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Abstract. The problem under consideration is the I'-minimax estimation,
under L, loss, of a multivariate normal mean when the covariance matrix is
known. The family I' of priors is induced by mixing zero mean muiltivariate
normals with covariance matrix 7I by nonnegative random variables 7, whose
distributions belong to a suitable family G. For a fixed family G, the linear
(affine) I'-minimax rule is compared with the usual I'-minimax rule in terms of
corresponding I'-minimax risks. It is shown that the linear rule is “good”, i.e.,
the ratio of the risks is close to 1, irrespective of the dimension of the model. We
also generalize the above model to the case of nonidentity covariance matrices
and show that independence of the dimensionality is lost in this case. Several
examples illustrate the behavior of the linear I'-minimax rule.

Key words and phrases: Affine rules, efficiency, Bayes risk, Brown’s identity,
I'-minimax rules.

1. Introduction

Partial prior information can be well formalized and leads naturally to the
description of a class of priors I' that forms the basis for the I'-minimax approach
(Skibinsky and Cote (1962), Kudo (1967)). If prior information is scarce, the class
T’ of priors under consideration is large, and we are close to the usual minimax
principle. The extreme case is when no information is available, in which case the
I'-minimax setup is the minimax setup.

On the other hand, if we have a lot of prior information, then the class I is
sparse. An extreme case is a class I that contains only one prior. In this case, the
I-minimax framework becomes the minimum Bayes risk framework. The spirit
of I'-minimaxity is vividly expressed by the often quoted sentence of Efron and
Morris (1971):

... We have referred to the “true prior distribution” ... but in realis-

tic situations there is seldom any one population or corresponding prior
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distribution that is “true” in an absolute sense. There are only more
or less relevant priors, and Bayesian statistician chooses among those as
best he can, compromising between his limited knowledge of subpopula-
tion distributions and what is usually an embarrassingly large number of
identifying labels attached to the particular problem.
Some Bayesians object that working within the context of I'-minimaxity may
produce “demonstrable incoherence,” since there are examples in which the I'-
minimax rule is not Bayes (Watson (1974)). But in most cases of interest, the
I'-minimax rule is the Bayes rule with respect to some prior from the family T
For a nice discussion on I'-minimaxity in the context of Bayesian robustness,
we refer the reader to Berger (1985).
Consider the following model:

X |60~ MVN,@0,I),
(1.1) 0|7~ MVYN,(0,7I),
T~ G(t),(r > 0).

Let G be the family of distribution functions G. Suppose that the random
variables 7 have uniformly bounded expectations, and that 37 s.t. ET > 0, i.e.

(1.2) 0 < sup /th(t) < 00.
Geg
The class G determines the family of priors I" as
(1.3) r= { JENCLEONE g}
where
1 ~ 110112 /2¢

¢P,t(0) = (27T)p/2tp/2e

is the density of the MVN,(0,tI) distribution.

The class (1.3) is an example of a “scale mixture of normals” or a “normal
scale mixtures” family. Some of the well-known families of distributions, such
as: the t (particularly the Cauchy), logistic, double-exponential, cosh™, etc.,
can be expressed as appropriate scale mixtures of normals. These classes are
attractive both because they are easy to work with (studies in which the Gibbs
sampler, Monte Carlo method, and Bayesian calculations are used), and because
they possess other desirable properties (e.g. in robust Bayesian inference). For
accounts of the significance of scale mixture of normals in statistics, we refer the
reader to Efron and Olshen (1978), West (1987), Robert (1990), DasGupta et al.
(1990), and DasGupta (1992). Model (1.1) was also considered by Faith (1978) in
the context of James-Stein estimation of a multivariate normal mean.

Having a family of priors, it seems natural to employ I-minimax to estimate
the unknown parameter 8. Let D be the set of all measurable decision rules. The
estimator 6* € D that minimizes sup, . 7(m,8), i.e.

Y

inf supr(n,8) = sup r(m, 6*),
8€D rer nel
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is the I-minimax rule, and rp = sup,cp r(7, 6*) is the corresponding I'-minimax
risk.

If we consider the set of linear decision rules Dy, then the rule 671 € Dy, for
which

. *
o, 3BT 0) = (e, 60,
is called the Iminimax linear rule, and r; = sup,cp7(m,65) is the linear I'-
minimax risk.

We are interested in the performance of linear I'-minimax rules compared to
general I'-minimax rules. Performance will be measured through the ratio p = %
More precisely, for a prespecified class G of hyperprior distributions G, we have
an induced class I'. For the class I', we want to calculate p or at least an upper
bound on p, say p*. Values of p close to 1 suggest good performance of the linear
I'-minimax rule.

When the model is X ~ N (6,1) and T is the family of all distributions on
[~m, m] (the bounded normal mean), Ibragimov and Has'minskii (1984) argued
that p is finite. Donoho et al. (1990) have derived an upper bound p < 1.25
that holds uniformly in m. When T is the family of all unimodal and symmetric
distributions on [-m,m], Vidakovic and DasGupta (1996) have shown that p <
1.074.

In the multivariate case, we think about a linear rule as an affine transforma-
tion 6(x) = Az + B, for some matrices A and B. Solomon (1972) has shown that
B # 0 is an inadmissible choice. The motivation for using linear rules is apparent:
they are easily calculable and simple to use. The method used in calculating p* will
not generalize to non-normal models. This is because Brown’s identity employed
in evaluating p* (Subsection 2.1) is valid only in normal-location setup under the
sqaured-error loss.

2. Preliminaries

2.1 An information integral inequality
First, we will prove an inequality involving the Fisher information integral,

P 2
=1 f(z)
) T(/(@) = | (fﬁ”;’) ) dz,

which will be helpful in calculating a bound on rr.

The integral in (2.1) is the trace of the Fisher information matrix I(8) for
a location parameter & in f(x — @). The lemma that follows can be stated and
proven in much more generality. Let G be an arbitrary distribution function.

LEMMA 2.1. Let ¢, () be the density of the MVN ,(0,tI). Then

2( [ bnen@acw) < [26p@niacio.
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PrRoOOF. By the Cauchy-Schwartz inequality

2 2
(F s tren@ic®)  (grdnen(=)
J bp.e41(2)dG(2) : / Pp,t+1(T)

By taking the derivative outside the integral sign and summing with respect to ¢
in (2.2), we obtain

(22) dG(t).

2 2
P (8—"’; f¢p,t+1<w)da(t)) s (s ()4G0
f¢p,t+1(a’)dG(t) = / Op,t+1 (z)

dG(t).
Finally, after interchanging the order of integration we get

2
P (% / ¢,,,t+1(z)dG(t)>
/m [ bpert (@)AG ) dz

6 2
1 (gfﬁp,m(w))
< //;Rp dxdG(t). O

Pp,t+1(x)

2.2  Brown’s identity

When the model is X | § ~ N(8,1), and the loss is squared-error, the following
identity (attributed to L. Brown) holds. For any prior distribution 7, the Bayes
risk r(7) satisfies

r(r) = 1 - I(¢1 * 7(a)).

Under such a model, the convolution ¢; * 7(z) can be interpreted as the marginal
distribution for X. For the derivation and some applications of Brown’s identity,
see Brown (1971, 1986), and Bickel (1981). In the p-variate case, Brown’s identity
takes the form

r(m) =p—I(¢p1 * m(x)).

The function ¢, ; *7(x) has an interpretation as the marginal density for X under
the model X |0 ~ MVN,(8,1).

Since, in general, rr > sup,cp (), Brown’s identity gives only a lower bound
on I'-minimax risk. Therefore,

rr > sglrp(p — I(pp,1 * ().

However the equality holds in most regular cases.
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3. Main result

Here, we determine an upper bound for the ratio of risks by calculating rp
and finding an lower bound for 7r.

The model (1.1) and L loss are assumed. Let G be any family of distributions
that satisfies (1.2), and let ' be the induced family (1.3).

THEOREM 3.1.
ETr

Lo SUPGeg T ET
™ supoeg B

PrOOF. (a) Bound on rr: If the prior density is 7(6) = [ ¢p+(6)dG(t), then
under the model (1.1), elementary calculations give the marginal density for X:

(3.1) ma (@) = / bp.1(2)dC(H).
This fact is apparent after the algebraic transformation

1 —neizee 1 _jz—ey2/2
7O 002 ~6) = e I el

= 1 7 e—(1/2)(l|0—(t/t+1)z||2/(t/(t+1)))
t /4
amyp/2 [ ——
() (t + 1)

. 1 e—llzl?/2(6+1)
@m)P72(t + 1)p/2

Equation (3.1) is obtained by integrating out 8. Now
re 2 sup(p = Zma(@) 2 500 (- [Z8penr(2)dG())
mel Geg

After the substitution Z(¢p ++1(Z)) = %5, we obtain a lower bound on rr:

1
> E— ) = E .
vz g (rrPri) srm P
(b) Calculation of r: Notice that E@ = E(E@ | 7) = 0, and E0¢' = E(E(6¢ |
7)) = E(7I) = (ET)I. Our estimator is constrained to be affine, i.e. of the form
6p(x) = Az € D, where A is a p X p matrix. We need to find a matrix A* such
that 67 (x) = A*x satisfies

rp = inf supr(m,éy) =supr(n,b
L 6L€D”el;( L) P( 1)
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Under L, loss we have

R@,AX) = EX®|AX - 0|
=EX'A'AX -EX'A'9 - E0AX + 66
=trA'A(I+60) -0 A0-0A0+60
=0(A-I)'(A-1)0+trA'A
= (A - D)o|I* + [l A)>.

Therefore

r(r,6.) = E°||(A - D)8|* + | A|]*> = E7||A - I|* + || A%,
and
(3.2) supr(m,8L) = (sup E'T) 1A - I+ || A2

wel Geg

Let to = supgeg ET(< 00). The next step is to find inf 4 to[|A — I||* + |Al|2. If we
differentiate (3.2) with respect to A, and set the derivative equal to 0,

d(tol|A — I||2 + ||A]|?) = to2tr(A — I)'dA + 2tr A'dA
= 2t1‘((1 + t())A — tOI),dA =0,

we obtain

(1 — to)A — tol =0,

and
t E
O I= sup T

A" = T
1 -+ t() Geg 1 + ET

since the function ¥ is increasing in z. That A* minimizes (3.2) follows from

the standard argument
P(to||A — I||2 + ||A]|%) = 2d(tr(1 + to) A — toI)dA = 2tr(1 + to)dA'dA > 0.

Therefore, the linear I'-minimax risk is

to 2 to 2 to ET
(33) =t (1+to —I)I +“1+to P TP T Br
From (3.2) and (3.3) we get

ET

SUPGeg 7 1
rL < #(: p*)

T supgeg E—1 g

Notice that the upper bound p* does not depend on the dimension p of the
model.
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Remark 3.1. The Chebyshev inequality applied to (3.1) gives

1
3.4 * < .
(3-4) P> infgeg P(r > ET)

If G is any family of point mass distributions satisfying (1.2), then the upper
bound in (3.4) is achieved and is equal to 1. This is not surprising: we will see in
Theorem 3.2, that the bound p* = 1 remains valid for variety of classes G.

It is straightforward to show (as an elementary moment problem) that in
the case when G is the set of all distributions satisfying condition (1.2) with
supg ET = 1o, that supg Et{ = lj_oto. This means that the Bayes linear rule is
I'-minimax and that p = p* = 1. The next two theorems assess p* for different
classes G.

THEOREM 3.2. If we restrict the class G to be the class of (i) all symmetric
distributions or (ii) all symmetric unimodal distributions on the interval [a,b], then
the I'-minimaz rule is linear, the corresponding hyperprior G puts all its mass at
the middle point “T*'b, and p=p* =1.

PROOF. Let us prove the theorem in case (ii). We fix two nonnegative
numbers a and b, such that a < b, and consider the class G of all unimodal and
symmetric (about ¢ = “T"'b) distributions on the interval [a,b]. Now, any random
variable 7 with distribution in the class G, can be represented as

(3.5) rictU. 2,

where U is an uniform on [-1,1] and Z is the corresponding random variable

defined on [0, ""T"], and is independent of U. Since ET = ¢, then supg 5 f;:T = lic,

and

ln1+c+Z

T c+UZ l+c—2Z

E— = EZ(EVIZ_ =72 ) El1-—2xc—4
-l PR < 1+c+vz) P Y

We maximize the above expectation by taking Z to be identically 0, since the
function under the expectation sign is monotone decreasing in Z, when 0 < Z <
b_T". This choice of Z gives 7 = ¢, and the maximal expectation is 1 — %_FC We
now show that the corresponding linear Bayes rule is I'-minimax.

The standard way to check for the I'-minimaxity of a rule &y that is Bayes

with respect to the prior g € I, is to prove that for any other prior 7 € T
T‘(ﬂ', 50) S T'(’/To, (S())

The right-hand side is {5%;. The left-hand side is

pc?2 pe
(14+c¢)2 1+¢c’

c
1+c¢

2
EPEX19 |9 XH =E"—1iCIIOI|2+
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because E?||8||? = pc for any prior in the class I'. Therefore, the linear rule is
I'-minimax, the prior 7(6) = ¢p(0) is the least favorable, and p* = 1.0

THEOREM 3.3. Let G be the class of all distributions on [0,00) that are uni-
modal about ¢ > 0, such that 0 < supg ET = tg < co. In this case p* > 1.

PROOF. Any random variable 7, unimodal about ¢, can be written as
(3.6) rict Uz,

where U is uniform #[0,1], and Z is a fixed mixing random variable, independent
of U. The condition 0 < ET < t; is equivalent to —2¢ < EZ < 2(to — ¢). Let us

assume that g > c¢. The case tg < c is analogous. First, sup, % = 14t—0to' If

Z #0,

T c+UZ z 1 l+c+2Z
E—_=E —EZ(1-Z10g2512
1+7 1+c¢+UZ ( Z % 1+ec )’
while for Z = 0, EtZ= = 1%. The function 1 — %-logl—"icTt—Z- is increasing in Z,

and the solution of the moment problem

1 l14c+ 2
s (1 " 78 T)
subject to EZ < 2(to — ¢)

is the random variable Zg, degenerate at 2(tg — ¢). This corresponds to

T ~Ule, 2ty — ¢].

Therefore,
log 1+e¢
2to-c 4 T
E T < 1 / dt =1+ 1+ 2t C’
1+7 7~ 2(to—c¢)J. 1+t 2(to — ¢)
and
to
. 1+t
P = o 1+¢ =
1+ & 142ty —c
2(t0 et C)

Table 1 gives maximal values for p*, as a function of to(> c), for different
choices of c.

Table 1. Maximal values of p* as a function of tg.

c=0 c=1 c=3 c=4 c=10
max p* 1.11593 1.04439 1.02024 1.01593 1.00699
to 1.7382 6.6368 15.8827 20.4786 48.0086
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4. Examples

In this section we illustrate the performance of linear I'-minimax rules in four
different situations.

Ezample 4.1. Let G be the Poisson family {P()),0 < A < A}. In this case
r o~ su Er A
L=SPTYEr 111

A-1+e A
rr > sup E T~ +e , and
4

1+7 A
A2
< p* = .
PP Z AT DA -1+eh)

The limiting behavior of p* is as follows:

p*— 1L, A — oo,

and
* N
RS (RO

Apparently the linear rule does not perform well for small values of A.

A—0.

Erample 4.2. If T has the Inverse Gamma IG(%, mT"z) distribution, then 6

has the multivariate 7,(m,0,02I) distribution. Since ET = T’Zj'_; should be finite
(condition (1.2)), we assume that m > 2.
Let T’ be the family

{7,(m,0,0%I),0 < 0 < S},

where m > 2 is the number of degrees of freedom, and S is a nonnegative real num-

ber. We are interested in calculating p* for the above family. For 7 ~ ZG(%, ﬂ%’i),

we have

(41) E T _ mo.? m/2ema2/2r\ 1_@ m_0-2
' 1+7 \ 2 ' 2’ 2 )7

where I'(a,b) = [~ t* 'e~'dt is the incomplete Gamma function. When m is
fixed, the expression (4.1) is increasing in ¢, and

2\ ™m/2 2
sup E T (mS ) emS*/2r (1 — T—n—, ms )

0<o<S 1+7 2 2 2
. E 2
Since supg<,<s 1557 = msznfm_2, we have
mS?
mS2+m —2

(4.2) pr = — .
ms2\™? ms?/2p (1 _ ™ mS?
2 ¢ 2’2
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Table 2. Worst choice of S for the selected values of m.

m=3 m=4 m=5 m=7 m=10 m=20
max p* 1.46969 1.24333 1.16415 1.09932 1.06231 1.02776
S 0.44908 0.59973 0.68457 0.77822 0.84642 0.92399

rho star

Fig. 1. Left: p* for m = 3, 5, and 10; Right: Plot of p*(T).

Table 2 gives the worst choice of S (the choice that maximizes p*), for selected
values of m.

For example, for m = 5 degrees of freedom, the family {7,(5,0,02I),0 <
o < 0.68457} maximizes p*. pj ., = 1.16415 means that the loss (in terms of
I-minimax risks) incurred by using the linear I-minimax rule instead of the un-
restricted one is less than 16.5%. Figure 1, Left, shows the function p* = p*(S),
for m = 3, 5, and 10 degrees of freedom.

Ezxample 4.3. An interesting example is when the family G is {{/[0,m],0 <
m < M}. Here
M
. 2+ M
p= W+ )
M
As a function of M, p* — 1 when M — 0 or co. The least favorable choice of M
is 3.4764 for which the linear I'-minimax rule is 11.6% worse than the general one.
This can be viewed as a special case of (3.6) with ¢ =0 and Z = M.
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Ezample 4.4. Let G = {(1 — €)1(r = 1) + el(r = t),1 <t < T'}. This class
of hyperpriors was considered by Albert (1984) in a different context. The induced
class of priors I is the normal A/(0,1) distribution e-contaminated by the normal
N(0,t) distribution, 1 < ¢ < T. This case is interesting since, using numerical
methods, we can give sharper lower bounds, 7}, on rp. For € = 0.1, rf has the
maximum 0.60378 at T" = 25.888745. This gives p < 1.65623 uniformly in T". The
linear I'-minimax rule is “worse” than the general I-minimax rule by (about) 66%
in the least favorable case. On the other hand, Theorem 3.1 gives

1l—e+ €T

* _ 2—¢e+ €T
(4.3) p(T) = p2oexel

2 2 14T

The function p*(T') is increasing in T and limy_, o, p*(T) = 1-2ye' The choice € = 0.1
gives an upper bound on p of 1.81818. (See Fig. 1, Right.) Table 3 gives some

numerical results for ¢ = 0.1 and the selected values of T'.

Table 3. Comparison of bounds.

T T lower bound on rp rr %‘— p*
r

1 0.5 0.5 0.5 1 1

1.5 0.51217 0.51 0.51220 1.00004 1.00430
2 0.52353 0.51667 0.52381 1.00053 1.01388
3 0.54277 0.525 0.54545 1.00494 1.03896
5 0.56799 0.53333 0.58333 1.02702 1.09375
10 0.59307 0.54090 0.65517 1.10472 1.21124
20 0.60314 0.54524 0.74359 1.23288 1.36388
50 0.60378 0.54804 0.85507 1.41620 1.56024

By using Theorem 3.2 Example 4.4 can be readily generalized. Let G be the
class {(1 —€)1(r = 1) + eG(t)}, where G(t) is (i) an arbitrary, (ii) a symmetric, or
(iii) a symmetric unimodal distribution on [1,T7]. In case (i), the bound p* is the
same as in (4.3), while in cases (ii) and (iii) we have

1—e+ec

« _  2—€e+ec
_1+e €
2 2 1+c¢

P

?

where ¢ = Il{—l
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5. Generalization

It is natural to wonder what happens to p* when the covariance matrices in
the model and the prior are not identity matrices. Let us assume the following
setup:

X |60~ MVN,@0,)
(5.1) 6|1~ MVYN,0,7T)

T~G(t), (r>0),
where ¥ and ¥ are arbitrary positive definite matrices. Let G belong to the family
G for which the condition (1.2) is satisfied. Without loss of generality, we can take
¥ = I, since we can always rescale the model by multiplying X by £/2. Denote

with ¢, s(x — p) the density of the MVN, (4, ) distribution. The marginal
distribution of X in the model (5.1) can be expressed as

m(x) = /qﬁp,Ht\y(m)dG(t).
Mimicking the calculation in the proof of Theorem 3.1 we get

rr < sup E(p — tr(I + 79%)71).
Geg

On the other hand, matrix differentiation and basic matrix algebra show that the
linear I-minimax estimate is

((r+ () ) )

and the corresponding linear I'-minimax risk is

-1
p—tr <I+ (sup ET) \P) .
Geg

Therefore, the bound on p (which generalizes that in Theorem 3.1) is

«  p—tr(I + (supgeg E7)¥) 7!

(5:2)  supgeg(p— tr E(I + 7¥)"1)

As is apparent from this equation, the bound (5.2) depends on the dimension p of
the model.
We give two examples of the calculation of p* in the general case.

THEOREM 5.1. If a random wvariable T is as in (3.5), i.e. it belongs to the
class of all symmetric and unimodal distributions on [a,b], then the relation p* =1
remains valid.
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PROOF. Let Aq, Ag,..., A, be the eigenvalues of the matrix ¥. Then

1
1+C/\i,

P
rp =p—tr(l+c¥)7? =p—z
i=1

and

Y4
1
Z pUlZ
e 2 sup (p'E EY! Zi211+(c+UZ))\i>

p
1 1+cehi+Z)
= - E%) 1 - -1
Sg'p (p Pt 27X, o8 1+ C/\i - Z/\,)

For the choice Z = 0 (among all random variables on [0, 252]), the previous
supremum is achieved and has the value

N |
p- ; 14+ C)\i ’
Therefore, p* = 1.0

Ezample 5.1. The bound (4.2) can be generalized as well. Let Aj, Ag,..., Ap
be the eigenvalues of the matrix W.

mS? -1 P m—2
= — \I’ = —_ —————————
L=p tr(Iij—2 ) P Zm—2-|-m.5'2/\

0> sup (p— Etr(I +71%)" 1)
0<o<S

2\ 2
(")
2 /oo P t—l—-m/z —m62/2t
= 8su — —€ dt
0oes T (T) o = L+t
> =

2 m/2 2
ZP—Z mS )\1 Tem52’\"/21‘ __@,mS /\i )
, 2 2 2 2

=1

Therefore,
_y» __m=-2
p* — P Ei:l m— 2+ mS2)\,~
_— mS2x\ ™ M msts,sop (M mS?A
=1 2 2 27 2
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