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Abstract. A plug-in type bandwidth selector is presented for density estima-
tion with truncated and censored data. It is based on a representation of the
MISE function obtained in the paper. Rate of convergence and limit distribu-
tion are derived for this selector. A bootstrap method is introduced to estimate
the MISE whose minimizer is an alternative bandwidth selector. A simulation
study was carried out to assess the behavior with small samples. This method-
ology is applied to a real-data problem consisting of reporting delay of AIDS
cases. The almost sure representation of the product-limit estimator is a key
tool in our proofs.

Key words and phrases: LTRC model, almost sure representation, kernel es-
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1. Introduction

In many situations, as for example in medical or in engineering life studies,
one may not be able to observe the variable of interest, X. Left truncation and
right censoring are frequent reasons for which incomplete data may appear. Left
truncation may occur if the time origin, X, of the lifetime precedes the time origin
of the study, X!. To be precise, when 7' = X!~ X° > X the case is not observed at
all (we do not even know its existence). Right censoring appears when the lifetime
of interest is only partially observed due to the previous occurrence of censoring
(death from a cause unrelated to the study, withdrawal of the patient during the
study, ...). Left truncation and right censoring may happen simultaneously.

Censoring has been receiving considerable attention for a long time, whereas
truncation is relatively new and only in recent years has appealed interest, mainly
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because of the AIDS epidemic. A very commented example is the AIDS study
by Struthers and Farewell (1989) where the lifetime is the incubation period and
the truncating variable is the time from infection until the entry to the study.
In this case, the study was carried out with people in which AIDS was not yet
present. Another example of truncation comes from reporting delay of AIDS cases
to national agencies (see Sénchez Sellero et al. (1995)). In this problem, the time
of delay is subject to right truncation by the time elapsed from diagnosis until
reporting. Woodroofe (1985) also reviews some examples from astronomy and
economy where left truncation may occur.

Of course, other types of truncation and censoring are possible, but in this
paper the random left truncation and right censoring model (hereafter abreviated
as LTRC) has been considered because it is the most common in the literature.
More specifically, let (X,T,C) be random variables, where X is the variable of
interest, T' represents the random left truncation and C the random right censor-
ing. These variables X, T and C are often assumed to be positive, although this
assumption is not neccessary for our results. It is assumed that X is independent
of (T,C) but T and C may be dependent. One observes (Y,T, 8) if T <Y where
Y = X AC = min(X,C) and § = I(X < C). When T > Y nothing is observed.

Let « = P(T <Y), and F, G, M and W denote the distribution functions
of X, T, C and Y, respectively. It is clear that, denoting F =1 — F the survival
function, then W = FM. Let (Y;,T;,6;), i = 1,...,n be an independent and
identically distributed sample of (Y,T,6) which one observes (e, T; <Y;). The
well-known product-limit estimator (PLE) F, of F, defined in Tsai et al. (1987),
can be obtained by an empirical estimate of the function C(z) = P(T < z <
Y/T <Y) as follows:

Cu(z) =n"' ) I(Ti < 2 <Y5)
=1

1- Fn(x) = H (1- [ncn(Yi)]—l)&'

Yi<z

One of the most important properties of the PLE, extensively employed in
our proofs, is the strong representation of this estimator as a sum of iid random
variables plus a remainder term of order n~1llogn given by Gijbels and Wang
(1993),

En(2) - F(2) = F(2)n™' > _n(Yi, Ts, 6, 2) + Ra(2)
i=1

where

z

Wnt,6,2) = Iy < 5,8 =1/00) ~ [ (e < u<)/C@)awi)
with Wi(y) = P(Y < 9,6 =1/T <Y) and Wa(y) = P(Y <y,6 =0/T <Y).
It is worth noting that E(n(Y,T,6,2)) = 0 and

COV(T](Y, Tv 6a Zl)7 "7(Y, T’ 67 22)) = q(zl A ZZ)
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where we denote ¢(z) = [*_ [C(u)]~2dW(u). Other almost sure representations
of this type can be found in Stute (1993) or in Arcones and Giné (1995) only
for truncated data and in Lo et al. (1989) only for censored data. Zhou (1996)
has recently given an almost sure representation for truncated and censored data
extending the theorems of Stute (1993).

Our study is confined to kernel density estimation with truncated and cen-
sored data, so we assume F' is absolutely continuous with density function f.
Then, the kernel density estimate for f can be defined as the convolution of a
kernel function with the PLE of the distribution function F,

falz) = / Kn(z — w)dFp(u)

where Kp(-) = h™'K(-/h) is the rescaled kernel function K according to the
bandwidth A (i.e., smoothing parameter). Consistency and asymptotic normality
of this estimator were obtained by Gijbels and Wang (1993) as an application of
their strong representation of the PLE.

However, one of the most important aspects, extensively studied in the last
years in the untruncated and uncensored case, is the choice of the smoothing
parameter (see Cao et al. (1994) and Jones et al. (1996) for reviews about the
current situation).

Very frequently, the bandwidth is chosen as the minimizer of some measure
of the distance between the true density and its estimate. The mean integrated
squared error is a distance of that kind, and maybe the most broadly applied
among the global criteria based on a deterministic function of the bandwidth.

(1.1) MISE(h) = E [ / (fr(z) - f(x))%(x)dz] :

The bandwidth minimizing (1.1) is the so-called MISE bandwidth, denoted
by hyrse- In our definition of the mean integrated squared error, a non-negative
weighting function w is introduced. This function should be carefully chosen,
verifying at least the assumptions imposed below. Other properties of w will
become advisable in light of the results.

The early study of the MISE for the kernel density estimator without censoring
or truncation suggested many different “plug-in” bandwidth selectors (as can be
seen in the above-mentioned papers) based on the asymptotic form of hasrsg,

hmise = con™/® + o(n™ V%) = hamise + o(n~1/%)

where
-1 1/5
co = [dl’f ( f”(x)2w(a:)da:> cK} .

We use the functional notation dx = [ u?K (u)du, cx = [ K (u)?du, which will be
applied to other functions as well.

In the next section, a representation is given for the MISE function, which
suggests a plug-in bandwidth selector. New and very interesting properties are
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exhibited by this selector. By arguments similar to those employed in this paper,
our results could also be derived for hazard rate estimation. Some simulations
are supplied in Section 3 to assess the small-sample behavior of our bandwidth
selector. Section 4 contains an application to real-data consisting of reporting
delay of AIDS cases. Finally, the proofs are given in the Appendix.

2. Main results

Here are the assumptions made on the kernel function, the weighting function
and the probability density:

(K1) The kernel K is a symmetric probability density.

(K2) K is three times continuously differentiable, its first derivative is inte-
grable, and -

lim /KW(z)=0, ;=0,1,2,3.

|z]—o00

(wl) w is compactly supported by a set of points z satisfying C(z) > € for
some constant € > 0.

(w2) w is three times continuously differentiable.

(D) The density function f is six times differentiable and its sixth derivative
is bounded. The first, second, third and fourth derivatives of f are integrable, and
the limits of f and any of its first five derivatives at —oo or +oo0 are zero.

(q) The function g is twice continuously differentiable.

Assumption (wl) relates to the important problem of identifiability in the
LTRC model, and makes possible to use the almost sure representation of the
PLE given by Gijbels and Wang (1993). Assumption (w2), like (K2) and (D), is
needed to apply Taylor expansions.

Assumption (q) requires regularity for the distribution function of the trun-
cating and censoring variables. Yet, only the second derivative of ¢ means an
actual requirement, because the first is given by ¢'(z) = f(z)/(C(z)F(z)) and
always exists, assuming the existence of f.

We obtain an asymptotic expansion of the mean integrated squared error for
the kernel estimator.

THEOREM 2.1. Assume that the bandwidth h satisfies h — 0 and nh — oo
as n — 0o, then the function MISE admits the following representation

MISE(h) = idih‘* / (@) 2w(z)dz + n= h ek / F(2)2C(2)~2w(z)dWi (z)

+t / (¢(z) — C(2)™) f(2)?w()dz
+ O(h®) + O(n~'h) + O((nh)~3/?).

This extends Theorem 1 of Cao (1993), which is applicable to untruncated and
uncensored data. In this sense, the first term (representing the integrated squared
bias) is identical to that of Cao (1993). Whereas, the most relevant novelty in
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our representation is the second term, related to the variance, which depends on
the underlying distributions. Note that, in the untruncated and uncensored case,
q(z) = 1/F(z) - 1, C(z) = F(z) and Wi(z) = F(z), so the second and third
terms in the representation reduce to those in Theorem 1 of Cao (1993). The new
expression is reflecting an increase in the variance of the kernel density estimate
for the LTRC model.

A plug-in bandwidth selector is now defined replacing the integrals by esti-
mates of them in the minimizer of the dominant terms of the representation,

1/5

h= [cx ([ Ferenare@anin@) (4 [ f;’(sv)2w(27)dx)_lJ Y

where Win(z) = n~' Y0 | I(Y; < z,6; = 1) is the empirical estimate of W, (z),
fg denotes a kernel density estimate with bandwidth g and kernel L, allowed to
be different from A and K, and f;’ is the second derivative of fg. The same
Assumptions (K1) and (K2) will be made on the kernel L.

Observe that a pilot bandwidth ¢ is needed to give an estimate of the curvature
(integrated squared second derivative) of the true density, whereas the integral
appearing in the second term of the MISE and, subsequently, in the numerator of
the plug-in bandwidth, can be estimated without smoothing. Theorems 2.2 and
2.3 study the accuracy of the estimates of each of the two integrals.

THEOREM 2.2. The estimate of the integral [ F(z)?C(z) w(x)dW;(z) is
root-n consistent, that is,

[ FapCna) w@aWin) - [ F@P0@) u(@)im(@) = 0yn=72).

This result is quite remarkable, because implies that the new integral ap-
pearing in the representation of MISE can be optimally estimated without adding
new pilot bandwidths, and so, no further complications are incorporated to the
bandwidth selection problem.

Following the ideas in Sheather and Jones (1991), we consider a diagonals-in
estimate of the curvature. The next theorem extends the good properties of such
an estimate to the LTRC model.

THEOREM 2.3. Assume that the pilot bandwidth g goes to zero as n tends to
infinity, then

@) B([faru@a- [ f"(x>2w(w)dx)2

2
=n"2g710 </ L"(u)2du/F'2C_2de1)

2
+ gtd? < / f f(4)w) +2n71g3d,
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: / L' (u)?du / F20~%wdw, / ffPw
+0(n g™ +0(n2g™%) + O(g®) + O(n_3/2g‘9/2).

Furthermore, if ng® — oo, then the dominant part of the bandwidth that minimizes
the mean squared error in (2.1), is given by

e [(Jrur)(freean) (cufrre) ]

if the integral [ f" fPDw is negative, and

(2.3) [(—5/2) ( / L”(u)2du) ( / F20'2de1> (_dL / 1% f(4)w)_1n—1]

if it is positive.

1/7

To reduce notation we use [ F2C~2wdW, = [F(z)2C(z) *w(z)dW:(z),
[ fOw= [ f'(z)f* (z)w(z)dz and so on.

As in the untruncated and uncensored case, all the dominant terms come
from the bias of the estimation and, if the integral [ f” f )y is negative, any pilot
bandwidth asymptotically equal to (2.2) produces a sum of the three dominant
terms in (2.1) that goes to zero. As a consequence, the mean squared error for
such bandwidths is of the order o(n~%7). Whereas, if [ f”f®w is positive, the
optimal pilot bandwidth (2.3) does not produce that effect of cancellation and the
mean squared error for this bandwidth is of the order O(n=%/7).

The next theorem shows the good rate of approximation of our plug-in band-
width selector to the optimal bandwidth, hpsrsg, and establishes its normal limit
distribution.

THEOREM 2.4. Let us define the constants

TPy —

v =581 ch ( / F‘2c—2de1) di? ( / f”(a:)%(z)da:) _6}_1/5,

assume [ f" fDw is negative, and consider a pilot bandwidth asymptotically equal
to (2.2), up to a second order term of the type o(n=1/1%). Then the plug-in band-
width satisfies

1/2

il _ hMISE —_ Op(n—39/70)

and its asymptotic distribution is given by

n8/5¢%/2y(h — har1se) > N(0,1).
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The symbol * denotes convolution.

Remark 1. It is clear that last theorem could equally well be established in
terms of relative rate of convergence. In that case, it would be obtained

h—h _
. MISE _ O,,(n 5/14)_
MISE

The results show that the truncation and/or censoring do not affect the rates of
convergence but do change the coefficients coming up in the dominant terms in the
asymptotic representations. We would assert that other procedures for bandwidth
selection will also maintain their properties when adapting to the random LTRC
model. In this sense, we would like to mention the paper of Patil (1993), where the
least squares cross-validation bandwidth selector was studied in the framework of
hazard rate estimation with right censored data. In that paper, the same properties
as in the iid case were obtained for this kind of selector. However, at this point it
should be remembered the extremely slow rate of convergence of this selector to
its optimum, proved to be n~1/10 by Hall and Marron (1987). Nothing should be
expected to overcome this drawback in the models with truncated and/or censored
data.

Remark 2. In Theorems 3 and 4 it was needed that the integral [ f”f Ww
were negative in order to get the best rates of convergence. We emphasize that this
requirement means no restriction, since the weighting function w can be suitably
chosen to verify this property. Now, it should be remembered that the function
C(z) must be bounded away from zero in the support of w (Assumption (w1)). To
guarantee this, the identifiability conditions ar < ap and br < bc (where we use
the functional notation (ag,by) for the convex support of a distribution function
H) together with the independence between T' and C are assumed. This allows
taking w close enough to an indicator function on the support of X, and thus
the integral [ f”f®w will be approximately equal to — J(f®)? which is clearly
negative.

Remark 3. The bootstrap methods, that exhibited a quite good behaviour
for bandwidth selection in the common case (see Cao (1993)), could also be con-
sidered under the LTRC model. When the data are subject to censoring or trunca-
tion, the bootstrap methodology gives rise to new questions about the resampling
scheme to be employed. Now, with the aim of estimating the MISE function, the
following procedure is presented:

(a) Select pilot bandwidths g, g> and g3, one for each variable X, T and C.

(b) Draw independent random values of X, T and C following the distribu-
tions £, * Ky, G * K,4, and M, * Ky, respectlvely (F,, G and M, are the
product-limit estimates). The bootstrap sample (Y;*,T;,67),i = 1,...,n will be
supplied by those values (X, T, C) verifying T <Y = X A C, and as many values
of (X,T,C) will be drawn as needed to obtain exactly n of them verifying the
inequality.
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From the bootstrap sample and for each value of h, the density estimate f,’; (z)
is constructed and its integrated squared distance to the density estimate fgl (z)
(based on the original sample) is calculated. Finally, the mean of these values over
all possible bootstrap samples is taken as the bootstrap estimate of the MISE
function, that is,

MISE* (h) = [ i@ - Fu@)Putaas.

The minimizer of the previous function is our bootstrap bandwidth selector. Al-
though MISE*(h) can be written in terms of the original sample and, therefore,
from a theoretical point of view no resampling is needed, an explicit expression
is quite hard to obtain. Thus, in practice Montecarlo methods are proposed to
calculate the values of MISE™*(h).

By the same kind of techniques as in previous results, it can be shown that

MISE*(h) = h4/ £ (2)’w(z)dz

+nthlek / F(2)26 (2)"2w(z)dWin(2)
+0,(h*) + 0p(n~tA7Y).

As a consequence, the best choice for the pilot bandwidths g> and g3 (devised
for the truncating and censoring variables, respectively) is taking them equal
to zero. This relates to the already-mentioned fact that the integral
[ F(z)2C(z)~%w(z)dWi(z) can be estimated without smoothing.

3. Simulations

A simulation study has been carried out to assess the behavior of our band-
width selector. As in Uzunogullari and Wang (1992), the lifetime variable is sim-
ulated from a distribution F with hazard rate A(z) = (z —1)? + 1 for z > 0. The
corresponding density is given by

f(@)=({(z-1)*+1) cem@1/3-2-1/3 g 2 >0.

Both the censoring and truncation distributions are simulated from expo-
nential distributions with means 4 and 0.1 respectively. The triples (X,T,C)
were drawn independently until one hundred of them satisfied the condition T' <
Y = min(X,C). In this way, censored and truncated samples (Y1,71,61),...,
(Y, T, 8r) of size n = 100 were obtained.

One very relevant feature of this model is the high relative values of the
density function f in the neighborhood of zero. This gives rise to some boundary
effects. This is a typical situation where the weighting function w is required.
We have chosen a function w which discards 25% of the distribution in the lower
tail and 10% in the upper tail. The function w was taken uniform in most of
this reduced support and it was smoothened at the edges to satisfy the regularity
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Fig. 1. MISE function for the simulated model.

conditions. The Gaussian kernel was employed both for the density estimate and
for the estimate of the curvature.

The MISE function was approximated by the sample mean of the integrated
squared error calculated for one thousand samples. The optimal bandwidth 0.2315
was obtained by numerical minimization of the MISE function. Figure 1 shows
the MISE function. It should be observed that the MISE function is not far away
from its optimum in a wide neighborhood around the optimal bandwidth.

The distribution of our bandwidth selector was approximated by its values
computed over one thousand samples. Figure 2 contains a kernel density esti-
mate based on these one thousand values. For this density estimate, the plug-in
bandwidth for complete data was taken.

In the light of Fig. 2, the most remarkable property of the bandwidth selector
is the slight bias towards values smaller than the optimal. Despite this bias, the
approximation to the optimal is quite acceptable given the shape of the MISE
function, near to its optimum in an interval containing most of the distribution of
our bandwidth selector.

4. An application to real data

The methodology developed in this paper has been applied to a real life exam-
ple where truncation is present. The problem under consideration is that of delay
in reporting AIDS cases to the National Commission on AIDS (Spain). The same
problem has also been observed in many other countries (for instance, in USA
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Fig. 2. Kernel density estimate of the bandwidth selector’s distribution for the simu-
lated model.

by the Centers for Disease Control). Reporting delay gives place to an underes-
timation of the size of the AIDS epidemic, due to the lack of those cases not yet
reported. Knowing the actual incidence and providing accurate projections of this
incidence is crucial for health care planning. Thus, methods to estimate the actual
incidence are of great epidemiological interest. For a more detailed description,
with particular reference to Spain, see Sdnchez Sellero et al. (1995).

At the same time, the reporting delay density itself is studied to assess the
efficiency of the surveillance system for AIDS. Reporting delay is subject to right
truncation by the time elapsed since the date of diagnosis to the current date.
The results given in this paper for the LTRC model have been adapted to right
truncated data.

The Spanish incidence reported to the National Commission on AIDS since
July 1, 1993 until June 30, 1995 has risen to 8736 cases, from which the two
curves shown in Fig. 3 have been constructed. Each of them represents the density
estimate for reporting delay obtained by the convolution of a distribution function
estimate with the kernel. The solid line takes the product-limit estimate and the
dashed line the empirical distribution function of the observed reporting delays.
The bandwidth has been chosen following the plug-in rule presented in this paper
for the solid line, and the common plug-in selector with iid observations for the
dashed line.

The effect of truncation becomes apparent. Only the shorter delays are ob-
servable and this fact makes the dashed line give unduly high probability to short
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Fig. 3. Density estimates of reporting delay in Spanish AIDS data.

delays at the expense of that of long delays.
It is also stressed that the plug-in bandwidth was considerably larger for the
estimate that considered the truncation, h = 13.59, than for the estimate ignoring

it, A = 8.56.
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Appendix: Proofs

Not every assumption stated in Section 2 is needed for all the different proofs.
Some of them are only used in one or two results. Since it often becomes clear
along the proofs, the minimal conditions will not be mentioned. Furthermore,
these minimal conditions may be weakened versions of our assumptions.

We begin with a lemma that gives an almost sure representation of the r-th
derivative of the kernel density estimator.

LEMMA A.l. Denote &(2) = F(2)n(Y;,T},6:,2), 4 = 1,...,n, z € R, then
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forr=1,...,6
(@) = F7(2) + B0 (@) + o (@) + e (2)

where

B (z) = / FO (@ — vg)K(v)dv — f(z)
@) =17ty [Gle - vg)dk ()

@) =g [ Ralo - vg)dK o).
The error e (x) satisfies

(A1) sup |l (z)| = O(logn/(nh™*1))  as.
B (sup 0 @) ) = O(mk™) )  forany p> 1.

This result gives a decomposition of f (r)(z) in terms of the true derivative,
B (z) representing the bias part, o\ (z) representing the variance part, and
eslr)(a:) the error of the approximation. It should be observed that the bias part is
not random and the variance part is a sum of i.i.d. random variables.

The proof of this lemma is an immediate application of the almost sure rep-
resentation of the distribution function. This strategy was already employed by
Lo et al. (1989) in their Proposition 3.1 with censored data and more recently by
Gijbels and Wang (1993) under the LTRC model.

ProoF oF THEOREM 2.1. Recall Lemma A.1 for 7 = 0. The classical de-
composition of MISE into the integrated squared bias and variance can be obtained
with a very practicable form

MISE®) = B | [ (ate) - @) Pula)ds|

_E [ [ +on@) + en(x»?w(x)dx]
=Sl+52+33+2(54+55)

where

S1= [ Bu(@)u(o)iz

Sy = / E(on(2)?)w(z)dz

Sy = / Elen(z)?)w(z)de
Si= [ (@ Blen(e)(o)ts
&=/m%@%mwmm.
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The term S, represents the integrated squared bias and S, the integrated variance.
The other three terms S3, S4 and S5 will be shown to be negligible with respect
to the dominant terms in the representation, coming from S; and Ss.

A Taylor expansion and some algebra, lead to

S = %dﬁ(h“ / (@) 2w (z)dz + O(hS).

For S;, we employ the same arguments, and so, straightforward, albeit more long-
winded, calculations supply

Sy = n"lh'ch/F20'2de1 +n7t /(q - C"l)f2w + O(n_lh).

Now, using the rate for the error term e,(z) = el (z) given in (A.1), an
asymptotic bound for S3 is easily obtained.

51 < [ £ (supleat@)l?) = O(000)).

The orders of Sy and S5 are finally derived by application of Cauchy-Schwarz
inequality.

1S4] < 517283/ = O(h*(nh)~!) = O(n'h)
85| < 8,7285% = O((n™"h™1) 2 () ™) = O((nh)~*/?).

PRrROOF OF THEOREM 2.2. The first step is the following decomposition
22 —
/ F C;%wdW,, — / F2C~2wdW, = Ay + A;
where
a2 _
Ay = / (F C;% — F2C™%)wdWy,
A2 = /F_‘2C_2wd[W1n - Wl]

The idea is to prove that A; = Op(n~1/2) and Ay = O,(n"'/2). Let us start with
A,

|A;| < ( sup |ﬁ1($)2Cn(-’L‘)_2 _ F(x)2C(z:)‘2|) ’/deIn

z:w(x)>0

The supremum can be expressed in terms of the supremum distances of ﬁ‘(a:) and
Cp(z) to the true functions, by the following arguments:

|B(z)*Ca(2)™? - F(2)*C()
< (@) *IF(@)? = F(@)?| + [F@)ICa(@)C(@)] *|Calz)? ~ Cla)’
< 2/Cn(2)|*|F (@) = F(2)] +2/F(z)|Ca(2)C(@)] *ICa(z) - C(z)]| Va.
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Now, from the almost sure representation of the PLE given by Gijbels and Wang
(1993) it is immediately derived that

sup |F(z) — F(z)| = Op(n~"/?).
z:w(z)>0

Since C,, is the difference of two empirical distribution functions, Dvoretzki et al.
(1956) inequality suffices to show that

sup |Ca(@) — C()] = Op(n~'/?).

z:w(z)>0
From this and the fact that C(z) > ¢ whenever w(z) > 0, we can also obtain

sup [Ca(2)| 72 = Op(1).
Tw(z)>0

Now, [wdWi, = Op(1) provides the desired result A; = 0,(n~1/2).

To deal with A2, we seek to replace the subdistribution W; by a distribution
function (consequently, Wi, by the empirical estimate of that cdf). This can be
done in a similar way as in the proof of Lemma 3 of Gijbels and Wang (1993), so
we omit the details. At the end, we have

Ay = / hO)d[UA () - U )]
where

h(t) = F(WH())*C(W () 2w(W () (t < Wi(c0)),
Wi l(t) = inf{z : Wy(z) > t},

U(t) is the uniform distribution function on the unit interval and U,(t) is the

empirical distribution function of the iid uniform [0,1] random variables V1,...,V,
given by
V_{Wl(Yi) if 6;,=1
PTl1-Wa(Y;)  if 6 =0.

Since h(t) < e~2sup, |w(z)| Vt, Lemma B in Serfling ((1980), p. 223) and Markov
inequality lead to Ay = O,(n~1/2).

PROOF OF THEOREM 2.3. From Lemma A.l1 for r = 2, we can obtain a
representation for the curvature of the density estimator

/ 7 (@) 2w (z)do— / £"(2)%w(z)dz = By+Ba+Ba+2(Ba+Bs+Bo+Br+Bs+Bo)
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where
By = / B (2)2w(z)ds B, = / o@D (2)2w(z)dz  Bs = / e® (2)2(z)dz
Bi= [ 1'@pP @)z Bs = [ F'@oP (@lw(z)ds
Bo= [ 1"@e @uls)ds B = [ pP@02 @u(s)ds
By = [ 80@eP@p@)s Bo= [0 @)ed (@)u(z)ds.

The only relevant summands, as regards the representation (2.1) and the
asymptotic normality of [ f/(x)?w(z)dz established below, are By and Bs. The
term B, is not random and can be expanded as

(A.2) By = %g2dL/f”(a:)f(4)(x)w(x)dx + O(g%).

However B, is a double sum that can be decomposed into the diagonal terms
(which give place to a sum of iid random variables) and a U-statistic, denoted by
Q. and U, respectively

B2 = Qn+Un) Qn :n_2g_GZHn(Zi7Zi)7 Un :n_2g_6ZHn(Zi?Zj)
i=1 i#7

where Z; = (Y;,T;,6;),i=1,...,n and
Hn(ZiaZj) = //\(Zi,l‘,g)/\(Zj,.’L‘, g)w(m)dx, A(Zi1z7g) = /Ei(.’t—’t}g)dL"(’U)‘

The term B; is not random and is easily shown to be B; = O(g%). The term Bs
satisfies E(Bs) = 0 and Var Bs = O(n™!) and the same happens with B;. The
terms involving the error eg)(x) will be negligible. Finally, it only remains to
obtain the mean and variance of B;. The next two lemmas will be helpful to this
aim. They are derived by straightforward calculations, so we omit the details in

their proofs.

LEMMA A.2. The following expression holds for the expectation of Qn

(A3)  E(Q,) =n"lg7° ( / L"(u)2du) ( / F2c-2de1) +0(n~1g73).

LEMMA A.3. The expectation of each summand appearing in U, is zero and
its second moment satisfies

B2, 22 = ¢ [ 1+ L [ ( ot e gpela)) dat olg”)
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which implies

VarU, = 2n—2g_9/L" * L"(u)2du/ (a—lP{Z{(?:z 2 C}u)(x)>2dz
+o(n"%g7%).

From Lemma A.3 and some further derivations, it can be shown that
Var B, = O(n"2g7°).

Finally, the squared bias provides the first three summands in the right-hand
side of (2.1) and these terms are obtained from expressions (A.2) and (A.3).

To prove (2.2) and (2.3), first note that if ng® — 0, then the first three
summands in the right-hand side of (2.1) are the dominant terms.

On the other hand, it is not difficult, but tedious, to prove that the asymptotic
form of the pilot bandwidth g, minimizing (2.1), coincides with the minimizer of
the dominant part. From this point, the last paragraph in Theorem 2:3 becomes
evident. O

PROOF OF THEOREM 2.4. Under the assumptions on the kernel K, the
weighting function and the density, the function MISE is three times differentiable
with respect to h. Defining

— 2 ~ a2
MISE(h) = h4dTK/f;’(x)zw(x)dx—i—n‘lh_ch/F C2wdWy,

this function MISE , which is nothing else but an estimate of MISE, is obviously
three times differentiable with respect to h. Then, as a consequence of a Taylor
expansion,
MISE (hpise) = 0 = MISE (h) = MISE (huise)
— ! ~
+ MISE (hpmise)(h — hmise)
1. — -
+ EMISE’"(h)(h — haise)?

where £ is a point in between hjsrsg and h.
Rearranging terms in the previous equation,

(A4) MISE'(hursg) — MISE (haise)
— ~ 1 —_ -~ .
= MISE (hMISE)(h — hMISE) + §MISE (h)(h — hM[SE)z.
At this point we use two lemmas. Lemma A.4 gives a rough bound for the

rate of convergence of the plug-in bandwidth. It is an immediate consequence of
Theorems 2.2 and 2.3 and the definition of the plug-in bandwidth. Lemma A.5 is
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easily derived by the same arguments as in the proof of Theorem 2.1 (almost sure
representation, Taylor expansion, ...) and some elementary analysis (mean value

theorem, dominated convergence theorem, ...).

LEMMA A.4. In addition to the conditions stated in Section 1, assume that
the pilot bandwidth g is of precise order n=Y/7, then

h— hyise = Op(n"2/5).

LEMMA A.5. Under the current assumptions,

MISE'(h) = h3%, / (@) 2(z)de — n~th—2cx / F2C~2waw;
+ O(h®) + O(n™1).

Applying Theorem 2.3 and Lemmas A.4 and A.5 to (A.4), we obtain

MISE'(hp1ss) — MISE (harise)
. 22
= (3d§{h%,”SE / f;’(x)2w(x)dac + 207 hy P g pek / F C’;zdem)
. (il - hMISE) + Op(n"l).

The estimated integrals appearing in this formula can be replaced by their limits
by means of Theorems 2.2 and 2.3 and Lemma A .4 to obtain

— ]
(A5) MISE' (hpisg) — MISE (hyisk)
= <3d§<hﬁ,”33/f"(z)2w(x)dx+2n"1h;,13,SEcK/F'2C’2de1>
. (il — hMISE‘) + Op(n_l).

On the other hand, making use of Lemma A.5, a different expression is found for
the left-hand side of (A.5),

(A6) MISE (hyrsg) — MISE (harse)
= diinse | [ Fj@Put@s - [ 1@0Putoas]
—n h R g pek [ / Fewaw,, - / F2c-2wdwl]
+0y(n7")
= diuse | [ @ utohia - [ /@ ule)a] + 0pn)
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where the last equality was derived from Theorem 2.2. It is then clear that the
next step will consist of investigating the limit distribution of the curvature of the
density estimator. This follows as a consequence of the next lemma.

LEMMA A.6. If the pilot bandwidth g goes to zero and ng — oo, the U-
statistic Uy, defined above, is asymptotically normal with zero mean and variance
given in Lemma A.3.

PROOF OF LEMMA A.6. The proof will be based on the central limit theorem
by Hall (1984) for degenerate U-statistics. First, note that the U-statistic may be
written in the form

Un=2n"%g7%)  Hu(Z:, Z;).

i<j

The quantity U, is a degenerate U-statistic and its kernel function, Hp, is sym-
metric, with finite second moment (already proved in Lemma A.3). Since

> Hal(Zi, Z;)

i<j

has zero mean and variance given by
1 2
§n(n - 1)E(Hn(Z1, Z2) ),

the only requirements needed (as stated in Hall’s result) are the existence of the
fourth moment of the term H,(Z;, Z>) and the limit condition

(A7) (E(Hn(Z1, Z2)?) " 2|E(Gn(Z1, Z2)%) + n" ' E(Hn(Z1, Z)H) =0

where
Gn(xay) = E(Hn(zlax)Hn(Zlyy))a z,y € R.

A representation for the first factor in (A.7) was already derived in Lemma A.3.
Now, we deal with the fourth moment. It may be shown that

sup |Hn(z,y)| = O(9)
m’y

and this, together with Lemma A.3, leads to

(A.8) 0< E(H,(Z1,Z2)") < E

(s;g)|Hn<x,y>|)2Hn(zl,zz>2]

2
< (sup |Hn(z,y>|) BlHa (21, 2:)°) = O(&°).

x7y
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As regards E(Gn(Z1,Z2)?), a direct substitution of its components leads to

E@A&J@%:/??/ﬂm—mwﬂn—wmﬂm—wmﬂu—mm

’ F(ﬂh - v5g)F‘(ac2 - UGQ)F(% - v79)F($4 — vgg)
-q((z1 — v19) A (73 — v29))q((z2 — v39) A (T4 — v49))
q((z1 — vsg) A (22 — v69))q((T3 — v7g) A (T4 — v89))

8 4
. H K® (v;)dv; H w(z;)dz;.
i=1

=1

By successive calculation of each integral with changes of variable and applica-
tion of assumptions like the symmetry of the kernel, this expression is progressively
bounded. In this way by straightforward, although long-winded, calculation the
following rate is achieved

E(Gn(Z1,22)%) = O(g").

The rate just found, Lemma A.3 and (A.8) imply condition (A.7). Hence, the
whole proof of this lemma is finished. O3

As a consequence of the previous lemma, the limit distribution of
g5 | [ fy@Pute)is - [ /arutes - da [ 15

—n71g7® ( / L”(u)2du) ( / FZC—zdeI)]

may be proved to be normal with zero mean and unit variance, whenever the pilot
bandwidth g is of precise rate n~1/7. Furthermore, if the ratio with numerator g
and denominator equal to (2.2) goes to one at the rate o(n~!/4), then we may
delete the last two summands. Hence the same standard normal limit distribution
holds for

g2 | [ fo@Putonts - [ /@rutaas]
This fact, together with expression (A.6), proves that
— ]
ng® 2B dghy 2 s g (MISE (hupise) — MISE' (huisk))

is of order Op(1) and has a standard normal limit distribution. Now, using (A.5),
the same statement remains true for

ng® B i ki s (3d%(h%USE / [ (z)w(z)ds

+2n7 Ry fspCK /F2C—2de1> (h — harse).
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Using the asymptotic form of harrsg, the theses in Theorem 2.4 are easily de-
rived. O
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