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Abstract. In this paper we study exact distributions of runs on directed
trees. On the assumption that the collection of random variables indexed by
the vertices of a directed tree has a directed Markov distribution, the exact
distribution theory of runs is extended from based on random sequences to based
on directed trees. The distribution of the number of success runs of a specified
length on a directed tree along the direction is derived. A consecutive-k-out-of-
n:F system on a directed tree is introduced and investigated. By assuming that
the lifetimes of the components are independent and identically distributed, we
give the exact distribution of the lifetime of the consecutive system. The results
are not only theoretical but also suitable for computation.
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1. Introduction and preliminaries

The exact distribution theory of runs of a specified length in random sequences
has been developed by many authors (cf. e.g. Rajarshi (1974), Schwager (1983),
Philippou and Muwafi (1982), Philippou et al. (1983), Aki (1985), Philippou
(1986), Hirano (1986), Philippou and Makri (1986), Ebneshahrashoob and Sobel
(1990), Aki (1992), Hirano and Aki (1993), Balasubramanian et al. (1993),
Godbole and Papastavridis (1994), Mohanty (1994), Fu and Koutras (1994), Aki
and Hirano (1995), Koutras and Alexandrou (1995), Uchida and Aki (1995), Aki
et al. (1996), Balakrishnan et al. (1997) and the references therein).

The traditional approach for the problem is based on enumerative combina-
torics. As order of dependency of underlying random sequences grows higher,
however, new powerful methods such as the method of conditional probability
generating functions (pgf’s) and the method of Markov chain imbedding have
been developed. The method of conditional pgf’s was introduced in the problem
by Ebneshahrashoob and Sobel (1990) and used effectively by Aki (1992), Uchida
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and Aki (1995), Aki et al. (1996) and others. The method of Markov chain imbed-
ding was introduced by Fu and Koutras (1994) and developed by Koutras and
Alexandrou (1995), Fu (1996) and Lou (1996). The method of conditional pgf’s
is more general than the method of Markov chain imbedding. However, when the
method of conditional pgf’s is applied to derivation of exact distributions of runs
in random sequences, the resulting system of equations of conditional pgf’s often
becomes linear even if order of dependency of the random sequences is very high
(cf. AKki et al. (1996)). The linearlity of the system enables us to consider a virtual
Markov chain and to obtain fruitful results from the setup.

Among various applications of the theory, in particular, consecutive engineer-
ing systems such as linear consecutive-k-out-of-n:F systems and m-consecutive-
k-out-of-n:F systems are very interesting and stimulative (cf. e.g. Hirano (1994)
and Chao et al. (1995)). The reliability and the lifetime of each of the systems
are directly related to the distribution of the number of runs of length k in the
corresponding sequence of random variables.

In this paper we consider exact distributions of runs on directed trees. Typical
practical examples of consecutive systems are a sequence of n microwave stations
which transmits information from place A to place B and a sequence of n pump
stations for transporting oil by pipes from point A to point B and so on. It is
much more practical to assume that the components (microwave stations or pump
stations) are not necessarily placed in line or that the number of destinations is
not necessarily one, say, from A to B, C and D. The most simplest statistical
model for the problem is a collection of random variables indexed by the vertices
of a directed tree. Figure 1 shows an example of a realization of a directed tree of
binary ({ e, o }-valued) random variables.

v v
Yo P31 32 & V34 U35

Fig. 1. A realization of a collection of binary random variables indexed by the vertex

set of a directed tree.
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For basic notions in graphical models we refer the reader to Lauritzen (1996)
and Ripley (1996). If every vertex except for a leaf has only one child, then the
directed tree reduces to a sequence of finite length. Therefore, our model includes
usual linear consecutive systems. By assuming that the collection of random vari-
ables indexed by the vertices of a directed tree has a directed Markov distribution
(Lauritzen ((1996), p. 52)), we can extend the exact distribution theory of runs
from based on sequences to based on directed trees. For the purpose the method
of conditional pgf’s is still a powerful tool. However, if the directed tree is not
a sequence, the system of equations of conditional pgf’s is no longer linear (see
Theorem 2.1) and the method of Markov chain imbedding may not be available.

Here, we briefly explain about the Markov properties on graphs for the readers’
convenience. Some different Markov properties such as the pairwise, the local, and
the global Markov properties on graphs have been introduced and investigated by
many researchers (cf. e.g. Lauritzen (1996)). The followings are well known on
directed acyclic graphs. Let P be a probability distribution of a collection of
random variables indexed by the vertices of a directed acyclic graph G and let V
be the totality of the vertices of G. For A C V, we denote X4 = {X,,a € V}.
We say that P obeys the directed global Markov property relative to G if X4 and
Xp are conditionally independent given Xg whenever A and B are separated by
S in the moral graph of the smallest ancestral set containing AU B U S. Here,
the moral graph of a directed acyclic graph G is the undirected graph with the
same vertex set obtained by adding an edge between parents when they have a
common child and by ignoring the direction. In particular, in case of directed trees
treated in this paper the moral graph of a directed tree is the undirected graph
obtained only by ignoring the direction, since every vertex does not have more than
or equal to two parents in any directed tree. We say that P obeys the directed
local Markov property if any random variable X, is conditionally independent of
its non-descendants given its parents. Then, P obeys the directed global Markov
property relative to G if and only if P obeys the directed local Markov property
relative to G (Theorem 3.27 of Lauritzen (1996)). From the equivalence of the
Markov properties on directed acyclic graphs, P is said to have a directed Markov
distribution if P obeys either of the Markov properties. In this paper we restrict
ourselves to study the probability distributions on directed trees which are the
simplest special graphs of directed acyclic graphs.

We give in Section 2 a general result for obtaining the exact distribution of
number of runs on directed trees by extending the method of conditional pgf’s.
The result provides a feasible algorithm for the distribution of runs (or reliability
of consecutive systems on directed trees).

If lifetimes of the components of a linear consecutive-k-out-of-n:F system are
independent and identically distributed, the distribution of the lifetime of the
system can be written as a finite mixture of distributions of n order statistics of
the lifetimes of the components (Aki and Hirano (1996)); the mixing weights, which
do not depend on the distribution of the lifetime of each component, are obtained
from the numbers of minimal m-cutsequences for m = 1,2,...,n. The result is
very useful for obtaining moments of the lifetime of the system, since the moments
of order statistics have been studied very well for common lifetime distributions. In
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Section 3, we give a method for deriving the numbers of minimal m-cutsequences
of consecutive systems on directed trees and obtain the distribution and some
characteristics of the lifetime of the consecutive systems on directed trees.

Before stating the general result, we illustrate how to enumerate the num-
ber of runs on directed trees by using Fig. 1. We can find out the following
“e”-runs of length 3 along the direction on the directed tree in Fig. 1: R; =
(v1,v2,v6), R2 = (v11,v19,U30), R3 = (v11,v10,v31), Ry = (v10,v16,V26), Rs =
(v10,v18,v28) and Rg = (v1g,v1s,v29). Here, we adopt the non-overlapping count-
ing method along the direction in every path from the root v; to one of the leaves
{ Vs, V30, V31, V32, U33, V34, U7, V13, V22, VU35, V24, V36, V37, V38, V39, V40, V41 } Here, we
do not count the runs (vs,ve,v11) or (s, v11,v19) since they overlap with the run
R; = (v1,v2,v6) in the path v; — v — v — v11 — vig — v3o. Though Ry
overlaps with R3, we count the both runs since they can not be included simulta-
neously in a path from the root to a leaf. We do not count the run (vqg, v1s, v29)
because the run is not along the direction.

2. Number of runs on directed trees

Let T be a directed tree and let V be the totality of the vertices of T'. Suppose
we are given a collection of {0, 1}-valued random variables {X,,v € V'}. Let vy be
the root of T. Of course, we assume that all edges are directed away from the root.
Further, we assume that {X,,v € V} has the directed Markov distribution (cf.
Lauritzen ((1996), p. 52) or Ripley ((1996), p. 253)), with the initial distribution
at the root P(X,, = 1) = p =1 — ¢q and the conditional probabilities

P(Xv = 1IXpa(v) = 1) =pm=1-q,
P(Xv = 1|Xpa(v) = 0) =po=1-—qo,

for each vertex v except for the root, where pa(v) denotes the parent of the vertex
v. Then, the collection of the random variables {X,,v € V} is often called a
Markov tree. We fix any vertex v except for the root. Suppose that the vertex
has a(v) ancestors v!,v?,...,v*") with pa(v’) = v/*! for j = 1,2,...,a(v) — 1.
Assume also that the vertex v has c(v) children vy,vs,...,v.). We denote by
T, the subtree which consists of the vertex v (the root of the subtree) and of
all of the descendants of v. V,, denotes the set of vertices of T;,. Let ¢,,(t) be
the pgf of the distribution of the number of non-overlapping “1”-runs of length
k along the direction in {X,,v € V}. For every vertex v except for the root
v, we let ¢$)0) (t) be the pgf of the conditional distribution of the number of
non-overlapping “1”-runs of length k along the direction in {X,,,w € V,} given
that X,4(,) = 0 and let wf,o)(t) be the pgf of the conditional distribution of the
number of non-overlapping “1”-runs of length k along the direction in {X,,,w €
V,} given that at the vertex pa(v) a “1”-run of length k along the direction is
observed. For | = 1,2,...,min{(k — 1),a(v)}, we let ¢,(,l)(t) be the pgf of the
conditional distribution of the number of non-overlapping “1”-runs of length &
along the direction in {X,,w € V,} given that at the vertex pa(v) a “1”-run of
length [ along the direction is observed. Then we have
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THEOREM 2.1.  The pgf’s ¢y (), o (t) and P (t) forl =0,1,...,

satisfy the following recurrence relations;

( c(vo) c(vo)
q H ¢$;?)3 ®+p H ¢th (t) i c(vo) >0 and
e i
c(vo) c(vo)
(21) Gu(t)=1 ¢ H 9 @) +pt [T Q@) if eclvo) >0 and
Jj=1
q +pt if c(vo) =0 and
! if c(vo)=0 and
for v # v,
( c(v) c(v)
o [[oD®) +po [[¢0¢) o c(v)>0 and
j=1 j=1
c(v) c(v)
22) ¢ =4 w[[60®) +pot [[¢0() o c(v)>0 and
j=1 j=1
go + pot if c(v)=0 and
\ 1 if C('U) =0 and
and
( c(v) c(v)
q H ¢(0)(t )+ H oM@ if c(v)>0 and
c(v) c(v)
(2.3) ¥Pt) =< @ H¢(O)(t)+p1tH¢(°) if c(v)>0 and
j=1
@ +p;t if c(v)=0 and
L1 if c(v)=0 and

for 1 <1 < min{(k — 1),a(v)} (automatically k > 2),

c(v) c(v)

1 o0m={ " JHIW e HWI) g

1 if c(v)=0

k-1

k>1

k>1

k>1
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fork>1,

c(v) c(v)

(0) (0 : 0
(25) ¢£)k—~1) (t) _ qQ1 ]ZI—II ¢’Uj (t) + plt][[l 'l,bv] (t) ’Lf C('U) >

q1 +pit if c(v) =0.

PROOF. Note that {X,,v € V} follows a directed Markov distribution. Since
every vertex does not have more than or equal to two parents in any directed tree,
its moral graph is obtained only by ignoring the direction. Because the subsets
Voo oo Vo, are separated by the parent {v} in the moral graph of the smallest
ancestral set containing V,,, from the directed global Markov property, {X,,w €
Vir}sooor and {Xy,w € Vy,,,} become conditionally independent when X, is
given. Then, since the number of “1”-runs observed in {X,,, w € V,,} is the sum of
the (conditionally independent) numbers of “1”-runs observed in {X,,,w € V,,},
..., and {Xy,w € V,,_, }, the corresponding pg f becomes the product of the pgf’s
relative to {Xy,w € V,,;}, 5 = 1,...,c(v). Thus, we have (2.1), (2.2) and (2.3).
Similarly, when {X,1 = 1,..., X,; = 1} is given, the numbers of “1”-runs observed
in {Xy,w € V,,;},j=1,...,c(v) become conditionally independent if X, is also
given and hence we have (2.4) and (2.5). This completes the proof.

Remark 2.1. In fact, the boundary conditions of the recurrence relations in
Theorem 2.1 are given at every leaf since ¢(v) = 0 is observed at every leaf.
However, by taking account of the length of the remaining subtree at every vertex,
we can add another type of boundary conditions; denoting by |T| the length of
T, (the maximum of the length of paths in T},),

Piy=1 if I1+|T|+1<k
P =1 if |T,|+1<k.

Remark 2.2. Letting £ = 1 in Theorem 2.1, we obtain the distribution of the
number of “1” in the Markov tree. If we extend the r-out-of-n:F system from usual
i.i.d. case to the case of a Markov tree, we find out the reliability of the system
immediately by calculating the probability that the number of “1” on the tree is
less than 7. In particular, when k = 1 and p = pgp = py (i.i.d. case), we see that
bu, (t) = (pt + @)V, where N is the cardinality of V, since o t) = {0 (t) holds
for every v € V. This is the usual binomial distribution.

Remark 2.3. When ¢(v) = 0 or 1 for every v € V, the directed tree reduces
to a sequence of a finite length and hence we can arrange the vertices in line
as vg,v1,...,UN—1, Where N is the cardinality of V. Then the corresponding
sequence Xg, X1,...,Xn-1 becomes a homogeneous Markov chain. Therefore, we
can reduce the set of the pgf’s by modifying the indices from every vertex to
the length of the remaining sequence. For example, we substitute ¢,,(t), d)f,lj)(t)

and wl(,?) (t) for on (1), ¢§\l,)_ ;(t) and v,bl(\?)_ ;(t), respectively. Then, Theorem 2.1 and
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Remark 2.1 imply the following linear system of equations;
o (t) = if 0<n<k
(0)(t)_1 if 0<n<k
D) = q08',(t) + poar 85 (1) -
+popt @b (t) + popf Y () i n>k
() = a8l () + prangl(t) -
\ +p5 10189 (1) + phtp @, (1) if n>k

This can be solved explicitly similarly as Theorem 3 of Aki and Hirano (1993).

When a collection of {0, 1}-valued random variables indexed by the vertices of
a directed tree with a directed Markov distribution is given, Theorem 2.1 indeed
provides an algorithm for deriving the pgf of the distribution of the number of
“1”-runs of a specified length. We illustrate here how to derive the pgf by using
the following example.

Example 2.1. We calculate the pgf of the distribution of the number of “1”-
runs of length 3 on the directed tree in Fig. 2. For simplicity, we assume that p =
Po = p1, that is, X,;,7 = 1,2,...,18 are independent and identically distributed.
Since the root v; has the children {vq,v3,v4}, we have from (2.1)

$uu (1) = 409 ()95 (165 (1) + poly) (£) () (D)9 (2)-
Next, noting that the vertex vy has children {vs,vg}, we have

¢80 (8) = agl) ()0 (t) + pely) (1)65) (8).

V18

)
v Vg Uto U7
U3 ]k Vg V16

.

Ve vy V13 Vi4 V1s
° ° . ° (]
1 V12
[ [ J

Fig. 2. An example of a directed tree.
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Since the vertex vs does not have a child, we have ¢ =1 and P (t) =1 from

(2.2) and (2.4), respectively. From Remark 2.1, we observe d)vs (t) = 1. Further,
by using (2.4), we have

$(t) = g+ o2 ()62 ().

Here, from (2.5), we have that <b£,21)1 (t) = q+pt and ¢>v12( ) = ¢+ pt. Consequently,
we obtain

O (t) = g+ p(g + p(g + pt)?).

Similarly, we have
¢ () =1,
¢ (t) = g+ plg + pg + pt)2) (g + p(q + pt)) (g + plg + p)%),
$ (1) = g+ plg + pt)?,
#%)(t) = ¢ +plg + pt),
#%(t) = g+ plg + pt)?.

Therefore, we have

¢v, (t) = glg + p(g + p(g + pt)?)]
x[q + p(q + p(a + pt)?)(q + plg + pt))(q + p(g + pt)*)]
+plg + p(g + pt)?)[g + p(q + pt)][q + p(g + pt)*].

Since the pg f is a polynomial with respect to ¢, we only take out the coefficients
of ¢/ for deriving the probability distribution. In fact, we have

Pr(0) = —p'® + 8p'* — 25p' + 34p'% — 4p'! — 42p™° 4 34p° + 14p® — 13p”
—24p% + 15p° + 17p* — 14p% + 1
Pr(1) = (8p'® — 41p° + 66p® — 6p” — 77p° + 35p° + 43p* — 5p® — 38p® + 2p + 14)

(p—1)*p®

Pr(2) = —(28p° — 119p° + 145p” + 25p° — 138p° + 9p* + 58p® + 25p® — 29p — 9)
(p—1)%p*

Pr(3) = (56p° — 245p® + 345p” — 80p® — 182p° + 68p* + 58p° + 8p® — 27p — 2)
(p-1)p°

Pr(4) = —(70p” — 245p° + 250p° — 98p® — 8p® + 20p + 12)(p — 1)p’
Pr(5) = (56p° — 147p° + 93p* + 24p> — 19p® — 12p — 2)(p — 1)p°
Pr(6) = —(28p° — 77p* + 61p® — 4p® — Tp — 2)p™°

Pr(7) = (8p+1)(p — 1)°p*?

Pr(8) = —(p— L)p*".
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As a special case of directed trees, we consider a complete m-ary tree of length
(n — 1). We write the set of the vertices

1 1 2 2 1 n-1
V= {U(O) 'U(() )’ <)’ Sn)l?v((lg7 '7v$n2—1,m—1;"'7 (()7 ,0)7 c 7(n 1,)...,'rn.—1}7

(3+1)

(J) &, has just m children {vg” 7 o,

where we assume that every vertex v

v,(flfl?k’,m L pforj=0,1,...,n-2. For simplicity we assume that {Xv,v €V}is
independent and 1dent1cally dlstrlbuted with p = pg = p1. For v; and v € V and
forl =0,1,...,k (l)(t) = ¢(l)(t) holds if |T, | = |Tw,|, since every vertex has
just m children and {Xv, v € V'} is independent and identically distributed in this
model. We note also that ¢ t) = ¢1(,0) (t) for every v € V. Hence, we denote for

1=0,1,...,k— ;Ql(t) = (b(l)(t) when |T,| = j. Then we have from Theorem
2.1

COROLLARY 2.1. The pgf’s of the conditional distributions of the number of
“1” -runs of length k on the i.i.d. complete m-ary tree of length (n — 1) satisfy the
recurrence relations;

bn(t) = @(Gnr (8)™ + P2, ()™
6D, (1) = g(Bn_a(®))™ + p(82 ()™

¢$:“ 1 (8) = ¢Gnk()™ + PHSu-r(D)™
with boundary conditions ¢§-l)(t) =1forl+j<k.

Remark 2.4. By assuming m = 1 in Corollary 2.1, we have the pgf of the
distribution of the number of “1”-runs in i.i.d. sequence of length n, where the
distribution is called the binomial distribution of order k (cf. Johnson et al. (1992)).
When m = 1, the above system of equations is linear and we can reduce it to

k-1
n(®) = P abnjo1(t) + PP tdak(t) i n>k

3=0
dn(t) =1 if n<k.

This was solved by Aki and Hirano (1988, Theorem 2.1) and ¢,(t) is written as
kot ny+ngt+---+n g\™MHtn p \"™*
S SR (AR L O B G0
m=0n,4+2ns+--+knr=n—m 11, M2, - Nk p q

3. Lifetime of consecutive systems

In this section, we consider the distribution of the lifetime of a consecutive
system every component of which is allocated on the corresponding vertex of a
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directed tree. Let T" be a directed tree with the set of vertices V. Let N be the
cardinality of V. Suppose that N components are allocated at the vertices V one
by one. We assume that the system fails if and only if consecutive k¥ components
along the direction fail. We shall call it a consecutive-k-out-of-N:F system on 7.
A subset W (C V) is called i-cutset if and only if W contains just ¢ elements and
the system fails if the corresponding components of the subset fail. A subsequence
of elements of V of length 7 is called i-cutsequence if it is a permutation of an
i-cutset. An i-cutsequence (vy,vs, ..., ;) is said to be minimal if the subsequence
(vi,v2,...,v;—1) is not an (i — 1)-cutsequence. Let &i,...,&n be the lifetimes of
the components. We assume that £;,...,&y are independent and identically dis-
tributed with a cumulative distribution function G(t). Let ;) < --- < {(n) be the
order statistics of &;,...,&n and let G(;)(t) be the cumulative distribution func-
tion of £;). Then, from Aki and Hirano (1996), there exist constants wy,...,wn
(wi>0fori=1,...,Nandw;+---+wn = 1) such that the distribution function
F(t) of the lifetime of the system can be written as F(t) = Zf/:l w;G(;)(t). Here,
w; is given explicitly as w; = r; x(N — ¢)!/N!, where r; 1 is the number of minimal
i-cutsequences of the system.

Consequently, the problem we have to study is to find out the number of
minimal i-cutsequences of the system. Let b, x be the number of subsets B of
V such that |B| = i and B is not a cutset of the system, where |B| denotes the
cardinality of B. Then, it is easy to see that the number of minimal i-cutsequences
can be written as

Tik = (N —i+ 1)((7, - 1)!)bi—1,k - ’I:!bi)k.

We give how to calculate b; x for i = 0,1,...,N. We fix any vertex v. Suppose
that the vertex v has a(v) ancesters v!,v?,...,v4%) with pa(v?) = v/*+! for j =
1,2,...,a(v) — 1. Assume also that the vertex v has c(v) children vy, va, ..., Ve(v)-
For i = 1,2,...,min{(k — 1),a(v)}, we let P, = {v!,v%,...,v'} and let Py = ¢.
We define

bf,’)m = number of {M C V,| [M|=m and M U P, is not a cutset of the system}.
We write the generating function of bg‘)m as n,(,i)(t) = Zl:;'o bs,i,)mt'" . Then, we
have

THEOREM 3.1. The generating functions n,(,i)(t) fori=0,1,...,k—1 satisfy
the recurrence relations;

QD (t) - pi,, () + S OnETI (8) - S 1)

n$(t) = if ¢)>0 and 0<i<k—1
(t+1) if c(v)=0 and 0<i<k-1,
(3.1)
32) 2 = mor (e (8) - mbch, () i e(v) >0

1 if c(v)=0.
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PrROOF. Let M be a subset of V,, such that M U P; is not a cutset of the
system. When v ¢ M, then M NV, is not a cutset for every j = 1,...,c(v)

and M is written as M = Uc(v)(M n V ;) (disjoint). When v € M, then (M N
Vu;) U ({v} U B;) is not a cutset for every j = 1,...,¢c(v) and M is written as

M = {v}UC(”)(M NV,,) (disjoint). Thus, (3.1) follows by considering whether the
set M mcludes the vertex v or not. When i =k — 1, M U P,_; becomes a cutset
of the system if M includes the vertex v. Then, we have (3.2) by considering only
the subsets which do not include the vertex v. This completes the proof.

Remark 3.1. By calculating 7y )(t) for the root vy of T, we have the number
of subsets which are not cutsets of the system.

Remark 3.2. Similarly as Remark 2.1, we can add another type of boundary
conditions; for ¢ = 0,1,...,k— 1,

P =@+ )" i i+ T +1<k

From Theorem 3.1 we obtain the number of minimal i-cutsequences of the
consecutive system on a directed tree. We illustrate how to derive it by using the
same directed tree as Example 2.1.

Ezample 3.1. We consider the directed tree with 18 vertices given in Fig.
2. Suppose that random variables &1, ..., &1, which represent the lifetimes of the
components, are given corresponding to the vertices of the directed tree, respec-
tively. We assume that £y, ...,&1s are independent and identically distributed and
that the system fails if and only if consecutive three components along the direc-
tion fail. Following Theorem 3.1, we derive the number of subsets which are not
cutsets of the system. Since the root v, has three children {vq,vs,v4}, we have

from (3.1)

1) = i (E)n{P EmP (8) + ) (B)nly) (s (8).
Similarly, since the vertex vs has two children {vs,vs}, we have from Theorem 3.1
and Remark 3.2

n%) (8) = 19 ()0 () + tnls (InSe (2)
= (t+1)(t + )3 + t((t + D)0 @) (2) + i) (B (£))
=+ D)+ t(t+ D)+ 1)2+1).
Similar argument implies

ni (t) = (t+1)2

aO@t) = (t+1)? +t((t+ 12 +1)((E+ 1)+ £)((t+ 1)3 +1)

() = (t+ D)4+ t(t +1)2

pV() =(t+1)+t-1

nD(t) = (t+ 1) + t(t + 1)8.
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Hence, we have

N () = ((t+1)* + t((t + 1)((t + 1) + 1))t + 1)
x((t+1)° +t((t+ 12+ ) ((t+ 1)+ ) ((t+1)2+1¢)
+((E+ D+t + D)D)t + 1) + ) ((t +1)° + t(t + 1)°).

By expanding the generating function, we have that for i = 0,1,2,...,15 the num-
bers of the subsets which are not cutsets with ¢ elements are {1,18,153,802, 2867,
7351, 13912, 19771,21310, 17488,10893, 5084, 1729, 406, 59,4}, respectively. There-
fore, we have for i = 0,1,...,18, w; = 0, wy = 0, w3 = 7/408, wy = 281/6120,
ws = 199/2520, wg = 12091/111384, w, = 28547/222768, ws = 15667/116688,
wo = 13927/109395, wio = 8077/72930, wy; = 7805/87516, w12 = 265/3978,
wig = 7/153, wi4 = 43/1530, w1y = 11/765, Wi = 1/204, wi7 = 0 and wig = 0.

Similarly as in Section 2, we treat a complete m-ary tree of length (n — 1)
as a special case. Since every vertex except for a leaf has just m children, we

see that for v; and v € V and for ¢ = 0,1,2,...,k — m(t) = m,z)(t) holds
if |T,,| = |Ty,|- Hence we denote for i = 0,1,...,k — 1, 77;(1+)1(t) = 17,, (t) when
|T,| = j. Then, from Theorem 3.1 we obtain

COROLLARY 3.1. The generating functions of the numbers of minimal cut-
sequences in the consecutive-k-out-of-(m™ — 1)/(m — 1):F system on the complete
m-ary tree of length (n — 1) satisfy the recurrence relations;

12 (t) = 0 @)™ + t@l, )™

121 () = (D, (0)™ + 2, ()™

k— 0
[ 1 ) = (2™,
with boundary conditions n; )(t) =(t+ 1) -D/(m=D) for i 4+ j < k.

Remark 3.3. By setting m = 1 in Corollary 3.1, we can study the number
of minimal i-cutsequences in the linear consecutive-k-out-of-n:F system with the
generating function approach. When m = 1, the above system can be reduced to

@) = et (1) if n>k

2O = (t+ 1) if 0<n<k.
Of course, we can solve this recurrence relations, since it is linear. However, an
explicit form of the solution is well known to be

[n/k]

W0 =3 (" ()
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Here, the coefficient of ¢ is the number of ways of putting ¢ identical objects into
(n — i + 1) different cells when each of (n — i + 1) different cells may contain no
more than (k — 1) objects (cf. e.g. Riordan (1958), p. 104).

4. Computational aspects

The results obtained in this paper are intended for computation as well as
for theoretical development. Theorems 2.1 and 3.1 and Corollaries 2.1 and 3.1
indeed provide algorithms for the corresponding computations. In fact, it is easy
to convert the theorems to recursive procedures by using some computer algebra
systems. Though we used in Sections 2 and 3 the directed tree of very small length
with only 18 vertices to illustrate how to derive the generating functions, the size
of the directed tree is not a problem if we input the directed tree to the computer
by using standard methods like adjacency list representation or adjacency matrix
representation. Indeed, we can treat the corresponding computational results to
Examples 2.1 and 3.1 for the directed tree with 41 vertices in Fig. 1. The pgf of
the distribution of “1”-runs of length 3 on the directed tree becomes a polynomial
in t of degree 18, which is very long and may not be suitable for printing all
the polynomial. Nevertheless, it is very easy to obtain the probabilities from the
pgf by means of some computer algebra systems, since most computer algebra
systems are excellent in expanding polynomials and in taking out the coefficients.
More generally, it is also well known that recurrence relations of probabilities or
moments are derived by standard methods from the pgf if the pgf is a rational
function (cf. e.g. Stanley (1986), Chapter 4).

—

2.5 T T T i

o

R~
Il
o

0.5 -

0 i 1.- ..
0 0.5 1 1.5 2 25 3

Fig. 3. Density function of the lifetime of the consecutive-3-out-of-41:F system on the

directed tree.
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We can also derive the lifetime of the consecutive-3-out-of-41:F system on the
directed tree. By calculating the generating function of the numbers of the subsets
which are not cutsets with i elements, we obtain the mixing weights wy,...,w4
exactly. In particular, if we further assume that G(t) = 1 — exp(—put) (the expo-
nential distribution with parameter p), the density of the lifetime of the system
can be written exactly. The mean and variance of the lifetime of the system are

given as
513842337225463

13357328642658001

84635790835898868288089128759
237890971290629078209739952000012

mean =

variance =

Figure 3 shows the graphs of the density functions of the lifetime of the
consecutive-3-out-of-41:F system relative to the directed tree with exponential
components (u =1 and 1/2).
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