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Abstract. Distributions with unimodal densities are among the most com-
monly used in practice. However, for many unimodal distribution families
the likelihood functions may be unbounded, thereby leading to inconsistent
estimates. The maximum product of spacings (MPS) method, introduced by
Cheng and Amin and independently by Ranneby, has been known to give con-
sistent and asymptotically normal estimators in many parametric situations
where the maximum likelihood method fails. In this paper, strong consistency
theorems for the MPS method are obtained under general conditions which
are comparable to the conditions of Bahadur and Wang for the maximum like-
lihood method. The consistency theorems obtained here apply to both para-
metric models and some nonparametric models. In particular, in any unimodal
distribution family the asymptotic MPS estimator of the underlying unimodal
density is shown to be universally L' consistent without any further conditions
(in parametric or nonparametric settings).

Key words and phrases: Asymptotic MPS estimator, L' consistency, mono-
tone density, nonparametric, spacing, unimodal density.

1. Introduction

The maximum likelihood (ML) method is the most widely used statistical
estimation technique. Under very general conditions, the maximum likelihood
estimates (MLE) are consistent and asymptotically efficient. However, the likeli-
hood function can be unbounded, as in the widely used three-parameter lognormal
and Weibull models (Cox and Hinkley (1974), Smith (1985)) and in some mixture
models (e.g. Lindsay (1995)). This can lead to inconsistent estimates. Various al-
ternative methods might be considered to handle each specific case. Of particular
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interest is the following spacing-based method, introduced by Cheng and Amin
(1983) and independently by Ranneby (1984). This method does not suffer from
unbounded likelihood difficulties and it provides a natural way to preserve the
essential asymptotic optimalities that the MLE usually possesses.

To fix the idea, let X1, ..., X, be independent observations from a continuous
univariate distribution Fp, belonging to {Fy : § € ©}. Consider the problem
of estimating the unknown true 6y (or Fp,). Applying the probability integral
transform Fy(-) to the order statistics Xy n < -+ < Xp p, yields: 0 = Fp(Xon) <
Fo(X10) <+ < Fg(Xnn) < Fo(Xn+1,n) = 1. The mazimum product of spacings
(MPS) method chooses 6, (or Fj ) as the MPS estimator of 8o (or Fp,), which
maximizes the product of spacings, i.e.,

(1.1) 6, = arg max, H;’:ll [Fo(Xjn) — Fo(Xj-1,n)]-

Note that the spacings sum to 1. The definition given in (1.1) is motivated by
trying to set Fy equal to the ¢rue but unknown distribution for which the spacings
are identically distributed.

To observe the similarities and differences between the ML and MPS formu-
lations, note that when Fy has a density fg, the log likelihood can be written as
Y log fo(X; »); while the log product of spacings X log[Fp(Xi n) — Fp(Xi-1,n)] may
be approximated by X log|fs(Xin)(Xin — Xi—1,n)]. Since > log{X;i, — Xi_1,n] is
a constant, we have

(1.2) sup > " log{fo(Xin)(Xin — Xio1,n)] sup > " log fo(Xin)-

Roughly, (1.2) says that maximizing ¥ log[Fp(Xi n) — Fo(Xi—1,n)] is approzimately
equivalent to maximizing ¥log fo(X;,). This suggests that the two methods
should lead to similar estimates when the ML method works. On the other hand,
the product of spacings is always bounded and hence is more stable than the like-
lihood function. Therefore, the MPS method might give good estimates when the
ML method is unstable.

The most widely used distributions in practice are those with unimodal densi-
ties. In particular, the monotone densities are a special case of unimodal densities.
The nonparametric MLE is consistent for unimodal densities with known mode
or with unknown mode but whose modal interval Iy has length bounded away
from zero, i.e. inff |If] > 6§ > 0 (Wegman (1970)). However, consistency of the
MLE fails when the location of the mode is unknown and infy |If| = 0, due to
unboundedness of the likelihood function. It is thus of interest to investigate the
behavior of the MPS estimator for unimodal densities. It is also of interest to have
consistency theorems for the MPS estimator under conditions at least as general
as the classical general conditions (e.g. Bahadur (1971), Wang (1985)) for con-
sistency of the MLE. Moreover, in reliability theory, survival analysis and other
applied fields (Robertson et al. (1988)), it is important to estimate the unknown
cumulative distribution function (cdf) which is only known to have a monotone
density (or monotone failure rate) or more generally, a unimodal density. It is
desirable to have theorems covering these nonparametric problems together with
the parametric ones.
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In this paper we investigate these general consistency problems for the MPS
estimator, exemplified by the MPS estimates for unimodal distributions. Of
course, consistency is just the first step towards asymptotic analysis. One optimal-
ity of the ML method is that under standard regularity conditions (e.g. Lehmann
(1991), Theorem 6.2.3), the MLE is consistent and asymptotically normal with
variance equal to the inverse of the expected Fisher information. Roughly speak-
ing, when consistency of the estimator is established, one can focus on a small
neighborhood to prove the asymptotic normality. As argued in (1.2), the MPS
method and the ML method are asymptotically equivalent. Thus, when consis-
tency of the MPS estimate is established, one might also expect the MPS estimate
to have the same asymptotic normality behavior as the MLE. In fact, Shao and
Hahn (1994) established a CLT for the MPS estimator under the same regularity
conditions as appeared in Lehmann ((1991), Theorem 6.2.3) for the asymptotic
normality of the MLE. More general results in this direction are currently under
investigation. Hence this paper is focused solely on consistency.

The paper is organized as follows. Section 2 discusses previous work related
to the MPS method. General consistency of the maximum product of spacings
method is discussed in Section 3. Consistency theorems for the MPS method are
obtained under very general conditions which are comparable to the conditions
of Bahadur (1971) and Wang (1985) for the maximum likelihood method. The
consistency theorems obtained here apply to both exact and asymptotic MPS
estimators, also to both parametric models and some nonparametric models as
well. In particular, in Section 4, the AMPS estimates are shown to be universally
consistent for any unimodal distribution without additional conditions.

2. Remarks and lemmas

The MPS method was first introduced for estimating parameters in univariate
continuous distribution families by Cheng and Amin (1983) and independently by
Ranneby (1984). Cheng and Amin (1983) proved that the MPS estimates in the
three-parameter lognormal model, the Weibull model and the Gamma model are
consistent and asymptotically efficient, while the ML method is known to break
down since the likelihood functions can be unbounded in these cases. Ranneby
(1984) observed that a good inference method ought to minimize some suitable
distance between the distribution and the model. He proposed the MPS method to
minimize the Kullback-Leibler divergence. Ranneby also discussed some examples
with inconsistent MLE (e.g. the mixture of normal distributions) and obtained
consistent MPS estimates. Titterington (1985) remarked that the MPS method
can be regarded as a maximum likelihood method for grouped data. Lind (1994)
discussed the connection between the MPS method and information theory.

One advantage of the MPS method over the ML approach is that the same
statistic

n+1
(2.0) Su(F) = (n+1)71Y " log{(n + V)[F(Xi,n) = F(Xi-1,n)]}

i=1
which is maximized to get the MPS estimator, can also be used to form a goodness-
of-fit test to check the validity of a given model, i.e. test Hy : FF = Fp vs. H; :
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F # Fy based on S,(Fp). In fact, the goodness-of-fit test based on S,(Fp) has
been considered in Darling (1953), Pyke (1965), Gebert and Kale (1969), Shorack
(1972), Cressie (1976), Cheng and Stephens (1989), Roeder (1990, 1992), and Shao
and Hahn (1996).

Discussion of the major drawbacks of the MPS method (e.g. lack of a mul-
tivariate counterpart) can be found in Cheng and Traylor (1995). As argued
intuitively in Section 1, the asymptotic optimality of the ML method in regular
cases (in the sense of Cramér) may be well achieved by the MPS method in more
general cases. This paper focuses on the problem of general consistency of the MPS
method and pays special attention to estimation of distributions with unimodal
densities.

The maximum of the product of spacings Pn(Fg, X) = [[[Fe(Xjn) —
Fyp(Xj-1,n)] may not be achievable or may not be easy to find. Thus, we de-
fine the asymptotic mazimum product of spacings (AMPS) estimate of 8y to be 6,,
such that

. Pu(F ., X)

niv_nolo Pn(F 6o X )

Without loss of generality, we will choose C = 1. The next proposition gives a

useful criterion for determining whether or not a sequence of estimates are AMPS
estimates.

>C forsome 0<C<1.

LEMMA 2.1. Let X1, X>,..., X, bei.id. with a continuous distribution func-
tion Fy,. Then {6, : n > 1} is a sequence of AMPS estimates of 6o iff

(2.1) lim S,(F; ) >~y  almost surely,

n—o0

where v is Euler’s Constant v = 0.577---.
PROOF. {én :m > 1} is a sequence of asymptotic MPS estimates iff

nli_._n;o Sa(Fy ) 2 nli-»nolo Sn(Fo,)-
Since {Fy,(Xj.n),1 < j < n} is an ascending sequence of uniform order statis-
tics, the proof is completed upon application of the following strong law of large
numbers for the logarithm of uniform spacings (Theorem 1.2 from Shao and Hahn
(1995)):
nlgr;o Sn(Fay) = —v as. a

Similarly, the maximum of the likelihood function may not be achievable, so
one defines the approzimate mazimum likelihood estimate (AMLE) as in Wald
(1949). Results on general consistency of the AMLE, can be found in Wald
(1949), Le Cam (1953), Kiefer and Wolfowitz (1956), Huber (1967), Bahadur
(1971), Perlman (1972) and Wang (1985). But as pointed out by Le Cam ((1986),
p. 621), the only available general ones are variants of a result of Wald (1949).

To prove general consistency for the AMPS estimator we will use some tech-
niques appearing in Bahadur (1971) and Wang (1985). Bahadur (1971) extends
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the results in Wald (1949) for a finite dimensional parameter space to a gen-
eral parameter space. Wang (1985) obtains general consistency theorems for the
AMLE which are applicable to parametric models as well as some nonparamet-
ric models. Our consistency theorems also apply to both exact and asymptotic
MPS estimates and to parametric models as well as some nonparametric models.
Just as the strong law of large numbers plays a significant role in Wald’s proof
of consistency of the AMLE, the following lemma, is fundamental to the proof of
consistency of the AMPS estimates in Section 3.

F(z) is called a pseudo-distribution if and only if F(z)/F(oo) is a probability
distribution function (cdf).

LEMMA 2.2. (Information-type inequality) Suppose X1, Xa,...,X, is an
i.5.d. sample with a continuous univariate cdf Fy,. For any pseudo-distribution
Fy, define Fo(Xon) = Fo(—00) and Fy(Xn+1,n) = Fyp(+00). Denote the deriva-
tive of Fy(Fy, Y(z)) by go.6,(x). Then, almost surely,

o FB(X n) ( j— n)
(2.2) hm 121 Foo(Xj,n) Tk 11 " < /loggo 80 (z)dFy, ().

If Fy, and Fy have densities fg, and fo respectively, with Fy # Fy,, then

a.s.

— 1 & F(Xjn) - Fo(Xj-1a) fo(2)
n—voo’fl,-i'].J logFeo(XJ‘n) FOO(XJ ln) _/logfeo( )dF ( )<0

PROOF. See Theorem 4.1 in Shao and Hahn (1995). O
3. Consistency theorems

As pointed out by Bahadur (1971), the maximum that can be expected from
a statistical estimation procedure is successful estimation of the entire underlying
distribution. Convergence of the estimates to particular parameters is a relatively
subsidiary issue determined by how well the true distribution can be estimated if
the model is well parameterized. When the parameter is a well-defined continuous
functional of the distributions, convergence of the estimated distributions to the
true distribution certainly yields convergence of the parameter estimates to the
true parameter. However, a non-continuous parametrization can easily fail any
general statistical procedure, such as maximum likelihood, as clearly seen from
the simple example of Basu (1955). Under general assumptions for consistency of
the AMLE found in Wald (1949) or Le Cam (1953), Landers and Rogge (1972)
show that the usual convergence for parameters is equivalent to the convergence
of the corresponding probability measures in the total variation distance. To deal
with the general consistency problem of the AMPS estimator, it is natural to take
the probability measures as parameters just as Bahadur (1971) did for the AMLE.

Let P be a family of probability measures on R dominated by Lebesgue
measure A and let fp(z) = %(m) for all P in P. Suppose X1,Xs,..., X, is
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an i.i.d. sample from Py € P. We want to estimate the unknown P and give
conditions that can ensure that the AMPS sequence {P,} converges to Pp.

First note that, by the information-type inequality, if P is a finite set then
the MPS estimators {P,} equal Py after some finite no. The distributions do
not need to be absolutely continuous. If P is not finite, the hope is that the
MPS estimates might behave similarly as P being a finite set, e.g. a compact
set. Although P is not generally compact, it can be embedded in a compact set
P. Different compactifications may be preferred in different situations. However,
it is always possible to compactify P in the topology of vague convergence of
subprobability measures as follows: Consider the space S of all subprobability
measures on R endowed with the topology of vague convergence (Chung (1974)).
S is a metrizable, compact, topological space. Let d be any distance defined
on S x S such that limg_o0 d(Qk, Qo) = O if and only if {Qx,k € N} C S
converges vaguely to Qo. In particular, if {Qg, k € N} is a sequence of probability
measures and Qg is a probability measure, then limg_, o d(Qk, Qo) = 0 if and only
if {Qk,k € N} converges weakly to Qo. Notice that (P,d) is a subspace of the
metric space (S,d). Let P be the closure of P in S. Then (P, d) is a compact
metric space.

Given any compactification P of P, if P € P \ P, then P is a subprobability
measure which may not be dominated by the measure A\. However, according to the
Lebesgue Decomposition Theorem, there is a unique representation P = Py + P,
where P,. < Xand Ps; L . In this situation, define the subdensity of P as fp(z) =
Qﬂ&(z) Then, associated to any family P of probability measures dominated by
), there is a compactification P of P with subdensities {fp(z) : P € P} as defined
above.

For any P € P, let Sp(z,r) = sup{fo(z) : d(Q,P) < r,Q € P}. The
following are three of the basic conditions for consistency of AMLE in Bahadur
(1971):

CONDITION A. 7P is a “suitable compactification” of P, i.e. Sp(z,r) is mea-
surable for each 7 and yp(z) = lim,_¢ Sp(z,r) is a subdensity.

ConbDITION B. For each P € P, Eplog fi((?) < oo where L(z) =

sup{fp(z) : P € P}.

CoNDITION C. {z:vp(x) # fp,(z)} has positive measure if P € P\ P.

Bahadur’s Condition A is defined in the weak topology of P. From now
on, a compactification P of P will be called a Bahadur suitable compactification if
Condition A is satisfied for some topology on P, not necessarily the weak topology
on P. It is readily seen that Condition A implies the measurablity of vp(z) and
consequently the measurablity of £(z) = lim, o Sp(z,r). Furthermore, since
vp(z) > fp(z) where yp(z) is a subdensity and fp(z) is a density for P in P, it
follows that yp(z) = fp(z) almost everywhere, i.e.

(3.0) lir%Sp(:c,r) = fp(z) ae. forall P in P.
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(3.0) gives upper semi-continuity of the model. As was mentioned earlier, some
continuity condition is necessary for general consistency results. Thus, Bahadur’s
Condition A seems reasonable for general consistency of the AMPS estimators as
well. Condition C is an identification condition which is rather weak. Bahadur’s
Condition B is a local dominance condition whose removal without compensation
can lead to inconsistency of AMLE (see Kiefer and Wolfowitz (1956) and Bahadur
(1971)). :

Bahadur’s Condition B is a typical regularity condition for general consistency
of the AMLE in parametric models. Wang (1985) pointed out that the classical
regularity conditions for consistency of the AMLE, (e.g. Wald (1949), Le Cam
(1953), Kiefer and Wolfowitz (1956), Huber (1967), Bahadur (1971), and Perlman
(1972)) share the common assumption that the log likelihood ratio of a distribution
to the true one is locally dominated (or semidominated) by zero. More specifically,
let fp,(z) be the true density and let P* be any probability measure in the pa-
rameter space. Local dominance (see Perlman (1972) for more precise definitions)
requires the existence of a neighborhood V of P* such that log[fp(z)/fp,(2)] is
dominated for P in V. Additionally, Wang (1985) noted that in many nonparamet-
ric families the MLE is consistent but the local dominance assumption is violated.
One example is the family of distributions with decreasing density on [0, 00). Us-
ing an alternative approach to the local dominance conditions, Wang (1985) (see
also Pfanzagl (1988)) obtained theorems about consistency, which are shown to
be applicable to several nonparametric families including the concave distribution
functions.

Now we show that consistency of the AMPS estimator does not require local
dominance conditions. In fact, boundedness of Sp(z,r) on large sets suffices.

THEOREM 3.1. Let X1,X5,...,X, be an i.i.d. sample from Py € P where
P is a family of probability measures on R dominated by A. Suppose there is a
version of the densities {fp(x) : P € P} such that (P,d) has a “Bahadur suitable
compactification” (P,d) which satisfies Bahadur’s Condition C. Also assume for
all P in P,

(3.1) Jim lrlﬁ)l Py(Apm,r) =0

where Ap p, denotes the closure of Apyy = {z : Sp(x,7) > M}. Then any
AMPS sequence is consistent, i.e. if {Pn} is an AMPS estimator, then
litp_ o0 d(Ps, Po) = 0.

PrROOF. Forany P € P and P # Py, let

Rn(Fp) =

_____1 %lo Fp(X;n) — Fp(X;-1,0)
g .
n+1 = Fp,(Xjn) = Fpy(Xj-1,n)

Define b(P,7) = {Q € P : d(Q,P) < r}. We want to show that maximizing
R, (Fp) over P in P yields an element of b(Fy, §) for any small positive 6 when n
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is big enough. By Lemma 2.2, almost surely

n+l
_ _ Fo(X;m) — Fp(X;j-1.)
im R.(Fp)= Iim —— ) lo 2 i
n—oo ( P) n—oon + 1 _72: & FPO(Xj,n) — FPO(Xj—l,n)

fo(2) o(2)
</ B Fra@) (™) = /lgfpo( 1Fr(@) < 0.

For Q in P\ P, define R, (Fg) = lim,_.0Suppep(q,rnp Bn(Fp). Then maximizing
R, (Fp) over P in P is equivalent to maximizing R, (Fg) over Q in the compact
set P.

Fix any P # Py, P € P. Without loss of generality one can assume that

—00 < /Rlog ;Z:)((g;)) dFp,(z) < 0.

Then for each € > 0, there exists §(¢) > 0, such that Py(A) < 6(¢) implies

‘/ log 2E(2) dFr,(2)

<Ee.

fPo

Since P, is tight, there exists a compact interval K such that Po(K*¢) < 36(¢). By
assumption (3.1), for every 6(¢), AM > 0, Irar > 0 such that Po(Apar,ry) < 6—(262
where Apprry = {2 : Sp(z,rm) > M}. Let Ky = Apmyry N K. Ky is a
compact set and Po(K ) < 5(6) . Hence there are finitely many intervals I1, ..., I,
which cover K and Po(UJL lI ) < 6(6) Let Ins = (UjL ;) U K®. Then Iy is a
union of finitely many intervals and PO(I M) < 6(g). So

(3.2) log }’: (( ))deo(w) <e.
Define
pr(.’l:) _ {SP(J),TM), .'L'EIICVI
’ - fpo(.’L'), z € Iy )

Note that fp s is integrable. Let

n+l

1 Fpm(Xjn) — Fpm(Xj-1.n)

R F = s Js ) J 5
w(Fra) +1 2 Fp,(Xjm) = Fro(Xj-1,n)

where Fp p(z) = f_zoo fram()A(dt) and Fpayr(Xnt1,n) = Fpa(+00). By Lemma
2.2,
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Let nar = {J ¢ [ Xj—1,n, Xjn] NI # 0}. Then

n+1
1 Fo(Xjn) — Fo(Xj-1,n)
sup R,(Fp) = sup E g . :
Qeb(P,rar) ¥ Qeb(Pra)nP M+ 147 Fry(Xjin) = Fpo(Xj-1,n)

1 Fo(X;n) — Fo(Xj-1,n

Qeb(Pra)np Nt 1 jenm  jénm Po(Xjin) = Fry(Xj-1,n)

Since EjEﬂM (FQ(X]"”) — FQ(Xj—l,n)) <1,VQ € b(P, T‘M) NP,

1 Fo(Xjn) — Fo(Xj-1,n)
34 sup log J :
34) Qeb(Pra)nP N+ 13-6; Fpy(Xjn) — Fpo(Xj-1,n)
1 1
D log{| [(Fpo(Xjin) = Fro(Xj-1.0)) }
JENM
1 n+1
= 1
n+1 Z % Tn]
JGnM
mm|
Tnid |n ,§ log{(Fiy (Xj.n) = Fiy (Xj-1,0))(n + 1)}

— —Po(Ipm)log Po(Ip) + Po(In)y as n— o0, as.,
(by SLLN and Theorem 1.2 of Shao and Hahn (1995))

where v = 0.577 - - - is Euler’s constant. Moreover,

Fo(Xjn) — Fo(Xj-1,n
sup Z log FQ(X].’ ) — FQ( i-1.m)
Qeb(Pra)np N+ 1 Preel Po(Xjn) = Fry(Xj-1,n)

fx’" Sp(z,rr)A(dT)
Z fo {FPO n) = Fpy(Xj-1,n) }

Consequently,
FQ(Xn) - FQ(X'-—I n)
3.5 lim sup log 2 I
(39 n=% Qeb(Pra)nP Tt 1 Z & Fr(Xin) - Fro(X;-1,0)

< Iim Rn(FP,M).
By (3.3), (3.4), and (3.5),

— S
lim sup R,(Fg)< / log MdF P ()
00 Qeb(Pyrar) 15, fr(2)

— Po(In) log Po(Inr) + Po(In)y.
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Now
Sp(.’L‘,’I'M) r
/m g fpy(2) 4Fr,(2)
T o Se(era) 10()
_ /R [IIM(m)log I I (0) g (x)]deo(x)
vp(z)
_/RIIM(z)log fpo(x)deo(:c).
By (3.2),

<E.

vp(Z)
‘/R I, (z)log @) dFp,(x)

Furthermore, since

Sp(z,Tam) vp(z) o vp(x)
Fro(@) Tn@ L% Tn@)

the monotone convergence theorem implies that

Sp(z,mM) vp () i vp(z)
[ [t (e108 ZE2D0 4 11, 210 220 araa) | [ log 2 dR(e).

Hence, when M is large enough and rp is small enough with ¢ <
—} Jrlog 72 EdFo(2),

Ir¢ () log Py-a.e. when ry — 0,

+ Ir,,(z) log

Sp(z,mm) TP (z)
/Iﬁ,, IOg_—fpo(z) dFy(z) </logf ( ) dFo(z) + ¢

—4/1 fPo Fola)

— Po(Ip)log Po(Im) + Po(Im)y <e < — ! / lo ;:(( ))dFo(x).

and

Hence, when M is large enough and 7y is small enough

T 1 vp()
lim sup Rp(Fg)< —/ log dFp (z) < 0.
n—00 Qeb(P,ru) wFa) <5 R fr(2) (%)

So far we have been considering a fixed P. Generally, for any P € P\ {Po},
there exist 737, p > 0 and Np € N such that whenever n > Np,

1
sup  Rn(Fg) < 5/ log e )deo(x) <0.
Qeb(P,rm,p) R [ro(®)

For each 6 > 0, all the neighborhoods {b(P,rm.p) : P € P\ {Po}} cover P\
b(P,, 6). Since P\b(Py, ) is compact, there exist finitely many neighborhoods, say
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{b(Py,77.p,);s -+ >b(Pr,7Tar,p, )} which cover P\ b(FPy,6). Let N5 = max(Np,. ..,
Np,). Then whenever n > N,

sup  Rn(Fg)
Q Gp\b(Po 8)

<z max ( / log ;i 1 de0 / log }IZ‘ po(x)> <0
0 0

Hence, maximizing R, (Fg) over Q € P yields an element of b(FPp, §) for each § > 0.
Thus, consistency of the AMPS estimator is substantiated. OO

Remark 3.1. It should be noted that the “Bahadur suitable compactifica-
tion” is a condition not only on the set P but also on the particular version fp
of % which is in force for each P in P. Consistency of the AMLE depends on
which versions of the densities are chosen. The consistency result for the AMPS
estimator in Theorem 3.1 does not depend on which versions of the densities are
chosen.

Theorem 3.1 has been formulated for families dominated by Lebesgue measure
A. A can be replaced by any o-finite measure with no atoms. Basically, Theorem
3.1 asserts consistency of the AMPS estimator under Bahadur’s Conditions A, C
and (3.1). Condition (3.1) replaces Bahadur’s Condition B. Assumption (3.1) is
used here to provide a simple, concise proof in the spirit of Wald (1949). Fur-
thermore, it is usually straightforward to check. For example, if the densities are
“reasonably” nice, e.g. have versions which are upper semicontinuous, then (3.1)
is implied by Bahadur’s Conditions A and C. More specifically,

COROLLARY 3.1. Let X1,X,,...,X, be an i.i.d. sample from Py € P. Sup-
pose there are upper semicontinuous versions of the densities {fp(z) : P € P}
such that (P,d) has a “Bahadur suitable compactification” (P,d) for which Ba-
hadur’s Condition C is satisfied. Then any AMPS sequence is consistent, i.e. if
{P,} is an AMPS, then lim,_,o d(P,, Py) = 0. In particular, if {fp(z) : P € P}
is a family of density functions and P has a compactification P such that the sub-
densities {fp(z), P € P} have an upper semicontinuous version both for P and
for z, then any AMPS sequence is consistent.

PRrROOF. It is easy to see that Sp(z,r) is an upper semicontinuous function
of = since each of the functions in {fp(z) : P € P} is. So for each M > 0,
Apmyr = {z: Sp(z,r) > M} is a closed set. Hence Apar,r = Apa,r. So for any
positive M,

}i_ff(l) Py(Apmy) = }1_1{(1) Po(Apm,r) = Po({z : vp(z) > M}).

Thus
lim hm Po(Apry) = llm Po({z :vp(z) > M}) =0

M—oor—

and consequently assumption (3.1) of Theorem 3.1 holds. Moreover, since fp(z)
is upper semicontinuous for P, i.e. (3.0) holds, and yp(z) = fp(z) a.e. for any P
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in P, we have a Bahadur suitable compactification for which Bahadur’s Condition
C is satisfied. O

Ezample 3.1. Le Cam ((1990), Section 4) provides a modification of Ba-
hadur’s well-known counterexample for the MLE, in which the MLE exists but
goes further and further away from the true parameter value. For that example,
it is easy to see that P = P U {Ps} where Py, (—00,z) = (1 — ¢)bo(z) + cl(o,1)(2)
for z € [0,1] and yp,(z) = cljo1)(x). Moreover, for all P € P and € > 0, there
exists rp > 0 such that {Q : d(Q, P) < rp} = {P}. Thus, when M is big enough,
Apmrp = 0 and the set {z : sup{fg(z) : d(Q,Px) < r} > M} is an inter-
val with length going to zero. Hence, in Theorem 3.1, lim, o Po(Ap, M) =0is
satisfied. Consequently, the MPS estimator is consistent. However, notice that
supgep{fo(z) : d(Q,P) < r} is not integrable for any r > 0, so Bahadur’s
Condition B fails and the regularity conditions in Wang (1985) do not hold either.

Ezample 3.2. Ferguson (1982) constructs an example with the following
properties:

(1) The parameter space © is the compact set [0, 1];

(2) The observations are i.i.d. according to a distribution Fg(z) for some
6 € ©;

(3) Densities fo(x) with respect to Lebesgue measure exist and are continuous
in @ for all z € [—1,1];

(4) (Identifiability) If 6’ # 6, then Fy () is not identical to Fp(z).

More specifically, the densities are of the form

fo(z )—g [17(—550—] [1— Iz(_e)olr, rel-1,1], 0€(0,1]

where 6(6) is a continuous decreasing function of 8 with §(0) = 1 and 0 < §(6) <
1—6for0 <8 <1 For =1, fi(z) = 2I_1,1(z) which is the density of the
uniform.

The existence of the MLE is clear since a continuous function is maximized
on a compact set. However, Ferguson proves that if §(6) tends to zero rapidly
enough as § — 1, then the MLE converges almost surely to 1 regardless of the
true parameter g € [0,1]. On the other hand, note that for fixed 8, fo(z) is
upper semicontinuous with respect to z and continuous with respect to 6 for fixed
z. Consequently, Corollary 3.1 shows that any AMPS sequence is consistent. In
particular, the MPS estimator always exists and is consistent for this example. O

Remark 3.2. Bahadur ((1971), Theorem 9.2.) gives an existence theorem
for consistent MLE based on the following five conditions:

CONDITION A. P is a “suitable compactification” of P.
CONDITION B. For each P € P, Eplog =8 < oo, where L(z) =

fr(z)
sup{fq(z) : Q@ € P}.
CoNDITION C. {z:vp(z) # fp,(z)} has positive measure if P € P\ P.
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CONDITION D. P — P is a closed set.
ConDITION E. 4p(z) = fp(z) for each P € P and for all z in X.

Note that Conditions A—-C are required to ensure consistency of AMLE. The
additional conditions D and E assert that the MLE exists. Condition E is stronger
than “yp(z) = fp(x) almost everywhere,” which is implied by Condition A. Since
the MPS estimator does not depend on the version of the density, Condition E
is not necessary for existence of the MPS estimator. Next we prove that adding
Condition D to the above consistency theorems for the AMPS estimator ensures
existence of the MPS estimator.

THEOREM 3.2. If the conditions in Theorem 3.1 and Bahadur’s Condition D
are satisfied, then with probability one an MPS estimator exists for all sufficiently
large n, and any MPS estimator is consistent.

PrOOF. Given any small neighborhood of the true distribution, Theorem 3.1
asserts that all the AMPS estimators will be in the neighborhood for sufficiently
large n. By considering the $-neighborhood we can assume the closure A, of the
e-neighborhood A, is in P because of Condition D. For a given sample with size
n (sufficiently large), let A, be the set of all the AMPS estimates corresponding
to that sample. Then A, is not empty and A, C A.. If A, is a finite set, then
at least one of its elements is a MPS estimator. If A,, is not a finite set, there are
{Fk : k € N} in A, such that limg_,oc Spn(Fk) = supp,cp Sn(F). By considering
subsequences if necessary, we can assume limg_,, Pr, = Px € A . CP. By (3.0),
fe (z) =lim,_o Sp_(z,7). So

km fr(z) < lin(l)Spw(.'):,r) = fp, ().

By the dominated convergence theorem,

Sn(Fo) > lim S, (Fy) = sup Sp(F).
k—00 Ppeﬁ

Thus, P, is a MPS estimator for the sample with size n. O

Remark 3.3. Under the usual conditions to prove consistency of AMLE (e.g.
Wald (1949), Le Cam (1953)), consistency of parameters in the Euclidean metric on
the parameter space is equivalent to consistency of the probability measures in the
total variation distance (see Landers and Rogge (1972)). More specifically, under
the conditions of Wald (1949), if 6, is the true parameter, the estimates 6, — 6y
in the Euclidean distance if and only if Py, — Py, in total variation distance.
So, under general conditions, usual consistency in the parametric situation can be
deduced from consistency of probability measures in total variation norm.

Consistency depends on the topology. A sequence of estimates can be consis-
tent in one topology but inconsistent in some stronger topology. The weak(-star)
topology can be a natural choice for the space of probability measures in the ab-
sence of additional information concerning the structure of the family of measures.
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For example, if the true distribution is known to be in a finite set, then consis-
tency of the MPS estimator can be obtained in a stronger metric, e.g. the total
variation distance. Also, if there is information about the geometrical shape of
the distribution (e.g. family of increasing densities), then consistency of the MPS
estimator may be obtained in a stronger metric than the weak metric. In these
situations the weak metric can be essentially equivalent to stronger metrics such
as the total variation norm, as can be seen in the next section.

4. Universal consistency for unimodal distributions

Distributions with unimodal densities are the most commonly used continu-
ous distributions in practice. We start by looking at a special case of unimodal
distributions, those having monotone densities. Notice that the arguments in this
section work for parametric models as well as for nonparametric models.

Ezample 4.1. (Families of nondecreasing densities) Let X1, X>,..., X, be
an ii.d. sample from Py € P, where P is a family of probability measures with
densities which are nondecreasing on (a, b], where —oo0 < a < b < co. Since a non-
decreasing function is continuous almost everywhere, there is no loss of generality
in assuming the densities are right continuous. Let F be the family of nondecreas-
ing and right continuous subdensities on (a,b] and define a Levy-type distance p
on F by

p(g,h) = inf{e > 0: g((z —€) Va+) —e < h(z) < g((x+¢) Ab) +¢, for allz € R}.

Then (F,p) is a compact metric space (see Reiss (1973)) in which
limp, 00 P(fn, f) = 0 if and only if limp .00 fn(2z) = f(x) at all continuity points of
f. The closure P of P with respect to p(P,Q) = p(fp, f@) is thus also compact.
Note that the function Sp(z,r) = sup{fo(z) : p(Q, P) < r,Q € P} is nondecreas-
ing for = and is upper semicontinuous for z and for P. Consequently, Corollary 3.1
and Scheffé’s Theorem imply that any AMPS estimator is consistent with respect
to L! or the total variation norm. O

Similarly, for families with nonincreasing densities on [a,b), —c0 < a < b < o0,
every AMPS sequence is consistent with respect to the total variation distance.
But the same is not true for the MLE. Example 4.7 of Reiss (1973) gives a
nonincreasing density family in which the MLE exists but is not consistent.

DEFINITION 4.1. A function f : R — [0,00] is called unimodal if f is nonde-
creasing on (—00, M) and nonincreasing on (M, oo) for some number My, which
is called a mode of f. The set of all modes of f is called the modal interval Iy of
f, and the center of the modal interval I is denoted by ujy.

THEOREM 4.1. Any AMPS sequence is consistent for a unimodal density in
L! distance.

ProoOF. Since AMPS estimates are independent of the versions of the den-
sities and since each unimodal density is continuous almost everywhere, one can
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assume the unimodal density to be right continuous on (—oo, My) and left contin-
uous on (My, 00), i.e. upper semicontinuous. Without loss of generality we assume
f(My) = 00. Define

Fo = { f : fis unimodal, upper semicontinuous, / fdA <1, f(0) = oo} .
R

For each f € Fy define

flx) zz<0
f0) =20

f(-z) z<0

@ =
Let 75 = {f* | f € Fo}, F§* = {f** | f € Fo}, and define p as in Example 4.1.
Then (F§, p) and (F§*, p) are both compact metric spaces. For f,g € Fy, let

do(f,9) = max{p(f*,g"),p(f**,9"*)}.

By Theorem 2.6 of Reiss (1973), (Fq, dp) is a compact metric space.
Note that for any unimodal density f(z), f(z + M) has zero as a mode. Let

= {f : f is unimodal, upper semicontinuous,/ fdA <1, f(My) = oo} .
R

For f and g in F, define d(f,g) = max{do(f(- + My),g(- + My)), | My — M,|}.
Since My and M, are always finite, d is a well-defined metric on F. In fact,

LEMMA 4.1. (F,d) is a locally compact metric space and a subset K of F is
relatively compact if and only if {My | f € K} is bounded. Furthermore, for f,
and f in F, n € N, the following two assertions are equivalent:

(i) limp—oo d(fn, f) = 0;

(i) limp_oo |My, — My| = 0 and limp—o fn(x) = f(x) at each continuity

point x # My of f.

PROOF. See Theorems 2.10, 2.11 and 2.12 of Reiss (1973). 0

P with respect to the vague topology in Theorem 3.1 generally may not be
compact with respect to the total variation distance. However, it suffices to prove
that the AMPS estimates live on a compact subset when sample sizes are large.

LEMMA 4.2. Let X;1,Xs,...,X, be an i.i.d. sample from Fy € F where F is
a family of probability distributions with unimodal densities. If {My} is unbounded,
then for each D > 0 there exist C > 0 and N¢ > 0 such that whenever n > Ng,

n+1 F(XJ ln)

sup R, (F sup log <-D<0.
|M{|>C w(F) = |M;|>Cn+lz Fo ) Fo(X;- 1n)
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PrOOF. Without loss of generality, it may be assumed that Fy has zero as
a mode. Since Fy is tight, Ve > 0, 34 > 0, such that

5/_:dF0(x)+/:odFo(z) <e

Let B be any (big) positive integer and let C = (2B + 1)A. When M; > C,
f(A) QBAi

A 1
/_A f(z)dz < L

Using the nondecreasing order statistics of the sample, let Jo = {7 :1X;nl > A}.
Then

n+1
F(X;n) — F(Xj-1,n)
u F) = su log > J=
J,ECR"( )= e, Z 8 Fo(X;jn) — Fo(Xj-1,n)

F(X;n)— F(Xj-1,n)
— § 10g I, J—1 -
Mf>Cn+1 (]EZJC J¢JC) FO(X]n FO(Xj—l,n)
1 F(X;n) — F(Xj-1,n)
su lo 1 J—1
YRCTES! J.ZGJC Fo(X;.n) — Fo(X;-1.0)

1 1 B
<o3I EZJ:clog {m(FO(X,-,n) — Fo(Xj-1,n)) 1}

|Jc| 7‘L+1
|J | +1

Zlog{(n+ 1) (Fo(Xj,n) — Fo(Xj-1,))}

j€Jc

— —60(A)(log 6(A) —v) when n — oo, since lim el = 6o(A).
n—oon + 1

1 F(X,n)— F(Xj-1n)
sup —— lo 3 j-1,
Mffc n+1 ngJc g Fo(Xjn) — Fo(Xj-1,n)
S U Al e B\l |Jgp) o T 0
! Jj€Jc
_n+1-|Jc| o n+1

n + 1 n+1-|Jc|

3 log{(n + 1)(Fo(X;n) — Fo(X;-1,))}

i¢Jc
— —(1 = 80(A))[log[(1 — 80(A))B] — 7.

.B™!

'n+1

The same argument works for My < —C, so

im sup Rn(F) < —2(1—60(A))(log[(1 — 60(A))B] - )

n_’oole[>C

— 260(A)(log 6o(A) —7) +1
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where 8p(A) < € and ¢ is an arbitrary small positive number. Since eloge — 0
when € | 0 and limp_, o ¢—0log[(1 — 60(A))B] = oo, the right-hand side of the
inequality goes to —oo when ¢ | 0 and B 1 co. This proves the lemma. O

COMPLETION OF THE PROOF OF THEOREM 4.1. Lemmas 4.1 and 4.2 justify
consideration of AMPS estimates only on a compact subset of P when P is not
compact with respect to d. By Lemma 4.1, the conditions of Corollary 3.1 hold.
Thus, for any positive €, there is a positive integer N so that when n > N,
the AMPS estimator falls in an e-neighborhood (in metric d) of the true density
provided the true density has a unique mode M. However, the spacings do not
depend on versions of the density. If the true density has a modal interval I; with
positive length |If|, i.e., the true density has infinitely many unimodal versions,
then for any positive ¢ and n large enough, the AMPS estimator falls in the
union of the open e-neighborhoods in the metric d of all the versions of the true
density. The union is a big open set in the metric d with diameter no less than
|If|. However, the union is an e-neighborhood of the true density in the metric p.
Consequently, the AMPS sequence converges to the true density and hence also
in L! distance by Theorem 2.17 of Reiss (1973). Moreover, the modes M ., of this
AMPS sequence satisfy lim, .o inf{|My, —m|:m € I;} =0as.O

Remark 4.1. Families of unimodal densities include many of the families
of distributions in practice. Many counterexamples to consistency of the MLE
and AMLE involve unimodal densities, such as the three-parameter log normal
distributions, the three-parameter Weibull distribution, three-parameter Gamma
distributions, those discussed in Smith (1985) and in Examples 3.1 and 3.2, and
some distributions discussed in Le Cam (1990). In particular, the regularity con-
ditions in Bahadur (1971) and Wang (1985) fail to hold for these situations. By
Theorem 4.1, they cannot be counterexamples to consistency of the AMPS esti-
mates. The proof of Theorem 4.1 can also be modified to establish consistency
of AMPS estimates for families of monotone failure rates, or families of U-shaped
densities and families of multimodal densities in which the modes are fixed.

Remark 4.2. Motivated by problems arising from reliability theory and sur-
vival analysis, much research effort has been devoted to the nonparametric esti-
mation of a cdf with a unimodal density. Grenander (1956) first obtained the non-
parametric MLE for a distribution with a monotone decreasing density on [0, 00),
which is the least concave majorant of the empirical distribution function. Kiefer
and Wolfowitz (1976) proved that the Grenander estimator is asymptotically effi-
cient in the sense of minimax. Thorough asymptotic and nonasymptotic analyses
for the Grenander estimator have been done by Groeneboom (1985) and Birgé
(1989), respectively. Prakasa Rao (1969) considered the nonparametric estimation
of a unimodal distribution with known mode. However, the likelihood function can
be unbounded when the mode of the underlying distribution is unknown. (Recall
that a monotone density is regarded as a special unimodal density.) Thus the
nonparametric maximum likelihood method breaks down when the mode of the
distribution is unknown. No other good estimates of a distribution function with a
unimodal density (when the mode may not be known) have been proposed except
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the empirical distribution function, which is not necessarily unimodal. Shao (1996)
obtained explicitly the maximum product of spacings estimator for a distribution
with a unimodal density. The MPS estimator is always unimodal and has a simple
explicit representation. Moreover, when the mode is known, the MPS estimator
is asymptotically efficient in the sense of minimax. When the mode is unknown,
Theorem 4.1 asserts the uniform consistency of the MPS estimator.
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