT applied to the general case k = m versus
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k = m + 1 has low power when the components are not well separated and when
one of the components has a small mixing probability. As the value of m increases,
the sample size required for obtaining a specific power increases very much. This
result verifies the behaviour of the method for the simulated cases of Table 1. As
far as the asymptotic distribution of the test statistic is concerned, the x* form
does not seem plausible. On the other hand, the null distribution depends highly
on the value of k and the sample size used.

5. An application
In the present section the proposed procedure for determining the number of

components in the case of a finite Poisson mixture is illustrated by a real dataset
example.

Table 3. Number of accidents incurred by 414 machinists over a period of three months
(Greenwood and Yule (1920)).

T 0 1 2 3 4 5 6 7 8
frequency 296 74 26 8 4 4 1 0 1

The data refer to the number of accidents incurred by 414 machinists over
a period of three months, taken from the classical paper of Greenwood and Yule
(1920), and analysed by several authors. The fit provided by the simple Poisson
distribution is very poor (X2 = 57.81 with 2 d.f) a fact noted also by Greenwood
and Yule. As can be seen from Table 4, a notable improvement can be achieved
by mixtures of Poisson models.

Table 4. Sequential testing results for the data of Table 3.

k LRT statistic p-value

1 88.068 0
2 3.122 0.033
3 0.094 0.216

Column 1 of Table 4 contains the values of k, the number of the components
in the mixture. Column 2 contains the values of the test statistic for testing
m = k against m = k + 1 and the last column contains the associated p-values
calculated via simulation. Using the bootstrap approach described previously, we
constructed the null distribution of the test statistic for various values of k, using
50000 bootstrap samples. Our procedure leads to the selection of the model with
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3 components. Note, however that, had we erroneously used the x? approximation
we would have been led to select the 2-component model.

Figure 1 depicts the cumulative distribution function of the test statistic un-
der the hypotheses tested. Clearly, the distributions differ markedly from the x?
distribution with 2 degrees of freedom and there is a difference between the dis-
tributions corresponding to different values of k in the null hypothesis. We may
deduce therefore that the use of the x? can lead to invalid conclusions and hence
it should be avoided. Bohning et al. (1994) have come to the same conclusion for
a variety of models in the case k = 1.

& k=1 vs k=2
* k=2 vs k=3
y * k=3 vs k=4
0.0 _ _ . © X* with 2 df
M 1.55 2.99 4.43 5.87

X

Fig. 1. The cumulative distribution function (cdf) for the test statistic for testing Ho :
k=1vsHi:k=2 Ho:k=2vs Hy : k=3 and Ho: k=3 vs Hy : k = 4 for the data
of Table 3 and the cdf of a x? distribution with 2 degrees of freedom. The form of the
distribution clearly depends on the value of k.

In order to assess the performance of the newly proposed method we calculated
the empirical power of the test procedure involved. As mentioned before, this is
defined as the proportion of times we rejected the null hypothesis when the data
actually came from the alternative distribution. So, for our example, we used as
critical values for given a the corresponding a-percentiles of the null distribution
constructed via simulation. 50000 samples were generated from the distribution in
Hy, namely the distribution with parameters the ML estimates for a model with
the number of components specified in Hy. For each sample, the LRT statistic
was calculated so as to construct the distribution of the test statistic under the
alternative hypothesis. The proportions of times Hy was rejected for a given level
of significance « are reported in Table 5. As can easily be seen, the LRT performs
well only for the case k = 1 vs k = 2. It can be noted that the test has a lower
performance when it is used to detect components that are very close. This is
usually true for models with a large number of components as the new added



160 DIMITRIS KARLIS AND EVDOKIA XEKALAKI

Table 5. Simulated power calculation for the data of Table 3 (o denotes the significance level).

(47

Test 0.10 0.05 0.025 0.01

k=1vsk=2 1.000 1.000 1.000 1.000
k=2vsk=3 0.560 0430 0.318 0.207
k=3vsk=4 0.055 0.023 0.008 0.003

point is usually very close to the previously estimated points. Note that the null
distribution of all the test statistics is highly skewed to the right.

Based on the above results on both real and simulated data, the method
presented in this paper does not seem to overestimate the number of components
in the mixture. This is the consequence of the fact that in a model with too
many components, two or more components are very close together, and thus the
improvement of the loglikelihood is negligible.

6. Discussion

In the present paper a new technique for testing hypotheses on finite Poisson
mixtures was introduced. Testing such hypotheses proceeds in a sequential manner
which lends particularity to the procedure and distinguishes it from just being an-
other technique for merely testing Poisson mixture hypotheses with fixed numbers
of components. In parallel to that, it allows for determining the optimal number of
components for which a Poisson mixture provides the most satisfactory fit to the
data, without an excess of support points. Thus, the innovation brought by this
procedure lies in its dual character that permits testing a hypothesis of a Poisson
mixture with k£ components against one model with k£ + 1 components, parallel to
determining the optimal Poisson mixture. The implications of this technique in
cluster analysis and other fields of application are obvious.

The application of the procedure to both real and simulated data led to the
interesting conclusions that the asymptotic distribution of the test statistic has
a form that can in no way be approximated by the x? distribution which is the
standard choice in problems of this type and that the value of k in Hy affects the
distribution of the test statistic. The latter needs further investigation as it differs
from results already existing in the literature that fail to examine how the value
of k affects the procedure. The examination of the power of the procedure reveals
that for well separated components the proposed testing procedure may work well,
otherwise the LRT has very low power, and a more powerful test should be sought.

Finally, it is clear that our method which we applied to Poisson mixtures is
applicable to normal mixtures or to mixtures from the exponential distribution as
well and in general can be considered as a method for determining the number of
components in finite mixtures from any family of distributions.
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Appendix. About the simulations

All the calculations were performed using the EM algorithm. As a conse-
quence, the stopping rule may lead to slightly different values of the LRT. The
stopping rule considered for all the simulations in the present paper stopped iter-
ating when the absolute value of the ratio (L(™~1)/L(™) first exceeded 0.9999995.
(L™ denotes the maximised loglikelihood after m iterations.) The same criterion
was used for obtaining the ML estimates from the data.

The convergence of the EM depends on the choice of the initial values. Three
different initial guesses were used for finding the ML estimates of a k-component
model: a) The MLE for a k-component model calculated from the data b) Equally
spaced points between the minimum and the maximum observed value with equal
initial probabilities and ¢) Equally spaced points around the mean of the sam-
ple. For even k the mean itself was used as a starting point. Again the initial
probabilities were assumed equal.

The algorithm run for all the different initial values and the “best” solution
was selected. A good strategy for avoiding local maxima is to start from well sepa-
rated values. We note that the computational error in the sense of not finding the
global maximum might have had a slight downward bias effect on the percentiles.
The acceleration scheme described in Karlis and Xekalaki (1996b) was used.
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