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Abstract. Our main concern is about second order admissibility under mean
squared error. A sufficient condition and a necessary condition for a modi-
fied maximum likelihood estimator to be second order admissible regardless of
parametrization are obtained. In addition, some procedures for characterizing
such estimators are provided.
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1. Introduction

Second order asymptotic efficiency of the maximum likelihood estimator
(MLE) has been discussed by many authors under several criteria. In particu-
lar, the theory of second order optimality on the basis of a mean squared error has
been studied by Rao (1963), Ghosh and Subramanyam (1974) and Efron (1975).
Pfanzagl and Wefelmeyer (1978) and Ghosh et al. (1980) showed the optimality
of the MLE 6, for regular loss functions including quadratic loss under general
conditions. Their works can be summarized as follows: any first order efficient
estimator is inferior to a certain modified MLE a7 + %C(QM L) with the same
asymptotic bias structure under regular situations. This assertion suggests that
any estimator in practical use can be chosen from the class of estimators of the
form Oy + %c(b‘M 1), but gives no idea of how to choose the second term c(-).

We are concerned with finding out, if possible, an optimal estimator from a
class of estimators of the form 6 ML+ %C(OM ). One serious problem is, however,
that no optimal estimator exists in the sense that it minimizes the second order
term of the mean squared error uniformly in a parameter 6. As one approach to
solving this difficulty, Ghosh and Sinha (1981) and Levit (1980, 1985) discussed the
optimality of estimators under weaker properties such as second order admissibility
or minimaxity.

In this paper, we will consider a desirable modification of the MLE based on
the concept of second order admissibility. Ghosh and Sinha (1981) have given a
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necessary and sufficient condition on ¢(-) for an estimator Opr = Opr + %c(éM L)
to be second order admissible (see Lemma 3.1). As a result, an optimal estima-
tor in the sense of second order admissibility is characterized under a specified
parametrization 6.

Our main concern is to characterize the modification of the MLE with second
order admissibility regardless of parametrization. It should be noted that the
choice of parametrization has a great influence on the optimality of the estimators
in our situation. It is well known, indeed, that in a statistical decision problem
under mean squared error, the second order admissibility is not parametrization-
invariant.

Thus, our problem is to obtain a set of bias-adjustment factors ¢ such that
the estimator 83,7 is parametrization-invariant with respect to second order ad-
missibility. Here it is worth noting that the arbitrariness of the function ¢(-) will
complicate the problem greatly. So we will restrict the discussion to a subclass 7
of estimators with the form given in (3.3). We can realize the justification of such
a restriction on the grounds that the estimators in the class 7 have an asymp-
totically similar structure up to o(n~!) with respect to mean squared error as the
MLE itself or the bias-corrected MLE.

Under the general conditions according to Gusev (1975, 1976), we have derived
a sufficient condition for the estimator 9M L in 7 to be parametrization-invariant
with respect to second order admissibility (see Theorem 3.4). This result suggests -
an interesting solution to the second order estimation problem under mean squared
error. Namely, an estimator of the form (3.9) is, in our situation, not inferior to
any estimator regardless of parametrization. This shows that the estimator is one
of the optimal estimators under mean squared error and is of great use. On the
other hand, a necessary condition is described in Theorem 3.5.

In Section 4, we formulate a procedure for specifying a set A of the pairs
(a, B) such that the estimator @psy in 7 is always second order admissible for
any choice of parametrization 6. As a result, the only work we should do is to
check the necessary and sufficient condition given by Ghosh and Sinha (1981) for
the set satisfying the condition in Theorem 3.5. Furthermore, as a special case,
we establish a simpler procedure (see Theorem 4.2). As seen in Section 5, the
procedure is applicable to many statistical models.

2. Preliminaries

Suppose that a parametric model is indexed by a parameter § and the pa-
rameter space © is the whole real line. Let X;, X5,..., X, be a sequence of in-
dependently and identically distributed real-valued random variables with density
f(z,0). Throughout this paper, we assume the usual regularity conditions which
guarantee the validity of formal asymptotic expansions of the MLE and the Taylor
expansion of the mean squared error of the MLE up to o(n™2). In particular, we
make use of the regularity conditions of Gusev (1975, 1976).

Next, we shall introduce the following notation. The derivative with respect
to @ is denoted by a prime, and the Fisher information by Iy. Hereafter, we shall
suppress the parameter § in writing when no possibility of confusion exists. We
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define the symbol p;;x as

Mijr = Eg

AN f// J f/// k
(7)(7) ()]
Then, in our notation, we have the following lemma about relationships between
p’s (see Lemma 4 in Gusev (1976)).

LEMMA 2.1.

(1) I' =2p110 — p300,

(2)  #h10 = Ho20 + t101 — H210,
(3)  m300 = 3p210 — 2p2400-

Now, recall that the expansion of the mean squared error of the MLE is guar-
anteed up to o(n™2). Then, by expressing the results of Gusev (1976) by means
of our notation, it follows that

ElaBus - 0)] = 5 +o(n™),

and
ElvnvI(0umz - 0))?

1 {15}1%10 — 44300 01 + B210 — Haoo +I2} +o(1)

=1+3 4T g n
Thus, we obtain the following expansion for the modified MLE Opr = éM L+
%C(GML);
. 1 . 2
(2.1) E [\/ﬁ\/f(()ML + Ec(eML) - 0)]

N (Y %E[\/El(éML — 9)e(Barr)]

I .
+EE[C(0ML)]2
1 { 150310 — 44300 H101 + f210 — paco + 12}

=1+ o 413 12
1 H110 d 2 1

- —— 2— I - ].
+n{ Fi c+ doc+ crto o

For any reparametrization 7 = ¢(#), let us denote the quantity corresponding
to pijk by vijk. Then some v’s are related to the u’s as

Iy 1 g’ H300
(2~2) In = ngy Vito = gTS (,Ullo - ?Io y V300 — F

Now, we note that, in view of (2.2), the quantity psoo/Ipy/Ip is invariant under
any parametrization.
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3. Some conditions for parametrization invariance with respect to second order ad-
missibility

Our purpose is to characterize the modification of the MLE with second order
admissibility regardless of parametrization. For the purpose, the result of Ghosh
and Sinha (1981) will play an essential role. Their result gives a necessary and
sufficient condition for the estimator 87, to be second order admissible under a
specified parametrization 6.

LEMMA 3.1. The estimator Oy, = Opr L+%c(éM 1) is second order admissible
for a parametrization 0 iff, for some —oo < 8y < 00,

00 @
(3.1) /o Iy exp {— /9 b(u)Io(u)du} df =

and

(3.2) /_00 Iy exp {/:O b(u)Ig(u)du} df = oo,

where b = ¢ — p110/213.

Our aim is to obtain a set of the functions ¢(-) satisfying the criteria (3.1)
and (3.2) under any parametrization. However, the problem is very complicated
and troublesome on account of the arbitrariness of the function ¢(-). So, we will
consider a subclass Cg of the bias-adjustment factors c:

5\ 110 #4300
- 2 ) £110 — 1B
a={(a+3)r o0

a,fB € R} .
Now, we define a subclass 7 of the modified MLE as

(3.3) T= {éML = éML -+ %C(éML) C() € Cg} .

A justification of such a restriction to the subclass 7 will be realized from
Lemma 2.1 and the expansion (2.1). In fact, it is easy to see that the estima-
tors in the class 7 have an asymptotically similar structure up to o(n~!) with
respect to mean squared error as do the MLE and the bias-corrected MLE up to
o(n1). In addition, it should be noted that the class 7 includes the asymptotically
expectation-unbiased estimator with (a,8) = (—3/2,1) and the asymptotically
median-unbiased estimator with («, ) = (—5/2,7/6).

Now, our problem is reduced to how to constitute a set .4 of pairs («a, 3) such
that 0pr is always second order admissible for any choice of parametrization 6.
We shall begin with the following lemma:

LEMMA 3.2. When a = -1, second order admissibility or inadmissibility of
the modified MLE 6y, is preserved under any monotone differentiable reparame-
trization n = g(6).
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PROOF. By virtue of Lemma 2.1(1), the left-hand side of the criterion (3.1)
for the parametrization @ is reduced to

0 4
(3.4) /9 exp{—/o ( u};0+ﬂu300) }dﬁ.

On the other hand, criterion (3.1) for the parametrization 7 is

@9 Jyood= [ (oot Jaujan
7o no

where the parameter space for 7 is an interval with end points, 7 and 7, (—oco <
n < 7 < 00). Thus, making use of (2.2), criterion (3.5) is, by the transformation,
equal to

36)  ¢'(60) / exp{ / ( QM gl _ (o +1)g">du}do.

Now, for & = —1, (3.6) is equivalent to (3.4) except for a multiplicative term
g'(6o). This shows the equivalence of criterion (3.1) under any parametrization as
a = —1. We also have a similar consequence for criterion (3.2). These lead to the
assertion of this lemma. [J

We note that this lemma suggests a key to the solution of our problem. In
fact, it will be natural to guess from the result of the lemma that the set in C with
a = —1 will play a central role hereafter. Furthermore, it will be doubtful whether
parametrization invariance is met for a # —1 because of the form of criterion (3.6)
in the proof of Lemma 3.2. Indeed, this fact will be shown later.

The following lemma, is easily derived from the regularity condition:

(3.7) nf / F(z,7) — f(z,7 — 1)]dz > 0.

LEMMA 3.3. It holds that
00 )
(3.8) /’¢amz/ VTpd6 = 0.
00 — o0

Proor. By Cauchy-Schwarz inequality, we have

hz/wmmm.
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Accordingly, it follows that

0o+1 fo+1
/ V1gdt z/ /|f’(x,0)[dxd9
6o )

> / / " a0y

6o
- / F(2,80 +1) — £(z, 60)|dz.

dx

Therefore, we have -
fGo+n

/ VIedo > V1sd6
6o 9,

>y [1£(e.00+1) = fla,b0+i = Dide.
i=1
As n — oo, by the regularity condition (3.7), it holds that

/ \/ﬂde = 00.
9o

A similar argument leads to the other equality. O

In view of Lemmas 3.2 and 3.3, we have a sufficient condition for the es-
timator @yrr in 7 to be parametrization-invariant with respect to second order
admissibility.

THEOREM 3.4. The modified MLE Oy,

s A 1 (3pi10  H300
(3.9) Orr = Onpr + ( 213 213 )

n ’

6=0nmr

that is, the estimator with the pair (o, 8) = (—1,1/2), is second order admissible
under mean squared error, independent of any parametrization.

This theorem gives an interesting and important solution to the second order
estimation problem under mean squared error. Namely, an estimator of the form
(3.9) is optimal in the sense that the estimator is not inferior to any estimator in
our situation. 3

Next, we will give a necessary condition for the estimator fpsr in 7 to be
parametrization-invariant with respect to second order adimissibility.

Here, we shall notice that, without loss of generality, we can take the parame-
trization 7 such that I, = 1 on the whole real line. Suppose that the regularity
conditions of Gusev are satisfied under a parametrization §. Now, we consider a
reparametrization 7 = ¢(0):

6
n= V1g(u)du.
fo
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Then, the parameter space for the parametrization 7 is the whole real line on
account of Lemma 3.3. In addition, we have I,, = 1 on (—o0, 00) since I,, = I5/g'*

and ¢’ = /T.

At first, we will show that the estimator with the pair (0,0) does not preserve
the second order admissibility. We take a parametrization @ with Iy = 1 on
(—00,00). Let a reparametrization be n = e?. Then, the criterion (3.2) is

70 o ]
/ I, exp {/ (25}—m — %)du} dn = / I,dn < oo,
0 n n n 0

since I,’, = 2uy10 — V300 in view of Lemma 2.1 (1). This shows that the pair
(0,0) does not lead to second order admissibility under the parametrization 7.
Therefore, the estimator @77, with the pair (0, 0) is not parametrization-invariant
with respect to second order admissibility.

Next, we will prove that for & # —1 the second order admissibility is never
preserved under any parametrization. We denote by K(8) the region of k such
that the pair (—k, k() is second order admissible under any parametrization. Then,
under a parametrization § we have for k € K(3):

o0 6
(3.10) / exp —/ (—k““o + kﬁ“”") du s df = oo
9o 8o Iy Iy
and . .
/ exp / (_ kpaio + kﬁ%oo) du b do = oo,
—00 I Ie IG :

Now, we consider a reparametrization n for any constant «:

6 T
?7=/ exp{—/ (_K/iuo +Nﬁ#300)du} dr.
0 70 Iy Iy

Then, it is easy to see that the parametrization 7 is a monotone transformation.
For the parameter 7, criterion (3.1) is

Ui n
(3.11) / exp {—/ (— k1o + k‘l@@.) du} dn.
o o Iﬂ I’I

By variable transformation, (3.11) is reduced to

oo /] "
— k
(3.12) / g exp {—/ ( kIlLuo + kﬁ?soo + i,)du} dé
o o 6 6 g

oo 9/
= / exps —(k+k— klﬁ:)/ ( P10 ﬁu%o)du de,
8o o \ 1o Iy
0
/ K110 Hﬁl%oo)
= -/ (- +
oo {- [ (- ) |

since
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and
"

9" _ kpuo  KBusoo

g Iy Iy

Therefore, for the preservation of second order admissibility, it follows from (3.10)
and (3.12) that if k € K(8), k + x — kx = —(k — 1)(k — 1) € K(B) for any & on
(—00,00). Thus, K(3) must be {¢}, {1} or {(—o0,00)}. Now, since 0 ¢ K(f) as
shown before, K(3) = {(—o0,00)} is inappropriate. Therefore, we have K(3) =
{6} or {1}, ~

Next, we consider the region K(8) of k such that an estimator with the pair
(0, kP) is second order admissible under any parametrization. A similar argument
leads to K(8) = {¢}. These facts show that, for & # —1, the second order
admissibility is never preserved under any parametrization. This leads to the
following result:

THEOREM 3.5. A necessary condition for the preservation of the second order
adimissibility is a = —1.

4. A characterization of the estimators with parametrization invariance

According to the argument in Section 3, we can formulate a procedure for
characterizing a set A of pairs (o, 3) such that the second order admissibility is
preserved under any parametrization, as follows.

First, we consider a parametrization ¢ satisfying the regularity conditions of
Gusev. For the class of estimators 857 with the pair (—1,3), we check criteria
(3.1) and (3.2) and constitute the region S(B) of B such that the criteria are
simultaneously satisfied. Then, the estimators 6ps;, with (—1,3) for 8 € S(B)
are second order admissible, independent of any parametrization. In addition, no
parametrization invariant estimator exists in 7 except for those.

It is worth noting that, as a special case when p3zp = 0, we have only one
estimator in 7 with parametrization invariance with respect to second order ad-
missibility, in the form

= 5 1 3u110
4.1 7] =40 —
(4.1) ML ML+ - 2102

6=0n1,

The procedure above is applicable to many models. However, there are some
cases where it is not easy to check criteria (3.1) and (3.2). So, we will introduce
an easier method for finding an S(). Let us denote the limits of usoo/Igv/Ip as
0@ — oo and # — —oo by ¢; and ¢y, respectively.

Then we have the following theorem:

THEOREM 4.1.

(1) When ¢; > 0, criterion (3.1) is satisfied iff 3 < 1/2.
(2) When ¢; <0, criterion (3.1) is satisfied iff B > 1/2.
(3) When co > 0, criterion (3.2) is satisfied iff B > 1/2.
(4) When ¢z < 0, criterion (3.2) is satisfied iff 3 < 1/2.
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PROOF. Since each proposition is proved in the same manner, it suffices to
show only proposition (1). As shown in Section 3, without loss of generality, we
can take a parametrization 8 with Iy = 1 on (—00,00). For a sufficiently large 6,
we have Jm\/— > ¢ — ¢ for sufficiently small € > 0. For 8 < 1/2, it follows that

(0-3) 22 Vi< (5-3) -9 =c <0

Now, criterion (3.1) is reduced to
00 [4
/ Igexp{—/ ( Hio +(ﬂ—1)u300)du} do
90 o\ lo Iy
/ \/Eexp / J 30 du  db
90 2 Io

> / exp{—(0 — 0p)cc}df = oo
o

Thus, for B < 1/2, (3.1) is satisfied. Next, when 8 = 1/2, it follows from Theorem
3.4 that (3.1) is satisfied. Finally, when 3 > 1/2, we have

00 4
_ K110 _ 1y 300 :
/90 Igexp{ /90( a +(B-1)— ) }d@

< / exp{—(0 — bp)c. }db < oco.
o

These lead to proposition (1) of Theorem 4.1. O

By Theorem 4.1, we can obtain an easy method to get the region S(8) with
parametrization invariance.

THEOREM 4.2. (1) When ¢ and ¢y have the same sign, 8 = 1/2 is a neces-
sary and sufficient condition for the estimator Gx71 to be parametrization invari-
ance with respect to second order admissibility.

(2) When ¢, and co have the different sign, a necessary and sufficient condition
isB3<1/2ic;>0and 8>1/2 ifc; <O.

We note that Theorem 4.2 is applicable to such a statistical model that its
parameter space is the whole real line. When the parameter space is not the whole
real line, we need to develop a theorem in a different form.

Suppose that the parameter space for a parametrization 4 is an interval with
end points,  and 8. Assume that the parameter space for a monotone increasing
reparametrization 7 is the whole real line, and the regularity conditions are satisfied
under 7. Then, as noted at the end of Section 2, we have

H300 _ V3o0

I 1\/"
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Therefore, it holds that

300 . V300
= lim

lim 0. = 00
=0 IoyTs 10 Iy/T,

and
li 300 i V300

im —— = lim ——.
0—8 Ig\/Tg  n—o0 I,\/T,

This shows that the criterion of Theorem 4.2 holds regardless of parametrization.

Then we have the following corollary:

COROLLARY 4.3.  Suppose that the parameter space for a parametrization 0
is an interval with end points, § and 8. Defining

H300 —d, m H300 dy,

IpVT,

we have the following propositions.

(1) When d; and d2 have the same sign, § = 1/2 is a necessary and sufficient
condition for the estimator 6pr to be parametrization-invariant with respect to
second order admissibility.

(2) When d; and ds have a different sign, a necessary and sufficient condition
is3<1/2ifdy >0and B>1/2ifd <0.

lim
6—6

Now, we should notice that our results in this section are derived from the
consequence of Lemma 3.3. Therefore, in actual examples, it suffices to check the
equalities (3.8) instead of the regularity condition (3.7).

5. Examples

In this section, we will actually constitute the class of estimators with parame-
trization invariance with respect to second order admissibility. By virtue of The-
orem 4.2 and Corollary 4.3, it is easy to obtain the region S(3) for several cases.
Now, it is easy to see that all the examples below hold the equalities (3.8).

Ezample 5.1. We consider the location model with the density f(z,8) =
f(z — 6). Then we note that the quantities p300 and Iy are constants. Therefore,
for psgo = 0, we have only one solution (4.1). When 30 # 0, we get S(8) = {1/2}
by Theorem 4.2, since ¢; = ¢z # 0.

Ezample 5.2. We deal with the scale model with the density f(z,0) =
f(z/6), 6 > 0. Then, it is easily shown that p3o0/Iev/Tg is a constant. Thus,
we have S(8) = {1/2} in view of Corollary 4.3.

Ezample 5.3. We treat the two-dimensional normal model N(ng,Iz) with
nt = (8,6%/2) (see Efron (1975)). Since p3o0 = 0, we have only one solution (4.1).
Here, p110 =0 and Iy =1+ 6.
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Example 5.4. We deal with the two-dimensional normal model with mean
vector p and variance-covariance matrix ¥ where

() ()

Let us now consider the estimation problem of the correlation coefficient §. Now,
by straightforward calculation, we have

1+ 62 26(62 + 3)
Iy = m@ p110 =0, N300=—m-

Accordingly, it holds that

K300 _ 26(6° + 3)
IvIy  (1+62)vV1+62

Therefore, it follows that
di = -2v2, dy=2V2.
Thus, by Corollary 4.3, we obtain S(8) = {8 > 1/2}.

Ezample 5.5. We consider a model with the density
(z - 0)?

1
T,0) = ——exps ——F——~ ¢,
1) = i OF { 2a(6% + b) }
where a,b > 0. Then, we have

1 2, 02 +0 2 1
Ie‘(f}%b)?(”* a ) “‘1°‘(92+b>2<”2)’

8 L 60
H300 = G2 bY8 T a(6% + b)2

Therefore, it holds that

av/a 6
- 8+-)>0
“ @a+1h0a+1( a)

av/a 6
- §+-) <0
2T T 2a+1)vRat1 ( a)

Thus, we have S(8) = {8 < 1/2}.

and
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