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Abstract. In this paper, we propose a non-Gaussion state space model to
apply in software relinbility. This model assuines an exponential distribution
for the failure time in every test-debugging stage, conditionally on the state
parameter—the number of faults in the program. It is a generalized JM model
which can be applicd to the imperfect debugging situstion as well as in evolving
programs. By examining a set of data on evolving program failures, the effect
of evolving program model is amply proved.

Key words and phrases:  JM model, linear exponential loss function, Poisson
digtribution, exponential distribution.

1. Introduction

The reliability of computer software is a crucial measure about the qual-
ity of computer system. During the past thirty years, many software reliability
models had been proposed, discussed, modified and generalized. The first well
known model for software reliability was IM model which was made by Jelin-
ski and Moranda (1972). By adopting Bayesian method and unifying the earlicr
model, Langberg and Singpurwalla (1985} generalized JM model. According to
their viewpoint, the models made by Littlewood and Verrall (1973, 1974), Geol
and Okumoto (1979) can be regarded as gencalized JM models. The detail for
the history of software reliability modeling can refer to Musa et al. (1987}, and
Singpurwalla and Wilson {1994).

Singpurwalla and Wilson {1994) reviewed the literature in software reliability
and classified these models into three types: models based on concatenated failure
rate, models based on non-homogeneous Poisson processes, and models based on
a specified relationship between the software’s inter-failure time after each cycle of
testing and modification. The third type of model, making usc of time series, had
been proposced. Because of their ability te track failure data, the models give supe-
rior predictive abilities to many other models. Examples of the third type models
are the model due to Singpurwalla and Soyer (1992), the model due to Chen and
Singpurwalla (1994), and the model due to Becker and Camarinopoulos (1990).
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Singpurwalla and Soyer (1992) proposed a non-homogenecus autoregressive pro-
cess, as well known as a Kalman filter, to describe reliability growth. Chen and
Singpurwalla (1994) snggested a non-Ganssian Kalman filter to apply to software
reliability. The model has a Gamma-Gamma type invariant conditional distri-
bution. Becker and Camarinopoulos (1990} proposed a model that assumes an
exponcential distribution for the observations, conditionally on the unknown fail-
ure rate. A specified class of conjugate prior for the failure rate had been defined
to describe the growth of reliability.

Chen and Singpurwalla {(1997) uniflied software reliability models by self-
exciting processes. All the models based on concatenated failure rate or non-
homogeneous Poisson processes arc subsumed by the family of seif-exciting pro-
cesses. 'The models that we disscussed above arc members of the family of self-
exciting processes, too. Note that not all models are members of the family of
self-exciting processes, for examples, the models by Crow and Singpurwalla (1984)
and Sahinoghu (1992).

In this paper we develop a state space modcl for software reliability, which
is generalized from JM model. It assumes an exponential distribution for the
failure time in every test-debugging stage, conditionally on the number of fauits
in program. We can apply this model to an imperfect debugging situation as well
as to evolving programs. The reliability of evolving programs had been throughly
described in Chapter 15 of Musa et al. (1987). In Section 2, we will discuss
the reliability function and construct the model, a predictor of failure time can be
found by a linecar expenential (LINFX) loss function (Zellner (1986)). In Section 3,
the basic model and the evolving program model will be examined. By using
sowne techniques such as the prequential likelihood ratio and u-plot (Dawid {1984},
Littlewood (1987)}, a comparison betweon these two models is provided.

2. The model

Following arc the assumptions of JM model:
(i) the total munber of initial faults Ny is an unknown constant;

(ii) a detected fault is removed immediately and no new fault is introduced;

(ili) the times between failures of the program arc independent with an expo-
nential distribution;

(iv) each of the remaining faults contributes an equal amount to the failurc
rate.

Let T3, + > 0 be the times between i-th and (i + 1)-th failures. Then the
density of 1} is .

gTi(ti 1 Qb,l?\/?{j) = @(N[] - i)eiqb(Nni?:)ti:

where ¢ Is a positive constant as the amount ol cacl fault contributes to the failure
rate, namely, the failure rate of every fault.

In our situation, the numbers of residual faults in every test-debugging stage
will be regarded as a sequence of random variables with a Poisson distribution.
Let N; be the number of residual faults at i-th test-debugging stage, and ¢; be
the failure rate of every fault. The model assumptions are shown below:

1. The initial assumption: Ny has prior distribution Poisson(Ag};
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2. The system equation: For fixed n, n > 1, 7™ = {(T5, 171, ...,Th—1) |0 <
T; < oc,0<i<n— 1}, we have

(2.1) (N, — (N oy — 1} | Nyt ,T*7) ~ Poisson(ay),

where a, is a nonnegative constant, which may depend on 777! though not on
anl;

3. 'L'he observation equation: (T}, | Ny,) ~ Exp(dnN,).

Based on the discussion of Musa et al. (1987}, a failure caused only one fault.
Therefore, under assumption (ii) in JM model, when the scale of the program is
stable, a,, in (2.1) is zero, i.e., N, = Np_1 — 1 with probability 1 for all n > 1.
The model is the first model in Langberg and Singpurwalla (1985). When the
initial fanlts number N, degenerates to a constant, the model will return to JM
model. If debugging the program is imperfect, we may introduce a new fault in
every debugging stage. Therefore, a reasonahle vahie for a,, is among ) and 2.
The case that more than onc fault is introduced can be seen as a rare event. To
describe the reliability growth, a reasonable region of a,, 1s (0,1). Note that, when
the scale of the program is unstable (we only consider an evolving program with
pure growth), even the assumption (ii) holds, a, may be not zero.

Results. Irom assumption 1 ~ 3, we have

(1) (Np_1 = 1] T ~ Poisson{Ap-1e #=-1Tn-1} n =1,2,..., where A, =
thyy Aﬂ_le—qﬁn—l [n-—l-’

(2) Conditionally on 7", we have (N, | T771) ~ Poisson{y).

Proor. Forn=1,

__E_HI\UAS“O —¢onoto
PN, (o) *PThINo (to | mo) = gy Ppnge ’
0!
@08*)\U(A08*tflutu)nu
B (rig — 1)t

o pry (e | %),

Then, (Ng —1 | 7%) has a Poisson distribution with parameter Ape~ 0t Next, we
will check the result (2} when n = 1:

PNy N, T (n1 | no, ) C PG| {(ng | to)
6_“161,?’ —{mg 1} e 0 exp(—dutu) (Aoe—%f,u}mu 1
(n — (ng — 1)) (ng — 1!
c~lar+Ao expl—doto}) a"l"l ~{no—1} (A(}e—ﬁboto)nu -1
(ny — (rg — 1)) (ng — 1)!
e—lattia GXP(—'¢1)tr)))(a1 + /\Ue—¢ut0)?l1 n,!

! g — (ng — 1)!(ng — 1)!

- ( a )m(nn—l) ( Ao exp(—doto) )(nul)
@y + Ay exp(—ata) ay + Ag exp{—¢oto) '
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then, take sum for ng from 1 to ny + 1, we get the density of Ny, conditionally on
T
PR CIR ex?(*‘fbotn))(al 4 )\Oe—fhﬂo)m

Oy .
pryjre(na [ £) !

Thus, (N | T%) has a Poisson distribution with parameter a; + Ag exp(—¢oty) =
A1, resull (2) holds when i — 1. Now, by induction, the results (1) and (2) hold
for cvery n > 1. O

From Bayesian viewpoints, the result (1) is the (n — 1)-th stage posterior, and
the result (2) is the n-th stage prior (see Chen and Singpurwalla (1994)). We can
find the density of T}, conditionally on 7"~ is

—_— - e tntny
(22} an(tn | tn 1) — ¢)TLATL6 /\n(l € ) 'i)ntnT 0 < tn < OO,

and P(T, = oo | " 1) = e7* is positive. It is not difficult to get the reliability
function in the next stage. Let ¥, = 1 — ¢7 9T from {2.2), Y, has a density
function

fY.,l(yn | tnil) = Ane—)\nynf 0<yn < 1,

and P(Y, = 1 |t"7') = e~*. Note that, ¥;, = 1 iff T, = oo. Thus, the reliablity
of I, condionally on 1™~ ! and T, < oo is given by

Ry (t| 1T, < 00) = P(Th >t |71, T, < 20)
(2.3) = P(Y,>1 e "y, < 1)

e nlime®nty

T—e ™
Let ¥* be ¥, truncated at 1. Thus, Y} has density
Fra(p 1) = e /(1 —e ), 0<y) < L.

We predict next failure time by a LINEX loss function. If @, is known, the
predictor t, for T, is the rule of the LINEX loss function

1. 6) — edn(i=t) _ dn(f-1t) L
We have
fo = —log(B(e T | "7, < 00))/én = — log{E(L = Y, [ T"71)}/du.
This rule is more conservative than predicted mean E{T, | 71,1}, < oc). Whon
n 18 small, the linear exponential loss is approximate to squared error loss. Then

the rule is near to the predicted mean.
Note that the moment generating function of Y} conditionally on Tl s

B A, 1—e Ane)
Tl—emt A, —s )

AJ}'T: \L”‘ i (S) =
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for s < A,. Then the expected value of ¥,* conditionally on 17" can be found by

d 1 g~ An
ds 0 My -1 (8) emo— 5 = 7T
Thus, we have
- 1 g
(2'4) tn = —log (1 - ';\: m) /¢n

In practice, ¢, is always unknown, ¢, can be estimated firstly and then substi-
tuting the estimator to (2.4) to find t..
As above, let 17 be T, truncated at oo. Then T3 has density

(2.5) fT,{ (t; | tnfl) — d’n)\nfl_/\“uwcid’mn)f‘i’"t:/(1 c_’\“), 0 < *

n =~ o0,

Chen and Singpurwalla (1997) pointed out that practically all the software reli-
ability models proposed in the literature can be regarded as special cases of self
exciting point processes. From (2.2), the coditional probability that 7, is infinity
is positive. Therefore, the predictive distributions of the times to next failure is
not absolutely continuous. Our model is not a self-exciting poinl process. In fact,
we predict the next failure time by the truncated distribution (2.5). The density
function satisfies the uniform boundness condition of Theorem 4.2 in Chen and
Singpurwalla (1997). This means that a selt-exciting point process can be used to
describe the behavier of the truncated variables {177}

3. Application and discussion

3.1 The basic model

To avoid complexity, we assume that debugging of program is perfect, and
b, = @, ¥n, ¢ is a positive constant. It is the first model in Langberg and
Singpurwalla (1985). Suppose Ay is known, given N™ = (Ng, N1,..., Nyp}, NoTp,
N Ty, ..., N,T, have identically independently exponential distributions with fail-
ure rate ¢. In our situation, true values of N's cannot be observed. We may use
the posterior mean F{N; | T%) as an predictor of N;, for all i > 0. Therefore, we
will take 3.7 E(N; | TY)T;/(n + 1) as an cstimator for =1, In this model, we

have A, = /\08_(1)2;‘:‘-“ Ti | From result (1) in Section 2,
ZEN,}T)I /(n+ 1} ZT/n—I—l +Z/\oe 50 Lri/in+1).
_ =0

For the function contains ¢, it is naturally to find the estimate of ¢ by solving the
equation:

(3.1) {ZT/ (n+ 1)+ TAUe S 50T, f(n + )} .

i=0
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The right hand side of (3.1} is an increasing concave function of ¢. If ¢ = 0, it is
positive; if ¢ = oc, it is a finite number. So, there is exactly one root in {3.1).
If Ay is unknown, but has a Gamma prior distribution with parameters (4, B),
we have
(A | T%) ~ Gamma(i + 1+ A, 8; + 1 — e~ #13)

as the posterior of Ay (== A;e? Y6 T5Y in i-th stage; and
(N | TY) ~ Cammali | A, )

as the prior of Ag in i-th stage, where 8; = (1 — e 71 4 5,1 )(e?Ti1) = ... =
(1 + B)e?¥520% 1 3y = B. Then, there is a similar method for estimating .
For every 0 < i < n,

E(N; |TOT; = T; + E(Qge i T | TT,
=T, + E(Nw | THT,
(i+1+ A)T;

:',Ij?: + " .
(1+ B)e?Xi=aT5 1

As above, we can estimate it by solving the equation:

(32) 4- P 1 (+1+ AT, ,
i=0 Li/{T =0y D{(1 + Ble?LizaTs - 1)

it does not difficult to find that there is exactly one root in {3.2).

3.2 The model for enalmng progroms

We need specify the values of {a,} to construct an evolving program model.
Three conditions based on the discussion of Musa et al. ({1987), Chapter 6) are
considered:

(1) The program evolves sequentially, i.e., at any time, there is only one path
of evolution of the program.

(2) There is pure growth. The system changes by adding, not removing,.

(3) The number of faults introduced by program change is proportional to
the number of developed instructions.

The developed instructions are the instructions that were desigoed and newly
written or modified for the program. The condition (3) is from an important
assuption that the number of inherent faults is linearly related to program size.
The vahdity of this agsumption is supported by Basili and Hutchens {1983}, and
Takahashi and Kamayachi {1985). To shnplify our nference, we assume that
the condition {ii) in Section 2 holds. Let 7, be the total number of deliverable
executable object instructions at n-th test-debugping stage, i.e., the time interval of
n-th and (n + 1)-th failures; and AL, be the total number of deliverable developed
executable source instructions at n-th stage. Note that {I,,} and {Al,} are both
sequences of cumulated values. As discussed in Musa et al. (1987), we will ignore
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minor changes in I's and Af's and adjust parameters only for the major changes.
Note that, the failure intensity contributed by each fault, &, can be seen as a
decreasing function of I,,. From condition (3}, the total number of faults in n-th
stage is proportional to the number of deliverable executable source instructions
in n-th stage. Thus, as an approximation, if the program has no branches or loops,
we can suppose that ¢, is a decreasing linear function of I,, i.e., let ¢, = ¢plo/I,.

Now, suppose Ag is known. The first major change is at the beginning of
(M1)-th stage. This means that we observed M, faults before the first major
changed stage. Thus, the expected number of unobserved faults can be esti-
mated by the posterior mean E(Nyy - — 1 | T?71) = Xge™ PO M 4. and
then the expected total number of faults before (M) )-th stage can be cstimated

Ay -1
by M| 4+ Ape” Xi=o #Ti The number of developed instructions at the beginning
of (M,)-th stage is Alps, — Aly, 1. By the assumption that the number of faults
is uniform distributed in the program, the expected number of faults in the devel-
oped code will be estimated by (M) + Age™ 20 LTy VAT, —Alpgy o)/ A gy
Then, the expected number of faults at the beginning of stage M) is:

(M} + Age 2 A V(AL — Ay, —1)/ A, 21+ Aoe™ IDHENNTE

Similarly, the second major change is at the beginning of (Ma)-th stage, we
found M. faults, and there are Afyy, 1 (= Al ) deliverable developed executable
source instructions before (Msy)-th stage. The expected number of inherent faults

M-l . )
can be estimated by My + A e Xty @t I'hen, by the assumption that the
number of inherent faults is uniform distributed in the programn again, the expectod
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number of faults at the beginning of stage My 1s:

(Mo + A e ED T ¢jTj)(AIM2 — Alyy—1)/ Ay -1 + ’\Mle_z

We will make inference about the other stagoes by this way.

My—1

=My #;T; A
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Based on the discussion above, we have

b —1
— Mg

an, = (M + Apg,_ o7 0 BT (AL — ATy )/ Ay,
where M, is the failure number before i-th major changes, My = 0,1 =1,2,...;
and a; = 0 otherwise.

If ¢y is unknown, we can estimate ¢y as above, to solve the equation:

—1
n

(33)  do=1<D> (I/INT;/(n+1)+ Zn:(fo/fj)/\jef(ﬁ"(‘r””jm/(n +he

=0 j=0

where )\j = Aj(j + )\j_lﬂ_qéo(jo/r-’_l)Tj_l) + /\j_l(2“('60(10/[-7’1)T-"_1, A_j = (AIJ —
AI;_)/AI,_y. Similarly, the right hand side of (3.3) is an increasing concave
function of ¢g, it has one and only one root.

Example. The models in Subsecections 3.1 and 3.2 have been applied to a
military software system. The failure data of the system is shown in Musa ef
al. {(1987), 454-457). In Fig. 1, we show the history of program growth during
the system test perind (alsa shown in Mnsa and Tannino {1981)). Note that, this
project experienced 20 changes in its testing phase and 163 test failures were
experienced in 9994 CPU hr of testing. For basic mode! assumes that the scale of
program is stable, we estimate parameters ¢ and Ay by m.le. in each stage. Musa
et al. ({1987), Chapter 5) estimated that mean inherent fault density remaining
at the beginning of system test is 6.01 per thousand source lines. We may adopt
this value as our prior information. From the beginning of the test, the number
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of developed exccutable source instructions is near two thousand, the initial value
Ao = 12 is given for the evolving program model.

The predicted values of both models and the true failure time are shown in
Fig. 2. 'The sum of the absolute error of evolving program wmwodel Is 29,574,713,
and the basic model is 58,620,207. Thus, evolving program model seems more
stable. In this example, é and ¢ are small. So, the predicted values {'s are
near to predicted means based on the estimates. We compare two models by u-
plot and prequential likelihood ratio. Figure 3 shows the u-plot, the maximum
vertical deviation are drawn on the figure. These are 0.196 (basic model) and
0.086 (evolving program model). Figure 4 shows the prequential likclihood ratio
for evolving program model vs. basic model. Though there is a valley between 21st
and 53rd stages, an increasing trend is in evidence. The improvement of prediction
can be secn as the effect of the evolving program model.

4 Conclusions

We have presented a state space model to predict software failure time, which
is a gencralized JM model. Two important indexes for quality of software have
been reached: the reliability function and the probability that the program is
perfect. In practice, the system equation can be modified to satisfy the different
situation. Even though the main asswmnptlions and prior information are based on
the discussion and observation of Musa et al. (1987), this paper has achieved the
following goals: a comparison between basic and evolving program model is made
in Section 3; the cffect of evolving model is in evidence; and most importantly, an
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evolving program model is well constructed.
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