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Abstract. Random coefficient regressions have been applied in a wide range
of fields, from biology to economics, and constitute a common frame for sev-
eral important statistical models. A nonparametric approach to inference in
random coefficient models was initiated by Beran and Hall. In this paper we
introduce and study goodness of fit tests for the coefficient distributions; their
asymptotic behavior under the null hypothesis is obtained. We also propose
bootstrap resampling strategies to approach these distributions and prove their
asymptotic validity using results by Giné and Zinn on bootstrap empirical pro-
cesses. A simulation study illustrates the properties of these tests.
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1. [Introduction

Random coefficient regression models have raised a growing interest in recent
years. From a statistical point of view, they constitute a unifying frame for several
important models, including random effects in ANOVA (see, e.g. Scheffé (1959)),
deconvolution models (Fan (1991), van Es (1991)), heteroscedastic linear models or
location-scale mixture models. The scope of their application ranges from biology
to image compression to econometrics. An example of applicability of the random
coefficient model to economics is the estimation of a linear production function,
where the output of the firms is expressed as a function of the factors involved in the
productive process (typically, labor and capital). In such a model, the coefficient
of a factor can be interpreted as its productivity (how much the production can
be increased if the firm increases the factor in a unit). If a usual regression model
is used, it is implicitly assumed that every firm in the sample has the same factor
productivities, but this fact is not true in general: usually each firm obtains its
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own factor productivity because the production process is not exactly the same in
each firm. So a model with random coeflicients allows factor productivities varying
from firm to firm.

The analysis of growth curves in biological or medical studies is another im-
portant application field for random coefficient regression models. Recently Yang
and Chen (1995) have applied a bayesian approach to this model and they illus-
trate their results with a real data example arising from biology. The data set
contains the body weights of 48 pigs measured in nine successive weeks. In this
example the independent variable is time in weeks (nine dimensional), the depen-
dent variable is body weight (also nine dimensional) and the random coefficient is
the rate of weight gaining for each pig (one dimensional) that, obviously, can vary
from pig to pig.

Raj and Ullah (1981), Chow (1983), Nicholls and Quinn (1982) and Nicholls
and Pagan (1985) are surveys of the work on random coefficient regression models.
Additional applied examples can be found in Longford (1993). A common feature
of this literature is that interest is focused on moments estimation, essentially
mean and variance.

A nonparametric approach to inference in these models has been started by
Beran and Hall (1992) by addressing the estimation of the random parameter
joint distribution; they solved it by introducing consistent estimators based on es-
timated moments. Beran (1995) developed nonparametric prediction intervals for
the dependent variable and introduced a minimum distance estimate. Beran and
Millar (1994) have studied its consistency and proved that it is a n'/2-consistent
estimator of the coeflicient distribution in a particular case. Recently Beran et
al. (1996) construct a consistent, asymptotically normal, nonparametric estima-
tor for the joint density of the slope and intercept of a random coefficient simple
regression model.

In this paper, we consider nonparametric goodness of fit tests for the dis-
tribution of the random coefficients. In Subsection 1.1 we establish the model
and we propose the corresponding test statistics. The one-dimensional response
case is studied in Subsection 2.1. We use results from empirical processes the-
ory to assess the asymptotic behavior of the statistics. Then we present different
bootstrap resampling strategies to approach the unknown limiting distribution
and we prove their validity. Subsection 2.2 extends these results to linear models
with p-dimensional dependent variable. A simulation study on the performance of
these tests is carried out in Section 3. Finally, all the proofs are collected in the
Appendix.

1.1 Preliminaries
Let us write the random coefficient regression model as

(1.1) Y,=A+X:B;, i>1,

where Y; and A; are p-dimensional random variables, B; is a g-dimensional random
vector and X; is a p x ¢ random matrix. The triples {(A4;, B;, X;) : ¢ > 1} are
independent and identically distributed and (A;, B;) is independent of X;. The
distribution of (A;, B;, X;) is unknown and we can observe the n pairs (Y;, X;),
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1 < i < n. Let Fap be the distribution of (A4;, B;) and let Fx be the distribution of
X, both unknown. The joint distribution of (Y;, X;) depends on both distributions
and will be denoted by Fyx = P(Fap, Fx). Let P, = % Y1 8vi,x,) and Fx n =
LS 1 6x, be the empirical distributions associated to the observations (Y;, X;)
and X;, respectively. This is the model considered by Beran and Millar (1994).
Our goal is a goodness of fit test for the distribution Fypg, i.e.,

(1.2) H() . FAB =G
(1.3) Hy:Fap #G

for a specified distribution G. Observe that Fx is unknown under both Hy and
H;.

We will assume identifiability in the model (1.1), ie., P(Fap,Fx) =
P(FAB,FX) implies Fap = F4p. Beran (1995) and Beran and Millar (1994)
give sufficient conditions for identifiability and also for strong identifiability, a lo-
cally uniform version of identifiability. If identifiability does not hold, one can
consider the equivalence classes C(Fap) = {Fap | P(Fap,Fx) = P(Fag, Fx)}
and carry out the test

(1.4) Hy: Fap € C(G)
(1.5) H, : Fap ¢ C(G)
instead.

We will base our test on the empirical process D, = /n(P, — P(Fag, Fx)).
Since Fx is not known and is not specified under Hy, we consider the “estimated”
empirical process

In = \/FL(Pn - P(FABvFX,n))

indexed by the class J = {Is = (—00,s] x (—00,t] : s € RP,t € RP?} of (p +
pq)-dimensional semi-intervals. When convenient, we will also express Jy,(I5;) as
Jn(s,t), s € RP, t € RP9.

Given s € R?, t € RPY,

Jn(Ist) = \/5 (/R: . I(—oo,(s,t)] (yax)dpn(yvx)
—/ Pp,g(A+ 2B < 8)(_ooy (x)dFX,n(a:))
RPe

= \/’I'_L (I(—oo,s] (y) - PFAB (A +zB < 3))1(—oo,t] (IL‘)dPn(y,:l})

Rp+pra

= \/ﬁ/RP+Pq fst(yax)dpn(yaz:) = \/EP"(fSt)’

where fot(y,2) = (I(—c0,s)() — Prap(A + 2B < 8))[(_oo4(x). Observe that
P(Fap, Fx)(fst) is equal to zero. Thus, it turns out that, for each s,t, Jn(s,t) =

Dn(fst)-



128 PEDRO DELICADO AND JUAN ROMO

Let
(1.6) F={fst| s€RP,t € R™}.

Our test statistics will be Kolmogorov-Smirnov or Cramér-von Mises functionals of
Jn; we will get their asymptotic distribution from the convergence of {D,, : n € N}
as empirical processes indexed by F. We refer to Giné and Zinn (1986) for the
definitions of weak convergence in the space [*°(F) of bounded functions on F,
and the concepts of Vapnik-Cervonenkis and Donsker classes of functions.

For any class F of functions f: X — R, if A C X is a finite set and £ > 0, let

D(e,A,F,F) = mln{k | there exist f1,..., fx € F such that

sup min Z(f(z) fi(x))? < €2 Z F(:z)2}

1<i<k
fer T€EA

and define D(g, F, F) = sup{D(e, A, F,F) | A C X, A finite}. The corresponding
entropy is H(e, F,F) = log D(e,F,F). As usual, if V is a random variable, we
will represent by Supp(V') (the support of V') the smallest closed set S such that
P{V ¢S}=0.

2. Main results

2.1 Univariate dependent variable

In this section we establish the asymptotic distribution for the Kolmogorov-
Smirnov and the Cramér-von Mises statistics based on the empirical process D,
when the dependent variable Y is one-dimensional, i.e., p = 1. First, we give
sufficient conditions for the class F defined in (1.6) to be a permissible class of
functions in the sense of Pollard (1984).

PROPOSITION 2.1. Consider the conditions:
(a) Pr,z(A+xB =3) =0 for all x € Supp(X) and for all s € R.
(b) The distribution of (A, B) is discrete.

If either (a) or (b) hold then F is a permissible class of functions.

Note that the proposition holds if, e.g., for any fixed value of X, the distri-
bution of Y has no atoms and this follows if the distribution of A is absolutely
continuous, except for extreme dependence between A and B. This measurability
requirement implies the one used by Giné and Zinn in theorems that we will need
below (see Giné and Zinn (1990, p. 854)). The next result gives a bound for the
entropy of F.

PROPOSITION 2.2. There exist positive constants A and w such that
D(e,F,F) < Ac™?¥ where F =1 is an envelope for F.

The asymptotic behavior of the sequence {D,, : n € N} of empirical processes
is obtained in the following theorem.
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THEOREM 2.1. Under the conditions in Proposition 2.1,

(27) Dn —w Z'P(FAB,F)()

in 1°(F), where Zp(p,p, ry) 18 the P(Fap, Fx)-brownian bridge with covariance
structure given by

Cov(fors fun) = / (Pryy(A+2B < s Au)

{z<tAv}

— Pp,,(A+ 2B < 8)Pp,,(A+ 2B < u))dFx(z).

From this result, we can obtain the asymptotic distribution of the correspond-
ing Kolmogorov-Smirnov statistic,

Kn =|Dullz = sup |Da(fete)l = l|Jnllg = sup |Jn(Lst)]

fst€F I

and the Cramér-von Mises one,

o= ([ outrraeen) = ([ nsoraaen)”

R+9
where @ is a finite measure on R'*9.
COROLLARY 2.1. Under the conditions in Proposition 2.1,

Ky =y ”ZP(FAByFX)”}- and

M= ( <zp<FAB,FX>(fst))2dQ(s,t>)1/2.

Rl+aq

Finally, the limit distributions of D,,, K, and M, under Hy : Fap = G can be
obtained by replacing F4p by G in the corresponding expressions in Theorem 2.1
and Corollary 2.1. These asymptotic distributions are depending both on G and
the unknown Fx, so, it is important to provide a way of approaching them and
this can be done through bootstrapping. We will study two different resampling
strategies. ;

Let (Y;*',X?1),i=1,...,n, be a random sample from the distribution P, and
let P*! be the corresponding empirical distribution. Define D;! = \/n(P:! — P,),
n € N, indexed by F, as the standard bootstrap version of D,,. Consider now a
random sample (Y;*?, X2?), i = 1,...,n, from the distribution P(Fap, Fx, ) and
let P:? the empirical distribution obtained from them. Define the corresponding
bootstrap empirical process D2 = /n(P:? — P(Fap, Fx.n)), indexed by F. Fi-
nally, let us introduce J2, the bootstrap analogous of J,, indexed by the lower
semi-intervals in R'*9,

JX2(s,t) = Vn(P2(s,t) — P(Fag, F32,)(s, 1)),
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where F¥?, is the second marginal distribution of P;?, i.e., the empirical distri-

bution corresponding to X%, i =1,...,n. It’s straightforward to check now that

Jx2(s,t) = D}%(fs:) and obviously J22(s,t) # D:}(fst). Our next result gives the
asymptotic validity of these bootstrap statistics.

THEOREM 2.2. Assume the conditions in Proposition 2.1. Then the boot-
strap empirical process D! converges weakly in % (F) to the limit process of Dy,
for almost all sample sequence {(Y;, X;) : i € N} satisfying model (1.1):

*1
Dn —w Z’P(FAB,FX) a.s., N — 00.

Also D2 converges weakly in [®°(F) to the same limit for almost all sample se-
quence {(Y;, X;) : © € N} satisfying model (1.1):

D;? —w ZP(FAB,FX) a.s., n — 00.
The proof of the second part relies on Corollary 2.7 in Giné and Zinn (1991)
and it can be seen in the Appendix. Now, the continuous mapping theorem pro-
vides the asymptotic behavior of the bootstrap versions of K, and M,,.

COROLLARY 2.2. Under the conditions in Proposition 2.1,

K}' = IDiF —w 1 Zp(Fan,rx)ll7  a.s.,

K2 = |Dx =w | Zp(Fas.F)ll7  a-s.,

= ([ onaraaes)

1/2
v <‘/Rl+q (ZP(FAB‘FX)(fSt))2dQ(s3t)) a.s.,

and
1/2
w= ([ (PR aee)
1/2
= ( / (J:L2(37t))2dQ(s,t))
Rita
1/2
Tw (/RHQ(ZP(FAB,FX)(fst))2dQ(s,t)) s,
as n — o0.

Note that here we can obtain the convergence of D! and D}? because now the
data come from the distribution used to center D;:? and this allows us to use the
Giné and Zinn (1991) corollary, which cannot be used to obtain the convergence
of J,.
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These results allow us to propose two bootstrap algorithms for testing Hy
based on D;! and D;?, respectively. By replacing Fap by G, the resampling
scheme in D}? provides data (Y;*2, X?) satisfying the null hypothesis; on the
contrary, this does not necessarily happen with D!: the sample (V;, X;), i =
1,...,n, may not come from model (1.1) with Fup = G. However, we can take
independent observations (A¥,BS), i = 1,...,n, from the distribution G and

construct the pairs
(2.8) (YC, X)), with Y,%=A%+X,;BS, i=1,....n

which come from model (1.1) with Fap = G.

So, our resampling algorithms are the following. The one based on D}! pro-
ceeds in four steps (suppose that we are using the statistic K):

1. Obtain the value of the statistic K,, from the sample (Y;, X;), with Fap =
G.

2. Construct the sample (Y%, X;) as indicated in (2.8).

3. Draw B bootstrap values K,’;’lb, b=1,...,B of the statistic K}!, defined
in Corollary 2.2, from the values (Y;%, X;) in Step 2.

4. Reject Hy if K, is larger than the a-th quantile of the empirical distribution
ofK;}b, b=1,...,B.

The second method, based on D};?, modifies Steps 2 and 3 to the following:

(2. and 3. For b=1,..., B, obtain (Y;*?,X}?),i=1,...,niid. from
P(G, Fx ), construct J3? and calculate K}? = sup, , |J32(s,t)|.

2.2 p-variate dependent variable

We consider now the model (1.1} when the dependent variable Y is p-dimen-
sional, with p > 1, and our goal is to prove similar results to the previous ones.
Checking the proofs in Subsection 2.1, the fact of Y; being univariate is only used
to show that the class

Fir={fs :R"=>R| fs(z) = Pp,,(A+ 2B < s),s € R}

is a Vapnik-Cervonenkis class of functions and so, it has a small entropy. We have
to deal now with the class

Fo={fs RS R| fs(z) = Pp,s(A+zB < s),seRP}, p>1,
whose envelope is the function constantly equal to 1.

Our next theorem describes the properties of F, under some conditions on
the distribution of (A4, B, X). We will use the function h defined as

h:RP*Y x RP — R
(z,8) = fs(2)-
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THEOREM 2.3. Assume that Supp(X) is compact in model (1.1) and that
Y, = A+ zB is absolutely continuous for all x € Supp(X). Suppose also that h
has uniformly bounded partial derivatives:

”%(m,s) <M;, zeRY selRP,

”g—:(a:,s) <M, zeRM secRP.

Then

(i) The family of probability measures { Py, ,x € Supp(X)} is tight: for all
e > 0 there exists a compact C(g) such that Py (C(e)) > 1 — ¢, ¢ € Supp(X).
C(e) can be chosen to be of the form

C(e) = [Ue), w(e)lp = {s € R? | Ufe) < s < ufe)}.

(i) D(e, F, Fp) < pP(555) 7 Vol([l(e), ule)]p)-

(iii) If
1 3

(2.9) /0 log (Vol ([l(a/Z),u(€/2) + IPE] ,,)) de < oo
then
(2.10) / CHe, P F,)de < oo

0
and also
(2.11) / ' H(eF,F)de < oo,

0

where F is the class of functions defined in (1.6).

Next we provide two important situations where Theorem 2.3 applies: first,
in those cases where (4, B) is compactly supported and second, when (A, B) has
a (p + g)-variate normal distribution.

ProprosSITION 2.3. Assume that Supp(X) is compact. It holds that
(i) if Supp(A, B) is compact then

Q= |J {yeR’|y=a+ab,(ab) € Supp(4,B)}
z€Supp(X)
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Table 1. a = .05, B = 500, 500 simulations. The three values appearing in each cell are a}w,
a2, and o, from top to bottom.

X ~ N(0,1) X ~ N(2,1) X ~ Exp(1)
(A,B) »p 20 50 100 20 50 100 20 50 100
.076 .060 .054  .050 .046 .056  .054 .054 .062
0 .050 .066 .054 .038 .050 .048  .046 .056 .058
054 064 .050 .044 .042 .042  .048 .044 .056

.054 .042 .048 .052 .048 .060 .064 .060 .070
N 4 .044 .044 .048 .040 .050 .048 .046 .068 .064
.058 .034 .062 .050 .056 .050 .046 .050 .084

054 .032 .048 .060 .050 .030 .054 .060 .058
.8 040 .030 .046 042 044 .032 .042 .060 .050
.038 .034 .028 .054 .042 .054 .058 .050 .050
.054 .062 .058 .054 .042 .048 .050 .054 .028
0 .042 .054 .046 .046 .044 .044 .040 .048 .036
.040 .044 .030 .050 .062 .054 .046 .048 .054

054 .062 .048 .068 .054 .050 .064 .050 .056
c 4 .044 .066 .048 .044 .054 .056 .046 .058 .066
.040 .052 .060 .046 .050 .064 052 .066 .054

.078 .082 .042 .060 .056 .054 .066 .068 .056
8 .046 .064 .038 .046 .058 .054 .0566 .056 .052
.052 .054 .066 .038 .058 .052 .050 .062 .062
.078 .058 .052 050 .056 .048 .038 .056 .046
0 060 .054 .052 .042 .066 .046 .044 .046 .046
.052 .060 .062 .056 .060 .058 .036 .042 .058

.060 .054 .048 .056 .044 .060 .072 .060 .054
E 4 .052 .044 .046 .046 .048 .060 .050 .052 .046
.050 .050 .034 .046 .052 .062 .042 .054 .058

.066 .054 .052 .048 .038 .052 064 .074 .048
.8 .056 .060 .056 .032 .026 .050 .052 .062 .046
.046 .054 .046 .052 .046 .042 .062 .056 .062

is compact and P(Y, € Q) = 1, for all x € Supp(X).
(ii) if, moreover, the hypotheses of Theorem 2.3 on Y, and on the partial
derivatives of h(xz, s) hold, then

1
/ H(e, F,F)de < oco.
0

The corresponding result for normally distributed coefficients is the following:
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Fig. 1. Normal model varying p in the alternative. (a) Dispersion of Y given values z

of X under Hp and some alternative hypotheses. ------ p=—0.9, p=0,----
p =0.9. (b), (c) Power function for X ~ N(0,1) and X ~ N(2,1), respectively. ------
M;;,la _____ Mr]:2’ K1*1.2’

PROPOSITION 2.4. Assume that the variable (A, B) in model (1.1) is nor-
mally distributed, that Supp(X) is compact and that, for all z € Supp(X), the
variable Y, is absolutely continuous. Then

(i) The function h(z,s) has uniformly bounded partial derivatives.

(i1) Condition (2.9) holds.

As a consequence of (i) and (ii), the conclusions (2.10) and (2.11) in Theorem
2.3 follow.

Observe that whenever Theorem 2.3 holds, all the conclusions we obtained
for Y univariate can be carried out to the p-dimensional case. In particular, the
goodness of fit test strategy applies straightforward to model (1.1) for any p > 1.
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(a)
15 . . : . ,

0 . . . . ;

Fig. 2. Normal model varying bg (mean of B) in the alternative. (a) Dispersion of Y

given values z of X under Hy and some alternative hypotheses. «----- bo =0.1,
bo =1,----bo = 19. (b), (c) Power function for X ~ N(0,1) and X ~ N(2,1),
respectively. -« ---- ML - - - M2, K2,

3. A simulation study

To study the behavior of these tests in practice, we have conducted a Monte-
Carlo experiment. The data have been generated in the following way. First,
simulate independent (A;,e;), ¢ = 1,...,n with A; ~ F4, ¢; ~ F, A; and ¢;
independent and then construct B; = bp + pA; + e;, ¢ = 1,...,n. Second, take
independent X;, ¢ = 1,...,n with distribution Fx and, finally, calculate the ob-
servations Y; = A; + X;B;,i=1,...,n.

The first set of simulations (labeled normal) corresponds to a model generated
using A with distribution N(0,1) and e normally distributed such that E(e) = 0
and the standard deviation of B is a specified value og. The second collection
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(a)

(0)

Fig. 3. Cauchy model varying p in the alternative. (a) Dispersion of Y given values x

of X under Hp and some alternative hypotheses. ------ p=—0.9, p=0,----
p = 0.9. (b), (c) Power function for X ~ N(0,1) and X ~ N(2,1), respectively. ------
M:{l, _____ 1\'4;:27 K;2

of simulations (labeled Cauchy) is built from A with a Cauchy distribution with
zero median and interquartile semi-range equal to one and B is obtained from a
Cauchy variable e independent from A such that the interquartile semi-range of
B is a fixed value sg. The last series of simulations (labeled ezponential) has A
and e with shifted exponential distributions. In this case, A and e are centered at
0, variance of A is 1 and the dispersion of e is chosen to get a fixed value of 0.
To analyze the test performance under the null hypothesis we consider three
values for the parameter p (0, 0.4 and 0.8). Three distributions for X (N(0,1),
N(2,1) and Exp(A = 1)) have been considered. The sample size may be n = 20,
50 and 100. So, we have 81 different situations to study the empirical sizes. The
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(a)

) (©

Fig. 4. Cauchy model varying bg (median of B) in the alternative. (a) Dispersion of Y

given values z of X under Hgp and some alternative hypotheses. ------ bo = 0.1,
bo =1,----by = 1.9. (b), (¢) Power function for X ~ N(0,1) and X ~ N(2,1),
respectively. ------ M, - - M2, K2,

Monte-Carlo experiment was carried out 500 times for each particular scheme.
The number of bootstrap replications was B = 500.

Table 1 summarizes the obtained results on the performance of the three
statistics we used: M3, M2, K2. We have not considered K*! due to the
complexity of the required optimizations. To calculate M;! and M2 we have
used the measure Q specified by Hy. The nominal size was a = 0.05. The values
typed in italic are significantly (95%) different from a. They are 4.9% of the
total. In general, we observed good performances and a small advantage for the
bootstrap schemes based on D}?. The recommendation of using D;.2 instead of D!
is emphasized when n = 20, based on additional simulation reports not included
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here in order to maintain a moderate length for the paper. For the 500 replication
of the experiments, a bootstrap based empirical p-value was calculated. Under the
null hypothesis these values have a uniform distribution on (0,1). So, the better
a bootstrap scheme replicates the distribution of D,, the closer the empirical
distribution of those p-values is to the diagonal of the unit square. Graphics
of these empirical distribution functions have been used in the literature (see for
instance Fisher et al. (1994)). When D! was analyzed, for n = 20 all the empirical
functions of the p-values were significantly far from the theoretical distribution of
a U(0,1), using the usual Kolmogorov-Smirnov distance, and the same happened
in the 40% of the simulated cases when n = 50 and in the 11% for n = 100.
Nevertheless, only in two cases (one for n = 20 and the other for n = 50) a similar
situation was reported when using D2

For the power study, we have considered the normal and Cauchy cases with
three sample sizes (n = 20, 50, 100) and two distributions for X (N(0,1) and
N(2,1)). So, we observed twelve different situations under Hp; we have studied
the test power against alternative hypotheses established in terms of by and p.

The data were simulated under two sets of alternative hypotheses. First, with
by = 1, allowing p to take values of the form 0+ 0.1h, h =1,...,9 and op or sp
equal to one. Second, with p = 0, with values 1+ 0.1h, h = 1,...,9, for by and
op or sp equal to 0.5.

Some results are displayed in Figs. 1 to 4. Graph (a) in each of these figures
represents the dispersion of Y for a given value z of X when (Y, X) follows model
(1.1); more precisely, in Figs. 1 and 2 they are 95% prediction bands and in Figs. 3
and 4, we draw interquartile semi-ranges around the median. Graphs (b) and
(c) give some of the power functions obtained for n = 100 and o = 0.05. Power
functions for other values of n and «a have also been studied and they are considered
in the following comments.

For n = 20 the results are not satisfactory but there is an important im-
provement for n = 50. M;! and M2 behave similarly. As usual in goodness of
fit tests the power for Kolmogorov-Smirnov statistics is generally lower than for
those based on Cramér-von Mises ones; however, in some situations, K}? is clearly
the best one. The asymmetry of some power functions can be explained in terms
of the different conditional distributions of Y given X under the alternatives (see
part (a) in Figs. 1 to 4).

Finally, we may remark the relevance of the identifiability idea in these mod-
els. In graph 3.(a) can be seen that if the variable X takes only positive values
(respectively, negative) then the distribution of (Y, X) is the same for all positive
values of p (respectively, negative). This is reflected in 3.(c) where one of the
branches of each power function is practically constant and equal to « since, for
those models, X ~ N(2,1) and it takes positive values with high probability.

Appendix: Proofs of Theorems

PROOF OF PROPOSITION 2.1. Since F can be written as F = {fs(-,-) =
F(-8,t) | (s,8) € R}, condition (i) in Definition 1 in Pollard (1984, pp. 195-
196), follows. Only remains to check that

fW,2,8,t) = (I(—co,s](y) = Prap(A+ 2B < 8))(—c0,4 (%),
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is B(R'™) x B(R'*?)-measurable, and this follows because

Pro (A+2B<s)= / I oo s)(a + 28)dF a5 (a,b)
R1l+ae

= lim I(—oo,s] (a+ zb)dFsp n(a,b)

n—00 Jpitq

= lim Pp,, (A+zB<s), zeR! seR,

for a sequence {(an,bs) : m € N} such that Fap, = 131 8, since
Pr,,(A+ zB = s) = 0 if (a) holds. Under condition (b), measurability of
h(z,s) = Pp,z (A + B < s) is trivial. D

PRrROOF OF PROPOSITION 2.2. Since the functions in F are of the form

fst (¥, %) = (I(—c0,5)(y) — Prap(A+ 2B < 8))[(_o0, ()
= I(——oo,s] (y)I(—oo,t](x) - PF'AB(A + 2B < S)I(—Oo’t](x)’

the result will follow from the next three claims:

Claim 4.1. Fi = {fs : R - R/| fs(z) = Ppapg(A+zB < 5),s€ R} isa
Vapnik-Cervonenkis class of functions. Moreover, the Vapnik-Cervonenkis index
of the graph class is 2.

PROOF. We have to check that the graph class of functions in F; does not
shatter two elements sets in R? x R (i.e., each two points subset A in R? x R
contains a subset that cannot be obtained as the intersection of A and the graph

of a function in F7).
Let A = {(z1,t1),(z2,t2)} € R x R. If C = {Gy, f € F1} shatters A then
there exists s1, s2 € R? such that

(4.12) Antsl = {(Il,tl)}, and
(4.13) AﬁGfs2 = {($2,t2)}.

Since all f € F; are nonnegative functions, from (4.13) it follows that

(4.14) (.’L‘l,tl) [S Gfs1 = f81 ((El) > t1, and
(4.15) (xg,tz) ¢ Gf51 = fsl (xz) < to.

Analogously, from (4.13),

(416) (IEl,tl) ¢ G’fﬁ2 = f32 (.1'1) < ty, and
(4.17) (z2,t2) € Gy,, = fs,(22) 2 ta.

From the properties of univariate distribution functions, we have that fs(z) <
fi(z) if, and only if, s <t and fy(x) < fi(z) implies s < ¢.
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This, combined with (4.14) and (4.16), gives s; > s2, and combined with
(4.15) and (4.17), leads to s; < sa. This contradiction proves the claim.

Claim 4.2. If F = {f : Dy — R} is a Vapnik-Cervonenkis class of functions
then G = {g5 : D1xDy — R | gs(y,z) = f(z), f € F} is also a Vapnik-Cervonenkis
class.

PrOOF. The graph class of H is the product of the one set class {Q2} and
the graph class of 7. Both are Vapnik-Cervonenkis classes. So, the claim follows
from Theorem 9.6.2 in Dudley (1984).

Claim 4.3. Let F and G be classes of functions with envelopes F' and G,
respectively. Let F+G ={f+g| f € F,g € G}. Then F + G is an envelope for
F + G and

D, F+G,F+G) < D(e, F,F)D(e, G, G).
Let FG = {fg | f € F,g € G}. If F and G are constant functions then F'G is an
envelope for G and

D(e, FG,FG) < D(¢/2,F,F)D(¢/2,G,G).

The first part appears in Pollard (1984, p. 40), and the second part follows in
a similar way as in Pollard (1989). This proves the claim.

Our class F is obtained from classes 1, J,; and J, where Jj is the class of
semi-interval indicators in R? which is a Vapnik-Cervonenkis class with envelope
F =1 (see, for instance, Corollary 9.2.15 in Dudley (1984)). From Claim 4.1
and Claim 4.2, F; is also a Vapnik-Cervonenkis class and so, there exist positive
constants A;, w; such that

D(e,F,F1) < Aie™®"', D(e,F,I,) < Ape™?"2,
D(e,F,\T;) < A3e™2*3, 0<e<l.
Now, Claim 4.3 gives that
D(e,F*,F) < (D(¢/2,F,F1)D(e/2,F,11))D(e/2, F, 1),
where F* = (F + F)F = 2 is an envelope for F, and so there are constants A and
w such that D(e, F, F) < Ae™?¥ forall0<e < 1.0

PrROOF OF THEOREM 2.1. From Propositions 2.1 and 2.2 and Pollard’s
central limit theorem (Pollard (1982)), it follows that F is a Donsker class for
P(Fap, Fx). For the covariance function, since

Ep(pan i) ot = [ (-o0ui(8) = Prap (A +3B < 5)
“I(—oo,q(x)dP(Fag, Fx)(y, x)
:P(FAB,Fx)(S,t)—-/ PFAB(A-*-fI:BSS)de(I)

(_w’t]
= P(Fap, Fx)(s,t) — / d(Fap x dFx)(a,b,z)
{z<t}n{a+xb<s}
ZP(FAB,Fx)(S,t)—'P(FAB,Fx)(s,t)=0, SER, tGRq,
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we have that

Cov(fst, fuv) = Efstfuv — EfstE fuv = E fst fuv
= P(FaB; Fx)(I(—co,(s,)) (¥s X ) (oo, (u,0)] (¥, X))
- p(FAB) FX)(PFAB (A + XB < S)I(‘Oovt] (X)I(—Ooy(%v)](y7 X))
- P(FABr FX)(PFAB (A +XB< u)I(-OO»v](X)I(—OO:(S,t)l (Y’ X))
+ P(Fap, Fx)(Pr,s(A+ XB < 8)Pp,,(A+ XB <)

: I(—oo,t] (X)I(—oo,v] (Y: X))
=851 -S89 —8S3+ 854

Obviously, S; = P(Fag, Fx)(s A u,t Av). For the second term,

Sy = / Pr,,(A+ zB < s)d(Fap x dFx)(a,b, )
{a+zb<u}n{z<tAv}

= / PFAB(A+.'EB < s) (/ dFAB(a, b)) de(:E)
{z<tAv} {a+zb<u}

= / Pp,z(A+2zB < 8)Pp,, (A + 2B < u)dFx(x).
{z<tAv}

Moreover, S3 = 53 and Sy = S3. So,

COV(fst, fu'u)
= P(Fap,Fx)(s Au,t Av)

- / Pr,p(A+ 2B < 5)Pr, (A + 2B < u)dFx(z)
{z<tAv}

=/ (Prag(A+ 2B < sAu)
{z<tAv}

— Pp,,(A+ 2B < 8)Pr, (A + 2B < u))dFx(z). 0

PROOF OF COROLLARY 2.1. | -||# is trivially continuous in [*°(F). Let

o= ( [ Hq(wfst»?dcz(s,t))m

for all ¥ € I°°(F). Thus, M, = ||Dyll2,¢. To check that the norm || - |20 is a
continuous functional in {*°(F), take a sequence {¥,} such that ||¥,, — ¥y|x — 0.
Then

¥nll2.@ — 1Pollz@l < 1¥n — Poll2@

1/2
= (/qu I‘I/n(fst) - ‘I’O(fSt)|2dQ(s,t)> < ||‘~I’n _ ‘I’0||7Q(R1+q) 0.0
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PROOF OF THEOREM 2.2. The asymptotic behavior of D;! follows from
Theorem 2.4 in Giné and Zinn (1990) because F is a Donsker class of functions
for P(FAB, Fx).

To establish that D;;2 tends to the Brownian bridge Zp(s, ,Fx), We use Corol-
lary 2.7 in Giné and Zinn (1991). With their notation, taking D}> = v, with
R, = P(FaB, Fx ) and Ry = P(Fag, Fx), we have to prove that | R, — Rollg —
0, with G = FU F' U F2U (F')?, where F' is the class of differences of functions
in F, and F? is the set of squares of the elements of F. It is enough to see that
the supremum on each of G = F, F', F2? and (F’)? tends to zero.

We have that R,(fs:) = Fxn(rst) and Ro(fst) = Fx(rst), with

rar(z) = / Fu (9, 2)AP(Fap, 6:)(4,2) = Erap|for(A + B, )]
= (PFAB (A + .’IIB,:L') — Pp,, (A + zB, a:))I(_ooyt](x) =0,

seR, teRY.

Thus, ”Rﬂ - RO“.F = 0. Similarly Rn(fst - fuv) = RO(fst - fuv) =0 and “Rn -
Rol|7 = 0.
For the convergence of || R, — Ro|| 72, note that |R, — Ro|| 2 < ||Rn — Rol|##.
Now, let
Fatun(@) = [ £a9 ) a0, )P (Fa, ) 0,2

= EFAB [fSt(A + 'TB:x)fu'u(A + .'L'B,I)]
Since

Fst@, @) fuo (¥, %) = (I(—oouns](¥) = Prap(A+ 2B < u)(—o0,5(Y)
— Pr,p (A +zB < S)I(_oo,u] (y)
+ Ppop(A+ 2B < u)Pr, (A + 2B < 8))(—00,tn0)(Z),

we get that

Totuv(T) = (Prag(A+ 2B < uAs)
- PFAB (A +zB < u)PFAB (A +zB < 3))1(—oo,t/\v}(m)'

As we saw along the proof of Theorem 2.1, the class R of functions 7y, is a
Donsker class for Fx. Since

(Rn - RO)(fstfuv) = —\/l-ﬁl/fx (Tstuv),

we have that ||R, — Rollz# = n~V?|vEX||r — 0, because vi* —,, Zp, in I®(R).
Analogously, ||Rn — Roll(7)2 < 4||Rn — Rollzx — 0.0

PrOOF OF THEOREM 2.3. Let us prove (i) first. From the Mean Value
Theorem and since the partial derivatives of h are bounded, it follows that F,
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is uniformly equicontinuous: for any € > 0 there exists § = &/M; such that
|z — 2'|| < 6 implies |fs(z) — fs(z)| <€, for all s € RP.

Let V be a p-dimensional random variable and let [a,b], = {v € R” |a <v <
b}. We can write

Py([a,b],) = > ajFy(m;(a,b)),

=1

where m;(a, b) are vertices of [a, b],. The coefficients ;, the vertices m;(a,b) and
the value 7 only depend on the dimension p.

Given € > 0, let § = ¢(2M; ZJ _1 lj|)7. Since Supp(X) is totally bounded,
there exists n = n(6) and points z1,...,2, € Supp(X), such that for all z €
Supp(X), min;—1,. ||z — z;|| < 6. For each z; there exists a set [l;,u;], with
P(Y,, € [lLi,uilp) = 1 —¢/2. Let | = I(e) (respectively, u = u(e)) the point in
RP whose j-th coordinate is the smallest (respectively, the largest) of the j-th
coordinates of the points I;, i = 1,...,n (respectively, u;, i = 1,...,n). Thus,
P(Y,, € [Lulp) >1—-%&,4=1,...,n. Forz € Supp(X), P(Y; € (Lulp) =
E;zl a;Fy, (m;(l,u)). Let i = i(x) be the index of the closest point to z among
Z1,...,ZLy. Then

|P(Yz € [l,ulp) — P(Yz, € [l,ulp)| < Z loj || Fy,, (m; (I, u)) — Fy, (m;(l,u))]

_ €

< -
Z'“J'zz] oyl " 2

and, so P(Y; € [l,u]p) > 1 — ¢, for all € Supp(X). This proves (i).

Let us now establish (ii). From uniform boundedness of the partial derivatives
of h, for each € > 0, there exists v = &/(2M2) such that ||s — s’|| < 7 implies
|h(z,s) — h(z,s’)| < e/2 for all z € Supp(X).

Using v and the compact [[(¢/2),u(e/2)]p, we define the following points in

RP:
(= b)) iplup =1 — 4
s(z‘l,...,z‘p)=l(€/2)+(“(“;l 1),-.-,2"("1;? ”)), nj=[u37/p’]+1
; 1 =1,...,p

If N(g) is the number of points just defined, we have

H(nj +1)= H ({———l ] +2>

“\L /p
j=
L.
< H (ﬂu]—v—i) + 2) < PPy P Vol([l(e/2), ule/2) + 2v1,p]p)

j=1

where 1, is the vector with all coordinates equal to one.

Since ||s — t|| < pmax;=1,. p|s; — t;], for all s € [I(¢/2),u(e/2)], there exists
s’ among the N(¢) points with ||s — ¢'|| < v and so, |h(z,s) — h(z,s")|] < €/2
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for all z € Supp(X). If s & [I(¢/2),u(e/2)]p, let 5 be the closest point to s in
[1(e/2),u(e/2)]p, and let s’ be the point closest to § among the N(e) just defined.
We have that

|h(z,s) — h(z,s")| < |h(z,s) — h(z,3)| + |h(x, ) — h(z,s’)]|
< |h(z,8) — h(z, )| + g = |Fy,(s) — Fy.(3)| + g

Note that

Fy,(s) = P(Yz € (-0, 5])
= P(Y; € (—o00,5]N [I(/2), u(e/2)]p)
+ P(Y; € (—o0,s| N [l(e/2),u(e/2)];)-
The difference between the sets (—oo,s] N [I(e/2),u(e/2)], and (—o0,3] N
[l(e/2),u(e/2)]p is included in the boundary of [I(e/2),u(e/2)], and so, it has zero

probability under the absolutely continuous distribution of Yy, for all z € Supp(X).
Thus

Fy,(s) = P(Y; € (—00,3] N [i(/2), u(/2)]p)
+ P(Y; € (—00,s] N {l(e/2),u(e/2)];)
= Fy,(8) + P(Y; € (—o00, 5] N [U(£/2),u(e/2)]})
~ P(Y; € (—00,3] N [l(e/2),u(e/2)];)-
Then, for all z € Supp(X),

=E£.

N[ ™

|h(z,5) = h(z,8)]| < = + P(Ya & [l(e/2), u(e/D]p) < 5 +
It follows that for a finite A C Supp(X),

min Z(fs(x) — fo.(x)? < e?card(A), s€RP,

i=1,...,N(¢g) A
and then

D(e, F, F,) < N(e) < pv~7 Vol([l(e/2), u(/2) + 2v1,),)

= (2Myp)PeP Vol ( [l(e/2),u(6/2) + ‘M%lp] ) .

This proves (ii), and (iii) follows. O

PrOOF OF PROPOSITION 2.3. The compactness of @ follows from a stan-
dard subsequences argument. Moreover, it follows that

PY,€Q)>P(Y,€K,)=P(A+zB€ K,)

dFap(a,b) > 1,

/{(aib)|a+rb€Kz}
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since Supp(A4, B) C {(a,b) | a + zb € K} and the result follows. 00

PROOF OF PROPOSITION 2.4. Let (A,B) ~ Npiqo((pa,pB),, %) and let
Y = A+ 2B ~ Np(pz = pa + zup, 2y = (I, 2)2(Ip,z)") with density func-
tion

fr.(y) = faly) = (2m) P2|Z, |7 exp {—%(y — )Ty — ﬂ:c)} :

We have to show that the partial derivatives with respect to z;, ¢ = 1,...,pxq and
sj, 3 =1,...,p of the function h(z,s) = f{y<s} fz(y)dy are uniformly bounded for
all z € Supp(X ) and all s € RP.

Let V = (V1,..., Vi) be an absolutely continuous random variable with dis-
tribution and density functions Fy and fy, respectively. It is straightforward to
check that, under regularity conditions (fulfilled by the normal distribution) which
allow interchanging integrals and derivatives

OF
a—vl/‘(vl, ey Uk) = Py Vi Ve=ue (V1 - - -5 Uk—1) fui (Vk),

and analogously for j, 7 =1,...,k — 1. Applying this to V =Y., we have

Oh(z, s)
st

1 ,
S Hlbes) = o =gi(e), G=1p

Oz,j

Since the j-th component variance is a continuous function of z, g;(z) is bounded

on the compact set Supp(X).
Now, let us turn to the partial derivatives with respect to z; which, under
regularity conditions—fulfilled by the normal distribution—, are

Oh(z, s) / Ofx(y) :
—— — _d y 1= l7 ceey X q.
3$L'i {y<s} 8$i Y P 1

We have that

2D o2 33 [ (el ™) 0 {30 - )52 0 )

r=11=1

1 _ 1 _
- 51Z e {0 - )BT - )}

: aiﬂ ((y— p2)' 25 (v — um))] %
Ty~ /2
- O e {50 - ) B 0 )}
S ) - ) ) 24
Oou; oz,

j=1
= S1(y) + S2(y) + S3(y)-
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Let us study each of these three terms.

(a)
sl(y)=22( | zr“?) Ot 212 ).

For a non-singular matrix, the partial derivatives of the determinant and the par-
tial derivatives of the inverse matrix are continuous functions of the matrix ele-
ments (see, e.g., Mardia et al. (1979)). So |S1(y)| < K1 fz(y) where

P P ‘
ZZI&M
=1l=1

aa““l&;l‘”2 11| ¢ oo
rl

zeSupp(X i

(b)

5:0) = ~5 o0 | o (- o) B2 = )| G A

r=11=1
As before, [S(y)] < 37, S0y 12 (0 — )55y — o) K fuly) with

Orl

Kz = orx;

max
r l z€8upp(X)
Let A = ;! with elements an. Since ¥, is non-singular, the partial derivatives of

ank With respect to o,; are continuous function of z and so, bounded in Supp(X);
let K3 be an upper bound of this quantity for all h, k,r,[. Then

/{ 1Sa(y)ldy < 22 3}:2)}:2:/ 15 = 1) (W — )" ok o )y
y<s}
< Kol ) 16 he)w ) o)

K2K3p K2K3K4P
Z Z(az k + Ua: k 2 »

_ 2 2
where K4 = maxy, y MaXgesupp(x) (05 4 + 02 ) < 00.

©
_ p/2 ty a/J‘j
S5(y) = - 5(2) §)[——(<y ue)'S2 - )| 22 )

As before,

0

1S3()] < 22 Z 3 (0= 2) 55 )

Jj=1

f=(y)
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. B,
with K5 = max; maX;egupp(x) |3—z—’—| < 00. Now,

/ 1S3()dy < K Z / 1222y — o)l o (w)dy
{y<s} :
Y4
> [ s = i)y
22
Y4 p
62 [p+ Zag,h} < 00,
h=1

Jj=1

I/\

where K¢ = max,; maxX,esupp(x) |25 |ri-
This proves part (i).

Let us see now the proof of (ii). The set {yy = pa + zup | z € Supp(X)} is
compact (since Supp(X) is) and so there exists M > 0 such that ||u,| < M for
all z € Supp(X). For each z, define R,(c) = {y € R? | fo(y) >~} = {y € R? |
(v — 1)y — pz) < 62}, where 6% = 6%(¢) = FX“21(1 — ¢) and thus P(Y; €
R.(e)) =1 —¢€. Let A\, be the largest eigenvalue of EI;psince the implicit function
theorem, A, is a continuous function of z and so bounded on Supp(X); let A be
an upper bound. For the hypercube C(e) = [T?_,[~M — 6V A\, M + 6V A + ¢/My],
R;(e) C C(e) and then P(Y; € C(e)) > 1 — ¢, for all z € Supp(X). Moreover,

v(e) = Vol(C(e)) < (2M + 2V A6(e) + 1/My)P < (ag + a16())?

for some ag > 1, a; not depending on £. Thus
1 1
/ logv(e/2)de < p/ log(agp + a16(c/2))de.
0 0

Changing variable to u = §2(¢/2) = (1 — €/2), this last integral equals

2/ log(ap + a1v/u) fyz (u)du < 2/ (a0 + a1 (1 + u)) fyz (u)du
ug 0

=249 + 2a1(1 + E(x})) < oo.
This ends the proof. O
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