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Abstract. Given an M/G /oo queue with input rate A and service-time dis-
tribution G, we consider the problem of estimating A and G from data on
the queue-length process Q@ = (Q:). Our motivation is to study departures of
G from exponentiality, following recent work of Bingham and Dunham (1997,
Ann. Inst. Statist. Math., 49, 667—-679).
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1. Introduction

We study inference for the M /G /oo queueing model, where the input stream is
a Poisson point process Ppp(\) with intensity A and the service-time distribution
G is general; we write a for its mean. This is a semi-parametric problem with
(X, G) the object of study; the parametric sub-problem with (), @) the parameter
of interest will also be studied. For reasons motivated by the applied background
to the problem, we take as our data the queue-length process Q@ = (Q¢)t>0. Our
problem splits naturally into three parts, depending on whether or not we use
(Q:) itself—count data, in which we count customers in the queueing system—or
(I(Q; = 0))—indicator data, in which we observe only the idle and busy periods.
We deal successively with Problems I-III:

I. Parametric estimation based on counts. Here we estimate (), ), using
Little’s formula (u := EQ; = Aav);

II. Non-parametric estimation based on counts. Here we estimate (A,G)
using Reynolds’ formula (which identifies the covariance structure of @ in terms
of the integrated tail of G);

III. Non-parametric estimation based on indicators. Here we use the methods
of Griibel and Pitts (1992, 1993) to estimate (A, G) from the indicator process
(I(Q; = 0))—that is, from the idle-busy cycles.

In each case, we obtain appropriate central limit theorems—one-dimensional for
I, finite-dimensional for II, functional for IIIL.

71



72 N. H. BINGHAM AND SUSAN M. PITTS

Our work complements that of Bingham and Dunham (1997), who consider
two related problems:

A. Parametric estimation for M /M /oo based on counts. Here for the special
case G exponential, A, a are estimated from @ by Markov-process methods;

B. Parametric estimation for M/G/oo based on indicators. Here )\, a are

estimated from data on idle and busy periods, using results on regenerative phe-
nomena.
The work of Bingham and Dunham (1997) was motivated by a problem in statisti-
cal mechanics. In this setting, the service-time law G is known to be approximately
exponential. It was a desire to probe the accuracy of this exponential approxima-
tion by means of the powerful machinery of Griibel and Pitts (1992, 1993) that
motivated this study.

We devote Section 2 to theoretical preliminaries and Section 3 to the applied
background and discussion of the links with the M/M/co model. We deal with
Problem I in Section 4 (Theorem 4.1) and Problem II in Section 5 (Theorem 5.1).
The more difficult Problem III then follows, using the methods of Griibel and
Pitts (1992, 1993): results are in Section 6 (Theorems 6.1, 6.2 and 6.3—strong
consistency, functional central limit theorem, and the bootstrap), and the—rather
lengthy—proofs in Section 7. We conclude in Section 8 by illustrating our results
with some simulation studies and computer graphics.

We work throughout in a continuous-time setting. For a recent study of the
corresponding problem in discrete time, see Pickands and Stine (1997).

2. Theoretical preliminaries

Queueing models typically involve distributions of interest arising as function-
als of other distributions—perhaps involved in the specification of the model—from
which data are observed. One can then use estimators of such distributions, to-
gether with properties of the functional, to obtain estimators of the distributions of
interest. The method is well exemplified by the GI/G/1 queue. Here, the station-
ary waiting-time law py is regarded (in the stable case, with traffic intensity p < 1)
as a functional of the laws ug, ur of service and inter-arrival times. The functional
approach is developed in Griibel and Pitts (1992, 1993), and non-parametric es-
timators for the stationary waiting-time law are obtained in Pitts (1994a). One
passes from properties of one estimator (consistency, asymptotic normality, etc.) to
those of the estimator obtained by applying the functional by using local properties
of the functional (continuity, differentiability, etc.). For instance, for asymptotic
normality we use von Mises’ method—the infinite-dimensional version of the fa-
miliar ‘delta-method’; for background, see e.g. Gill (1989), Gill and van der Vaart
(1993), Andersen et al. (1993), IL8, van der Vaart and Wellner (1996), §3.9.

Here we take a similar approach to the M/G/oo queue, specified as above by
(A\,G). There are infinitely many servers (so there is no queueing—all customers
present are being served). We focus on the ‘queue-size process’ (or queue-length
process) @ = (Q:), where Q; is the number of customers present (being served) at
time t. Write A;, D; for the number of customers arriving and departing in [0, ¢];
thus A, D; are the number of upward and downward jumps of @ in (0, ¢].
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We restrict attention throughout to the case when the system is in equilibrium.
We note the distributional properties of the queue-length process Q, of counts,
which we need for Problems I and II (Sections 4 and 5).

PROPOSITION 2.1. (i) The distribution of the queue length Q; in equilibrium
is Poisson P(u) with parameter p = Ac.

(i) The finite-dimensional distributions of Q are multivariate Poisson (in
particular, are infinitely divisible).

(iii) The process Q has linear regression.

Part (i) of this result is Erlang’s formula; see e.g. Takacs (1969) for proof and
references (e.g. to Erlang’s work of 1917). Note that the limiting distribution of Q
involves G only through its mean a, an example of the phenomenon of insensitivity;
cf. Schassberger (1978), Baccelli and Brémaud (1994), §3.3. We defer discussion
of parts (ii) and (iii) to Section 5.

We turn now to the other main approach we shall adopt, in which instead of
the process of counts Q@ = (Q;) we deal with the process (I(Q: = 0)) of indica-
tors. The time-axis is decomposed into alternate idle and busy periods (also called
spacings and clumps in the coverage-process literature—see e.g. Hall (1988)) ac-
cording as Q; = 0 or Q; > 0. By the lack-of-memory property of the exponential
law, the spacings have the same law E()\) (exponential with parameter \) as the
inter-arrival time law ur. The busy-period (or clump) distribution C' depends on
A and G through the following result (Hall (1988), Theorem 2.2), which we need
for Problem II (Section 5).

PROPOSITION 2.2. (i) The mean clump-length 7y is given by Smoluchowski’s

formula
¥ =EC = (e** = 1)/

(ii) The Laplace-Stieltjes transform C of C is given by
" o0
(%) C(s) :=/ e **dC(x)
0

=143~ ()\/Ooo e~ exp {—,\/Ot(l - G(x))dx} dt)

(iii) The busy-period variance is finite if and only if the service-time variance
is finite, and then

varC = 2¢** )1 /:o <exp {)\/too(l _ G(z))dz} _ 1) dt — (e®* — 1)2/)2.

-1

There remains Problem III, the hardest. Here we are to estimate G given
only the indicator process of @, namely (I(Q; = 0))—that is, given only the busy
and idle periods—and use the results of Proposition 2.2. Thus we are to study the
functional

A\C) -G
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of (x); we do this in Section 5 by an approach modelled on that of Griibel and
Pitts (1992, 1993), Pitts (1994a) for renewal theory and the GI/G/1 queue.
We pause to introduce some notation. Recall that

a :=/0 zdG(z) =/0 (1 -G(z))dz
is the mean of G. Write
H(z) := /:(1 — G(u))du

for the integrated tail of G (it is H, rather than G, that appears in Proposition 2.2).
Thus the normalised integrated tail of G,

G (z) = %H(z) - é /0 "1 - G(w)du,

is a probability distribution (the stationary lifetime distribution of G, in the lan-
guage of renewal theory). It turns out that it is convenient and natural to focus
on H or G* rather than G itself. We thus focus on functionals such as

(A G) = (a,H), (XC) = (a,G).

Note that G* = G if and only if G is exponential, the M/M /oo case.

We note in passing that the intensity A may be estimated easily from the idle
periods, since these are exponential E(\); the service-time law G, our main object
of interest, is much harder to estimate.

Part of the background to this work is the extent to which our M/G/oo
model may be approximated by an M/M /oo model with the same means. Here
G is exponential with mean a, G = E(1/a), and Q is a birth-and-death process,
so Markov—the first-order equivalent birth-and-death process, in the language
of Baccelli and Brémaud (1994), §4.1. Under this simplifying approximation, the
parameters o, A can (Problem A of Section 1) be estimated by standard maximum-
likelihood methods for Markov processes (Billingsley (1961), Example 7.2) as

A(t) = Au/t, a<t>=Dit / Qudu,

the relevant occurrence-ezposure ratios, for which see e.g. Andersen et al. (1993),
Chapter VI. For details, and the relevance of the M/M /oo model, we refer to
Bingham and Dunham (1997).

Working with counts rather than indicators corresponds to observing the
queue-size process—and so, all arrival and departure epochs—but not observing
which customer leaves at a departure epoch. Of course, if we keep track of which
departure epoch corresponds to which arrival epoch, we can observe the service
times directly, and then estimate G directly—without any use of the queueing
model—by empirical-process methods (see e.g. Shorack and Wellner (1986), van
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der Vaart and Wellner (1996)). However, in experimental settings such as those
that motivated this work (discussed in Section 3 below), it may be much harder
to track an individual particle over time than to count the number of particles
present as a function of time. It is thus of prime experimental importance that
we pay no heed to the individuality of different particles, but merely count them.
The same viewpoint is adopted in earlier work on this subject by Brown (1970), in
the setting of light traffic problems in the theory of road traffic. Another similar
setting is that of Nozari and Whitt (1988), who consider an industrial production
setting. Here it may be easy to count jobs in hand (WIP, or ‘work in progress’),
rather than keep track of the starting and finishing times of individual jobs.

3. Applied background and the M/M /oo model

The problem that motivated our work arises in statistical mechanics; see
Bingham and Dunham (1997) for a full description. Particles in suspension move
according to the Ornstein-Uhlenbeck dynamics

(OU) dV, = —BV,dt + cdWy;

here V = (V;) is the velocity process of a particle, W = (W;) is standard Brownian
motion, 1/ is the relazation time, and D := 1c?/f3? is the diffusion coefficient.
The limiting velocity distribution is then the familiar Mazwell-Boltzmann distribu-
tion of statistical mechanics, N(0,3D), and we can make V stationary by starting
it in this distribution. Integrating, one obtains the Ornstein-Uhlenbeck displace-
ment process X = (X;), X; = zo + fot Vudu. f I = [a,b] is an interval on the
line, the distribution of the occupation-time T between entry of X into I and
first subsequent exit from I (we need to average the velocity of entry over the
limiting Maxwell-Boltzmann distribution to make this law well-defined) has been
much studied. This law is not known explicitly, but various asymptotic properties
are known; see e.g. Doering et al. (1989a, 1989b), Hesse (1991). One question
of particular interest about this law is the extent to which it is approximately
exponential.

The above relates to the dynamics of an individual particle. In the setting
of statistical physics, however, we will have a population of similar particles to
observe. As mentioned earlier, it is much easier experimentally to count particles
than to keep track of an individual particle over time. Accordingly, one may seek
to extract information on particle characteristics from observations on the count-
ing process (Q;)—known as a Smoluchowski process in this context—a technique
known as number fluctuation spectroscopy. A classical instance of this was the
Einstein-Smoluchowski theory of diffusion, where Avogadro’s number was stud-
ied experimentally by counting numbers @) of particles in suspension present in
some small region of observation at time ¢. The key parameter of interest here is
a = ET, as 1/a is a measure of the mobility of the particles. A similar approach is
used in studies of spermatazoa, leukocytes and the like. For details and references,
see e.g. Bingham and Dunham (1997).

Now the occupation-time law G corresponds to the service-time law in the
M /G /oo queueing model, or the segment-length law in the coverage-process model.
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There are good probabilistic reasons for thinking that G might be approximately
exponential; see e.g. Bingham and Dunham (1997), §6.3. This is confirmed by the
analytic approximations obtained by Doering et al. (1989a, 1989b), Hesse (1991).
Additionally, modelling (Q;) as a birth-and-death process, with birth and death
rates

Mm=N pn=n/a fn>0, 0 ifn=0,

has obvious intuitive appeal (\, = X reflects the Poisson input stream, u, = n/a
reflects the propensity of each particle present to leave at rate 1/c, the particle
mobility). This again leads to G exponential, and reduces M/G /oo to M/M /.
This M/M /oo model is now fully solved (Bingham and Dunham (1997)). A de-
sire to assess the relevance of these conclusions to the general case—that is, of
the dependence of the M/G/oo model on G, particularly when G is close to
exponential—motivates our treatment of Problems II and III.

4. Count data: parametric approach via Little's formula

Little’s formula is one of the most important general principles of queueing
theory. It holds under very general conditions, and is often stated acronymically
as ‘L = AW’—mean queue-length is the product of the input intensity and the
mean waiting time. For an excellent recent textbook treatment, see Baccelli and
Brémaud (1994), §3.1, and for a survey and further references, see also Whitt
(1991). Extensions of the formula—ordinary and functional central limit theorems,
etc.—have been given by Glynn and Whitt (1986, 1988, 1989), who also give
applications to estimation of parameters in queueing models. In the M/G/oo
case, Little’s formula says that

p=EQ; = Ao,

which is part of Proposition 2.1(i) (for the more general Campbell-Little-Mecke
formula, see Baccelli and Brémaud (1994), §3.2.1).
We proceed as follows:
(a) estimate A by
:\t = At / t,

the occurrence-exposure ratio based on the arrivals by time ¢;
(b) estimate u by the sample mean of Q,

1 t
o= [ Quiu
]
(c) estimate a by
R 1 [t
b= /S = 5 [ Quin
t JO

THEOREM 4.1. The estimator &y is strongly consistent:

& —a (t—o00) as.
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2

If the service-time law G has finite variance 0, one has asymptotic normality:

\/Z(dt - a) —d N(O,O’2/)\)

PROOF. Strong consistency of ), follows by the strong law for renewal theory
(see e.g. Billingsley (1979), 23.12), and of fi; by Birkhoff’s ergodic theorem (see
e.g. Krengel (1985), §1.2); that for &; follows from this.

Asymptotic normality follows from Theorem 1 of Glynn and Whitt (1988) by
the delta method (first-order Taylor expansion: Billingsley (1979), §29; Rao (1973),
§6a.2). First, the independence of the inter-arrival times A,, (which are exponential
E()), so with mean 1/ and variance 1/)?) and service times W,, (which have law
G, with mean « and variance o2) gives the joint central limit theorem required by
the condition (1.1) of Glynn and Whitt (1988) for their Theorem 1. The second
and eighth components of this result give the joint central limit theorem

t
=1/ (At — 2t / Qudu — ,\at) —a (WU NEW - XaD),
0

where U, W are independent, N(0,1/X2) and N(0,02) respectively. A simple
application of the delta method (Billingsley (1979), Example 29.1 with f(z,y) :=
y/z) gives

ﬂ(Ait/otQudu—a> —4 N(0,0%/)). a

Remark 1. We can replace arrivals A; by departures D; in the above, on
using the third component of the Glynn-Whitt result instead of the second. Then
a is estimated by fot Qudu/D;, an exposure-occurrence ratio; see Section 3 and
Bingham and Dunham (1997).

Remark 2. This approach via Little’s formula is considered in some detail
by Glynn and Whitt (1986, 1988, 1989). Their setting is variance reduction in
queueing simulation, motivated by the fact that there A is often known, and using
Arather than estimates of it may greatly increase efficiency. By contrast, they show
that when A is unknown, as here, there is no gain or loss of efficiency in estimating
a directly, from service times, or indirectly, from Little’s law as here. This is
interesting, as it tells us that, when estimating «, there is no loss of efficiency in
not keeping track of individual customers, but observing only the queue-length
process Q.

5. Count data: non-parametric approach via Reynolds' formula

We turn now to the estimation of the non-parametric component G of the
M /G /oo model, using count data (Q;).

Recall from Proposition 2.1(i) that the one-dimensional distributions of the
Smoluchowski process @ are Poisson P(p). The finite-dimensional distributions
are, from (ii), multivariate Poisson; for details, see Lindley (1956) §2, Vere-Jones
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(1968), Milne (1970), §2, Bartlett (1978), §3.4. The regression of Q¢+ on @ is,
from (iii), linear in Q;; see Reynolds (1972), §2, Bartlett (1978), §6.31.

We saw that the approximation of M/G/oo by M/M/oo amounted to the
use of the first-order equivalent birth-and-death process. It turns out that for our
purposes, second-order information—that is, covariance or correlation structure—
suffices. The key fact is that the second-order distributions of Q—its correlation
structure—encode the service-time distribution we wish to estimate by the follow-
ing result, Reynolds’ formula: if

Y(h) := cov(Qith, Qt)

is the covariance function,
p(h) := ~v(h)/¥(0)

the correlation function, then-
p(h)=1-G*(h)

(Reynolds (1968), (1972), §2, (1975), §2, following Riordan (1951), Benes (1957)).
This identifies the autocorrelation function p as the tail of the normalized inte-
grated tail-function of G. Note in particular that the autocorrelation function p
is non-negative.

Since Q is stationary, Birkhoff’s ergodic theorem gives

T
%/0 QirnQidt — p(h) (T —o00) as.

(Krengel (1985), §1.2: the independence of the service- and inter-arrival times,
and Kolmogorov’s zero-one law, show that the tail o-field is trivial). Thus for
fixed h > 0, p(h), so G*(h), may be estimated with arbitrary accuracy from a
sufficiently long segment {Q; : 0 <t < T'} of a realization of Q.

Again, we have a central limit theorem. We present this in discrete time,
partly for mathematical convenience, partly because, in practice, our output will be
a graph interpolating sample values of the correlation function r—estimating the
population correlation function p = 1 — G*—at a discrete set of chosen points. We
may take these equally spaced—at intervals h > 0. For the purposes of this section,
we use suffix notation for discrete arguments, bracket notation for continuous ones:

thus Q; := Q(hi), etc.

THEOREM 5.1. When the service-time law G has finite variance o2, the sam-
ple correlations

LS @ - Q@i - @)
Lyrei-or

rj == r(jh) = L e=-Ya
i=1

are jointly asymptotically normal, with means p; := p(jh):

\/ﬁ(rj - pj);:l —d N(O’ W)7
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where the covariance matriz W = (w;;); ;= 18 given by

o0
Wi = Z{PTH + pr—i = 20:PiHPr+j + Pr—j — 2prp5}-

r=1

ProOOF. We have

/000 p(t)dt = /000(1 — G*(t))dt = é/ooo dt/too[l — G(2)|dz = %]{)musz(u)’

by Fubini’s theorem. Thus G has finite variance if and only if f0°° p(t)dt < oo:
p € £;. Since p is bounded, being a correlation, this gives p € £3 also. A similar
calculation using sums instead of integrals shows that G has finite variance if and
only if 3°0° pn < 00, i.e. (pn) € €. Since (pp) € £eo, this gives (p,) € £2. By
Parseval’s formula, (p,) is thus the sequence of Fourier coefficients of a function
f(A), which is in Lo, and

2w
Sleal =5 [ 5P

In the language of Doob (1953), X.8, f(X) is the spectral density of the stationary
process (Qn); f(A) = |e(X)|?, where ¢()) is the sum-function of the Fourier series
of the coefficients ¢,, in the moving-average representation

Qn =) cibntj ((E)n orthogonal, } _ len|? < Oo)

of (Qn). Asymptotic normality with the stated covariance matrix (whose form
results from the moving-average representation) now follows from Theorem 2 of
Hannan (1976), the necessary and sufficient condition for which is that the spectral
density be square-integrable. (I

For further background, see e.g. Hannan (1970), Hannan and Heyde (1972),
Hall and Heyde (1980), §6.4. The condition of Hannan and Heyde (1972)—that the
best linear predictor is the best predictor—holds here since @ has linear regression
(Proposition 2.1(iii)). Results of this form stem from work of Bartlett in 1946; see
e.g. Bartlett (1955/78), §9.1.

Theorem 5.1 tells us that, if we wish to obtain a plot of the graph of p = 1-G*,
we may choose an interval h > 0 between points and a number s of points to plot,
then use data Q, := Q(rh), 0 < 7 < n to calculate sample correlations (rj)jzl;
these estimate the population correlations p; := p(jh) = 1—-G*(jh) with the usual
rate y/n and normal limits.

From a theoretical point of view, it would be desirable to supplement this with
explicit confidence intervals, particularly for the maximum discrepancy between
sample and population correlations over any chosen range. One might seek a
functional central limit theorem for this purpose, but the covariance structure of
the limiting Gaussian process is complicated, and we know of no such results.
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However, an almost-sure rate of convergence is known in this context: see Hannan
and Kavalieris (1983).

Since G* is monotone, so is p by Reynolds’ formula. One may thus seek
to improve the accuracy of our plot of sample estimates of p by using monotone
regression; see Chapter 1 of Barlow et al. (1972) for background and details. This
procedure is easily programmed and is conveniently packaged in, e.g., Genstat 5
Release 3 (Genstat 5 Committee (1993)).

Since G is exponential if and only if G* is, the accuracy of the M/M/oo
approximation to M/G/oo may be measured from the closeness of p =1 — G* to
exponential. We may thus use the closeness of our plot of —logr to linearity to
assess the closeness of this approximation (which, as we mentioned in Section 2,
was the original motivation for this study).

6. Indicator data: results

We now consider the non-parametric estimation of G, discarding all the in-
formation in the queue-length process @ except whether or not any customers
are present—that is, using only the idle and busy periods. It is remarkable that
satisfactory results—including central limit theorems—can still be obtained.

For Problem III, where we have (I(Q: = 0)) instead of (Q:), we take our data
to be independent random samples of the busy and idle periods. Thus let Y7, Y5, ...
be independent identically distributed positive random variables, the busy peri-
ods, with distribution function C, and let Z;, Zs, ... be independent exponentially
distributed random variables, the idle periods, with mean A~!, independent of
{Y;}. Our aim is to estimate H(z) := [;’(1 — G(t))dt and G using these data.

We take a functional view and express the quantities of interest H and G in
terms of A and C. Equation (x) expresses a relationship between H and (A,C)
which, when rearranged, is

(6.1) )\/Oooe_“exp{—)\H(t)}dt= (14 s/2) (1 = C(s)(1 + s/2) 1)1,

Write F x G(t) for f[o,z] F(t — z)dG(z), and observe that C(s)(1 + s/A)~! is the
Laplace-Stieltjes transform of F := E) x C, the distribution function of the sum
of a busy period and an idle period. Let U = Y ;o F *k be the renewal function
associated with F', where F* is the indicator function I [0,00) Of the set [0, 00), and
for k > 1, F** = Fx F**~1)_ Then (6.1) yields Aexp{—-AH(t)} = ey xU(t), or

(6.2) H(t) = —§ log, (%U(t)) .

Hence H is determined by A and C and we write H = ®(X,C).

Since F has a density f = ex x C, it follows that U — Ijg o) has a density u,
called the renewal density. Differentiating (6.2), and using (ey x U)'(t) = A(u —
ex x U)(t), we find

_ u(t)



NON-PARAMETRIC ESTIMATION FOR THE M/G/oco QUEUE 81

Lebesgue-almost everywhere. Let G and ¥ be defined by

U

é = \I/(/\,C) = G,\TU,

then Q = G almost everywhere. (Since G is right-continuous we can recover G
from G it is more convenient for current purposes to work with G. We later take
a specific version of u.)

Given the data, we define plug-in estimators H, and é’n of H and G respec-
tively, by R
-FIn = "p(/\n; én) én = \I’()\'mén)y

where A\, = ("' 3", Z))"Y, and €, =n" 1 327, I}y, ), the empirical distribu-
tion function based on Y7,...,Y,.

Statistical properties, such as strong consistency and asymptotic normality,
of A\, and C, as estimators of A and C respectively, are known. In Section 7
we establish continuity and an appropriate differentiability property for & and
W. These local properties of the functionals ensure that strong consistency and
asymptotic normalityA carry over from the input estimators A,, and C, to the output

estimators H, and G,; for asymptotic normality, this is the delta or von Mises
method, see Gill (1989).

Before stating strong consistency and asymptotic normality results for H,
and G, we define Dy, to be the space of real-valued right-continuous functions f
on [0, 00|, with left-hand limits that are left-continuous at infinity. A real-valued
function on [0, co) that is right-continuous with left-hand limits, and a finite limit
at infinity may be extended to an element of D,,. Write || - ||oc for the supremum
norm. The theorem below gives strong consistency of our estimators.

THEOREM 6.1. Assume [22dC(z) < oo. Then, with probability one, as
n — 00, A
(1) |Hn = H|loo =0, (ii) [[Gn = Glloc — 0.

The next theorem gives asymptotic normality of the estimators in terms of
convergence in distribution to a Gaussian process in D,. Here we follow Pollard
(1984), Chapter IV, for convergence in distribution in a metric space, giving Do,
its open ball o-field. We write “—,” for convergence in distribution.

THEOREM 6.2. Assume [227dC(z) < oo for some v > 2. Then, in Dy, as
n — 0o,

Q) VA — H) —a Zy, (i) Vi(Gn—G) -4 Zc,

where Zy and Zg are zero mean Gaussian processes.

A natural next step is to find confidence bands for the unknown functions. In
this discussion, we follow that of Griibel and Pitts (1993). Let

Ru(t) = P(VAllH — Hlow <t) and  R(t) = P(IZxll < ).
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For 0 < a < 1, if gn(a) is such that R,(g.(a)) = a, then H, £ n~1/2g,(a) is
an exact 100a% confidence band for H. However R,, is not known. Theorem 6.2
implies that R, (t) — R(t) for all continuity points t of R, and so asymptotic confi-
dence bands could be obtained using quantiles of R. Unfortunately, R turns out to
have a complicated dependence on the unknown A and C. We take an alternative
approach, and use the bootstrap estimator R, for R,. This is constructed so that
R, depends on C, and ), in exactly the same way as R, depends on C and .

First, we give an explicit representation for R, in terms of C and A. Let
F, : R® - D be defined by F,(z) = n™ ' 31" | I1z; 00) for £ = (z1,...,2,) in
R™. Write C®" for the n-th measure-theoretic power of C. Then

Ra®) = [ ] Toa{v/al@(@o(Fa(z)),Fa(y) ~ 20 O)l}dC®" (0)aES" (2),

where ®(F) = fxdF(av))"1 so that ®(F,(2)) = (n~1 30, z;)~!. The boot-
strap estimator R, of R, is defined by replacing C and ) in the above expression
by C, and A\ respectively to get

Ryt)y=n"")"

i€,

: /R Lo g {VAIB(@o(Fa(2), Fal¥iss -, Yi) = 8Chn, Co)lloo HEE™ (),

where i = (i1,...,in) and I, = {1,...,n}". Here we have a combined ‘non-
parametric’ and ‘parametric’ bootstrap, in contrast to Griibel and Pitts (1993) and
Pitts (1994a), where only the non-parametric bootstrap is involved. Let ¢p n(c)
be the a-quantile of R,. Let S,, S and S, be the quantities corresponding to R,
R and R, when & is replaced by ¥ and H by G, and let GG () be the a-quantile

of Sn. Then our final theorem shows that ‘the bootstrap works.’

THEOREM 6.3. Suppose that 0 < a < 1. Assume that [z?7dC(z) < oo for
some vy > 2. Then, as n — 00,

(i) P(le/ﬁ(I?n — H)|loo < Gan(a)) = a
(ii) P(|lvr(Gn - G)lloo < do () — a.

Moment conditions. In Theorem 6.1, our moment condition is finite vari-
ance, which is natural and that used in Theorems 4.1 and 5.1. By contrast, Theo-
rems 6.2 and 6.3 require finite (4 + €)-th moments for some € > 0. This condition
derives from results of Griibel and Pitts (1993), Proposition 3.15 and Theorems
2.2 and 2.3; we will not pursue the question of weakening it here. However, we
suspect that the condition can be dropped if we are content to restrict ourselves
to estimation of H, G* on a compact set (as in Griibel and Pitts (1993), §4.3)—as
we have already done in Theorem 5.1.
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Extensions and further work. The confidence bands (confidence regions in
Dy,) obtained here are constant width. One possible way to have non-constant
width bands is to establish conditions for the functional to map into a Dg-space,
and to rework the analysis of the functional in this case. A related direction for
further research is to investigate weight functions for the output processes using
the approach of Csorgd and Zitikis (1996).

7. Indicator data: proofs

7.1 Preliminaries
We now define weighted versions of D, as in Griibel and Pitts (1993). For
B>0and f:[0,00) — R, let Tgf be given by

(Tsf)(x) = A+ 2)Pf(z), z>0.

Let Dg be the set of all f : [0,00) — R such that T f is (extendable to) an element
of Do, For f in Dg, write | f||g for |Taf|lco- In the following proofs, we write
||l for sup, |(Tf)(t)| for a function f with T f bounded, but not necessarily in

Dg.
The next lemma relates || - ||s-norms and convolution. Let V be the set of all
real-valued functions V on [0,00), that are right-continuous and nondecreasing.

LEMMA 7.1. AssumeV €V, f:[0,00) = R. Let 3> 0. Then

1 Vlig < 281 £lls{llIV looTj0,00) = Vil + IV lloo }-

PROOF. See Pitts (1994b), Lemma 2.3. O

We also need the space L' of functions f : [0 00) — C with || fll = [ |f(t)|dt <
oo. For f and g in L, define fxg by fxg(t) = [~ f(t—x)g(z)dz. Then (L, ||-||, *)
is a commutative Banach algebra without a unit. Let L = {(f,): f € L',a € C}
be the space that results when we append a unit element to L!. We wr1te 6o for
the unit element (0,1), and f + ado for (f, @).

We need the following two results. If 5 > 1, then

(7.1) fn = fllg = 0= ||fn - fll = O.
If h is a bounded function and g is in L then

(7.2) |hn = hllo — 0 and llgn —gll = 0= |hn * gn — A * glloc — 0.
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7.2 Proof of Theorem 6.1

The main part of this proof is to show that the functionals & and ¥ are
continuous. Suppose that A and {\,}32, are positive numbers, and that C' and
{Cn}2, are distribution functions concentrated on (0,00). We show that, if
Cpn —C — 0 in an appropriate D-space and A\, — A, then ®(\,,C,) — ®(\,C)
in Dy, and similarly for ¥.

The key step is a continuity result for the functional taking a probability
density function onto the corresponding renewal density, given in Proposition 7.4
below. First we need the following definition. For f : [0,00) — R with [ |f(z)|dz <
0o, define £f : [0,00) = R by (£f)(¢) = [° f(z)dz. Let (f + abp) = =f. Then
IZflle < Ifll, and if fJ°z|f(z)|dz < oo then Lf is in L!. The next lemma
collects some results about convergence of f,, f, and LXf, (= Z(Zf,)).

LEMMA 7.2. Let f and {fn}32, be probability density functions on [0, o)
with || fa — flloo — 0 as n — 0o. Then

@) [fa=Ffl—=0 and (i) [|=fn—Zflloo — 0.

In addition, let my,, = [zfno(z)dz < 00 for all n, mi; = [zf(z)dz < oo, and
suppose m; , — my as n — 0o. Then

(i) [Sf-Sfl =0 and (V) IESfn—EEfleo 0.

PROOF. (i) is Scheffé’s Theorem, see Billingsley (1968), p. 224, and (ii) fol-
lows from (i). (iii) follows from (ii) and Theorem 1 in Pratt (1960), and (iii) implies
(iv).O

The next lemma gives a representation of the normalised renewal measure,
involving inverses of elements of L. An element z in L has an inverse if there exists
an element z*(-1) in L such that z * z*(-1 = §,.

LEMMA 7.3. Let f be a probability density function on [0,00) with
[ z?f(z)dz < oo, and with associated renewal density u. Then, as elements of
L,

(7.3) u+50—mil:%(sz—2f+m1§0)*(Zf_f+50)*(—l)_

PROOF. For proving equality of elements of L, see Griibel and Pitts (1992),
Section 3. If f + adp is in L, let (f + ado)(0) = f0°° %% f(x)dz + a. From Griibel
(1989), Section 3, we have that u + 6o — (1/my) is in L with

1\ mi— (SA0)
(“* b - m_1> O = i=7e)
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for 8 # 0. From the proof of Theorem 1 in Griibel (1986), we have
(Bf = f+60) (8o —e1) =60 — f,
and similarly we obtain
(ZXf —Zf + mibo) * (6o — e1) = mybo — Xf.
Hence for 8 # 0,

1\, (SZf—Zf +mi6)(6)
<“+‘5°"_>(9)‘ ml(zf—f+50)?(9) ‘

my
This also holds for § = 0 by continuity. Finally the do-parts of both sides of (7.3)
are equal to 8g. O

This representation is used in the next result, which gives uniform convergence
of renewal densities.

PROPOSITION 7.4. Let f and {fn}3%, be probability density functions on
[0,00) satisfying [ z%fn(z)dz < 0o for all n and [2?f(z)dz < co. Assume that
min = [Tfalz)de —» my = [zf(z)dz and ||fn — flloo — 0 as n — co. Then
there erxist versions u, and u of renewal densities associated with f, and f such
that

lun —ulloo =0 as n — oo.

PROOF. Let
(7.4) g=Ef-f+6)"V -8 in L.

Then g is in L' and there is a version g such that

(7.5) g(t) = —(Zf = )t) — (Bf - f)*g(t) forall ¢
Similarly let g, be a version of (X fy, — fn +80)*("1) — 6o such that g, (t) = —(Zfn—
F2)(&) — (Sfn— fn) *gn(t) for all t. Since the map z +— z*(=1 is ||-||-||- || continuous

at invertible x € L, we know that |g, — g|| — 0, by Lemma 7.2. Using Lemma 7.3,
let u be given by

u—mil =mY(EEf - Zf) + g+ mi'g* (EZf - f),

and similarly for u, —m :L Then, for all t,

(0= 77) = (0 5)

< H L (0 - Bfa) — o (T5S Ef)H + llgm — gllo

min

1

s

+ [|gn *

(S04 - Bfa) - g% (557 - Ef)H .
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The first term on the right-hand-side tends to zero by Lemma 7.2. The third term

tends to zero using ||g, — g|| — 0 and (7.2). Similar methods work for the second
term, on using (7.5). The proposition now follows since m;_ L —»mil.o

Note that, if f is bounded, then g and u above are bounded.
Consider now continuity of our functionals ® and V. As a first step, it is easy
to check that, for 8 > 0,

(7.6) A— A as n—ooo=|E\, —E\llg a n— oo

Let F, = Ey_, « C, with density f, = ey, * C,. We need the following results
about convergence of F;, and f,.

LEMMA 7.5. Suppose that 8 > 0, |1 = Cllg < o0, ||Cn = Cllzg = 0 and
An — A asn — o0o. Then
(i) [|1Fn = Flig — 0;
(ii) if B> 1 then [zP dF,(z) — [2 dF(z) for 1 < B’ < B;
(iii) [|fa — fllo — O

PROOF. Lemma 7.1 and (7.6) give (i), and (ii) follows easily from (i). Using
(7.7) f=XC-F),
(iii) follows from (i). O

Let my = [22dC(zx), ma, = [22dCp(z), H, = ®(\s,Cy) and G, =
U(An, Cr).

PROPOSITION 7.6. Suppose > 1, ||1-Cl|lg < 00, [|[Cr—Cl|lg = 0, Ay — A,
Mo, < 00, and mg < 0o. Then, as n — oo,

() ||Hp — Hlloo— 0 and (i) [|Gn—Glleo — 0.

PRrROOF. We first show that
(7.8) ||e)\n*Un—e,\*U||oo — 0.

The conditions of Proposition 7.4 are satisfied, using Lemma 7.5(ii) and (iii). With
appropriate versions of u,, and u,

llex, * Un —ex* Ulloo < llea, — exlloo + llex * tn — ex * ujoo-

The first term tends to zero because of (7.6) and A,, — A. The other term converges
to zero by (7.2), using |lex,, — ex|| — 0 and Proposition 7.4, and (7.8) is proved.
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To prove (i), we have

(19 |Ha(t) - H@)| < Ai

e (2584) (222

o3 o (2500

The function t — ey * U(t) is continuous and positive, with value A when t = 0
and finite positive limit as ¢ — oo. Thus this function is bounded away from
zero on [0,00). Using the mean value theorem, (7.8), and A, — ), we have that
the first term on the right-hand-side of (7.9) tends to zero uniformly in . Since
|log.((ex » U)/A)| is bounded, the second term also tends to zero uniformly in ¢.
The proof of (ii) is similar. O

+

We now consider strong consistency of our input estimators An and C,,. Using
the Strong Law of Large Numbers, we obtain that A, — A with probability one.
From Lai (1974) (see Shorack and Wellner (1986), Section 10.2) it easily follows
that, since [ 22dC(z) < oo, we have ||C, — C||l, — 0 as n — oo almost surely for
0 < v £ 2. Combining Proposition 7.6 with these strong consistency results for
the input estimators gives Theorem 6.1, using the methods of Griibel and Pitts
(1993).

7.3  Proof of Theorem 6.2 A

The finite-dimensional delta method gives asymptotic normality of A, as fol-
lows. By the Central Limit Theorem, if p = 1/A and fi, = 137" | Z;, then
Vi(fin — 1) =a N(0,A72). If ¢ : R — R is differentiable at p, then /n(é(i,) —
d(p)) —a N(O, (¢'(1))?>2~2). Applying this with ¢(t) = t~!, we obtain

(7.10) Vi, = A) =4 N(0, A2).

Asymptotic normality of the other input estimator C,, follows from a classi-
cal result on weak convergence of weighted empirical processes (O’Reilly (1974),
Csorgd et al. (1986), see also Shorack and Wellner (1986), Section 3.7). Write B
for a standard Brownian bridge. Then under the conditions of Theorem 6.2 for
0 < B < 7y we have B(F') € Dg with probability one and

(7.11) Va(Cr—C) -4 B(F) as mn—oo in Dg.
In order to apply the infinite-dimensional delta method, we must establish
differentiability of ® and ¥, see Gill (1989). This is done in Proposition 7.9. We

first prove differentiability for the renewal density functional.

PROPOSITION 7.7. Let f and {fn}3%, be probability density functions on
[0,00) with [ 22 f(z)dz < 00, [ 2% fn(z)dz < 00 for all n, and f bounded. Suppose

that
IvVn(fa = f) = gslls — 0,



88 N. H. BINGHAM AND SUSAN M. PITTS

for some B > 2, where ||gfllg < co. Then there exist versions un, u of renewal
densities associated with f, and f, such that

lvr(un = u) = vlle — 0,
where v = T(gy) for some linear bounded map T'.

PROOF. Since 8 > 2, the assumptions and (7.1) imply that

(7.12) ||V(fa— ) = 95llo =0 and  [Vn(fa = f) — gsll =0,

and
(7.13)  IV(Zfa — =f) — Zgfllo = 0 and  [[Vn(Efn — Zf) — Zgs|| — 0.

From the representation in Lemma 7.3, the required limit involves the limit of
vn(gn — g). The map taking a in an appropriate subset of L onto (6o + a)*(=V in
L, is Fréchet differentiable there, with derivative given by z — —(6o + a)* =2 x g
(see Rudin (1974), 10.36). Thus, since (7.12) and (7.13) hold,

Vi(gn — ) > —(fo+ Bf — )P x (Sgs —g;) in L.
Let v; be the version of the right-hand-side given by
v = —(Zg5 — g5) — 29 * (g5 — 95) — "% * (g5 — 95),
where g is as in (7.5). Then v, satisfies
v =~(2g5 —gf) — (Bf = f)»v1 — (Zgr —g5) * 9
Using this v; and (7.5), we have

|(V(gn — g) — v1)(®)]
<|V{(Efn — fo) = (Bf = )} — (Bg5 — 9£)) ()]
+ |\/"_l(gn —g)* (Bfn — fa)(t) —v1 % (Bf — HE)I
+ {Vn((Bfa = fo) = (B = £)) — (Zg5 — g5)} * 9(B)]-

Each of these terms tends to zero uniformly in ¢ by (7.12), (7.13) and (7.2), and
so

(7.14) Vn(gn — 9) — v1llo — 0.

Let g5 = [ zgs(z)dz, and

-t _sg) - Y mnf - Lsnf-
v= o(Sgy — Tgp) = (5SS — B + v+ -(SEf ~ Bf) v

1 gaf g5
_ Vg -3 - D30 3F 2D 3) A L
19*( a5 gf) %g*( f f) %
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Then, with the versions of u, and u as in Proposition 7.4,

(7.15)  [[Vn(un — u) — vlleo

< [Va{ ot - 20 - oomer -2 )
1 9s
~ o (B%g7 — Dgp) + 15 (5% zsf)”oo

+ [vVn(gn — 9) — v1lloo

y(ats

Gn % (S5fn — Bf) = ——g % (Sf - Ef)}
1, my
— mil(EEf -Xf)*xv — milg* (XZgs — Zgy)

+ n%g * (B2f - z:f>) (t)’

\/ﬁ(l _1>+g_f2.

_+_ R
min my

From (7.13) we obtain
(7.16) Vi((1/min) = (1/ma)) — =gg/m3.

This, together with (7.12) and (7.13), shows that the first and last terms on the
right-hand-side of (7.15) tend to zero, as does the second term by (7.14). The
third term is dealt with similarly, using (7.2). O

We remark that, in L,

95 _ _ 85 _ _ *(-1)
vt = - T OS5 ) (3~ f +b0)

£ (25 — Sgp) x (BF - £+ 8) D
my
- mil(z:):f — Bf +mybo) * (SF — f +60)* D x (Zg5 — g5)-

This is the Fréchet derivative at f of the map from an appropriate subset of L
into L, taking a = f + abp to ([ zf(z)dz) 1 (EXa — Ta + ([ zf(x)dz)éo) * (Xa —
a + 80)*(~1) | where the derivative is evaluated at gs.

Griibel (1989) obtains a differentiability result for the renewal density func-
tional when f is an exponential density and f, is a mixture of f and another fixed
density f; with the same mean m; as f. In this case, our derivative agrees with
the one given there.

We use Proposition 7.7 in our proof of the differentiability of ® and ¥. Assume
that {\,} and X are positive numbers such that v/n(A, — A\) — v, where v € R.
For A > 0 let f(t) = te_’\tl[oyoo) (t). Then, for any 8 > 0, we have

(7.17) IVn(Ex, — Ex) = vfallg — 0.
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We next obtain differentiability results for F,, and f,.

LEMMA 7.8. For 3> 0, assume |1 — C||g < o0,

ViGn =X =¥, [VA(Ca—C) = gells = 0,
where |lgc|lg < 0o. Then
IVn(fn — f) = g5lls — 0,

where g5 = (V/A)f + Agc — AW faxC — Agc * E.

PROOF. Let gp =vf) fC’ + gc * E)\. We have

“\/ﬁ(Fn —F)—grlp < ”{\/T_l(EA,, —E)\)—vfa}xChllg
+ ”{\/E(Cn - C) - gc}*EA"ﬂ
+wllfa*Cn — A*Cllp.

The first two terms on the right-hand-side tend to zero by Lemma 7.1 and (7.17).
Integrating by parts in the third term and using ||C,, — Cl|lg — 0, we obtain
convergence to zero for this term, which yields

(7.18) IVA(Fn — F) = grlls — 0.

The lemma follows by applying (7.7). O

It can be shown that gr = —Xgy, so that (7.18) implies ||/n(Zf, — Zf) —
2g¢|lp tends to zero.

PROPOSITION 7.9. Assume 8> 2, |1 - C||s < oo,
Vin =N v and  |VA(Ca—C) —gclls — 0,
where ||gcllg < 0o. Then
(i) IVA(H.— H) = gallo =0 and (i) |va(Gn~G)~ggllo — 0,

where

v v g1 Y
gH——XH_'_ﬁ_%*_U’ g =viixU+vxE,
and

v ugi

96 = exx U (exxU)2’

and v and u are as in Proposition 7.7.
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ProoF. We first show that

(7.19) [vVn(ex, *Un —exxU) — gilloc — 0.

We have

(7.20)  |lVn(er, *Un —exxU) = gilloo < [[Vn(er, —€x) = vfilloo
+ |Vn(un —u) *ex, —vx*exlloo

+[{vnler, —ex) = vfa} * ullco-
Applying (7.17) we have, for all v > 0,

[Vn(ex, —ex) —vfilly >0 as n— oo,

and so the first term on the right-hand-side of (7.20) tends to zero. For the third
term, taking v > 1, we have ||\/n(ex, — ex) — vf}]| converges to zero by (7.1). In
addition, this version of u is bounded, and so the third term tends to zero. For the
second term we apply Proposition 7.7. Note that f is bounded. By Lemma 7.8, we
have +/n(f, — f) converges to g in || - |3 (8 > 2), and further ||gs||s < co. Hence
the conditions of Proposition 7.7 are satisfied, and (7.2) yields that the second
term on the right-hand-side of (7.20) converges to zero, and (7.19) is proved.
For the functional @, for ¢t > 0

\(vVn(H, — H) — gu)(t)]
< 5| (v fon (257 -on (257)}+ S - i) )

1 1 v

+ [AH(t)| Jﬁ(/\— - X) + 32
Ly _e® |11
A exxU)||{An A

Since H is bounded and since \/n(\, — A) — v implies v/n(A;! — A7) — —vA~2
the second term tends to zero. For the third term, A;! — A~! and g1/(ex x U)
is bounded. The first term tends to zero uniformly in ¢ using the mean value
theorem and (7.19). The second part of the proposition follows similarly, using
Proposition 7.7 and (7.19). O

Theorem 6.2 now follows from Proposition 7.9, (7.11) and (7.10), on applying
the delta method, as in Griibel and Pitts (1993), Section 3.7.

7.4 Proof of Theorem 6.3 .
The key to this proof is the following lemma, which implies that R, and R,
are eventually close, and similarly for S,, and S.

LEMMA 7.10. Assume [z?7dC(z) < 0o for some v > 2. Then R, —4 R
and Sn —g S in De.



92 N. H. BINGHAM AND SUSAN M. PITTS

Proor. This is a straightforward adaptation of the proof of Proposition 3.15
in Griibel and Pitts (1993). O

We obtain Theorem 6.3 on using the above lemma and Lemma 3.16 in Griibel
and Pitts (1993).

8. Simulation studies

In order to obtain the full benefit from the theory developed here, we would
need extensive laboratory data on real particles diffusing according to the Ornstein-
Uhlenbeck dynamics of Section 3, or of biological particles such as spermatazoa
and leukocytes. We hope to discuss this further elsewhere.

So far as simulation studies rather than analysis of laboratory data are con-
cerned, one needs a thorough simulation of M/G /oo queues with a range of choices
of G, taken from suitable parametric families, for example. Again, we defer further
consideration here.

We begin with a simulation study of the M/M /oo case, for two reasons:

(i) the M/M /oo queue is particularly easy to simulate;

(ii) the motivation for the paper was a desire to study the adequacy of the
exponential approximation, that is, of the M/M/oo queue as a model for the
Ornstein-Uhlenbeck dynamics. As the work of Sections 6 and 7 makes clear, this
reduces to study of local properties: that is, functional derivatives near exponen-
tiality. Our M /M /oo study is of the functional derivative at exponentiality, which
we offer as the most basic case.
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5.0

20

Our two simulations, for count and indicator data, were conducted separately
for convenience. For the first, we used a sample of 1,000 events (arrivals and
departures) for M(1)/M(2)/oo, an M /M /oo queue with traffic intensity , with
h = 0.05, after a burn-in of 10,000 events. In Fig. 1 we show the true p (dashed
curve), exactly exponential, the estimated curve r after monotone regression as
in Section 5 (solid curve), and the estimated r without monotone regression (dot-
ted curve—a much worse fit). In Fig. 2 we plot —logr; against jh, again as in
Section 5, to illustrate near-linearity. For the indicator data, we used 300 busy
and 300 idle periods. Figure 3 shows the true (non-normalized) integrated tail
H (dotted curve), the estimated H (solid curve), and the nominal 90% bootstrap
confidence curves (with 300 bootstrap repetitions).

Note 1. For the indicator-data case of Section 6, where our asymptotic re-
sults depend on having a large number of both idle and busy periods, we point
out that if 4 = A« is at all large (say, u of the order of 5 or 6 even) most of the
time-axis is occupied by busy periods, and so an inconveniently long time will be
needed to accumulate enough idle periods. Thus keeping u low is important for
simulation purposes.

Note 2. Reference to (x) shows that use of idle and busy periods is directly
informative, not about G itself—our primary object of interest—but about the
normalised integrated tail G*(z) := a~! [ (1 — G(u))du. To pass from G* to
G involves differentiation, and there is an unavoidable source of difficulty both
theoretically and numerically. It may well happen, for example, that G* is closer
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3.6

to exponential than G itself. So although G* is exactly exponential if and only if G
is, nevertheless this dependence on G* may blunt our ability to detect departures
from exponentiality in G in practice.

Note 3. We have not conducted an exhaustive simulation study of the be-
haviour of these estimators in situations with non-exponential service times. How-
ever we have considered the M/FE5/oo case (with mean service time 1/2) and the
M/H; /oo case (with service time distribution given by an equal mixture of an ex-
ponential distribution with mean 1/4 and an exponential distribution with mean
3/4). For comparison, we include in Fig. 4a and Fig. 4b respectively, the resulting
plots corresponding to Fig. 2.
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