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Abstract. Assume that we have fid observations on the random vector X =
{(X1,..., X,,)' following a multivariate normal distribution Np{g, 3} where both
g RP and E(p.d.) are unkoowi. Lel pr.ez..p denole the multiple correlation
coefficient between X; and (X, ..., X},)'. The parameter A = pios. ., called
the muitiple coelflicient ol determination, indicates the proportion of variability
in Xy explained by its best linear [it based oo (X, ..., Xp)f. In this paper wo
cansider the point estimation of A under the ordinary squared error loss function.
The usual estimators {MLE, UMVUE} have complicated risk expressions and
hence it is quite dificult to get oxact decision theorelic resulte. We therefore
follow the asymptotic decision theoretic approach (as done by Ghosh and Sinha
{1981, Ann. Statist., 9, 1334-1338)) and study ‘Second Order Admissibility’ ol

varions estimators inelnding the nsnal ones.

Key mords and phrases: Multiple eorrelation coeflicient, loss fimetion, risk
function, second order admissibility.

1. Introduction

Consider a p-variale random veclor X = (X, ... ,Xp)' following o rultivari-
ate distribution N,(u, X) where both g € R? and ¥ (p.d.) are unknown. Let
X = (Xo, .. ,Xp)' and the regression of X1 on X (g is defined as £( XX g)).
The multiple correlation coefficient between X, and Xy, denoted by p1.23._p, 18
the simple correlation cocfficient between X, and its best linear fit X903, =
B4+ BaXo+-- -+ 8.X, by X3y where 8;’s are true regression coefficients. Define

(ll) A= p:f.zg...p-

The parameter A is called the multiple coefficient of determination and it is the
true proportion of the mean regression sum of squares (SSR) to the mean total sum
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of squares (SSTO), i.e., A = E[E{X||X 5)) — E(X))]?/E(X; ~ E(X1))?. Note that
A is always between 0 and 1, and it indicates the proportion of variability in X,
explained by its best lincar fit X;. In this paper we consider the point catimation
of A in a decision theoretic setup

Suppose X1,..., X n be independent observations on X and define the sample
dispersion matrix 4 as

N
(1.2 A= (X - X)X, - X))

Through out this paper we assume that N > p so that 4 is p.d. almost surely.
Partition A as

13 A = i a12 :| k]
(1.3) [ ajp Az

where Az is (p— 1) x (p— 1). The sample multiple coeflicient of determination is
defined as

(1.4) how = R =

foa-l
aAs, 312]

a11

and the positive square root of R, say 71.03...p, is called the sample multiple cor-
relation coefficient. The usual estimator, which is also the MLE, of A(pi.23...p) is
R{r1.23..5). 'T'he sampling distribution of A has been studied by many authors (see
Gurland (1968), Muirhead (1982)) and the pdf of R is given as

(L5} f(RIAn)
) I(n/2)
ORI DI

<o (35 2 0n),

R(;D—S)/Q(l _ R)("—P—l)/2(1 _ )\)ﬂ/ﬁ

where 0 < R < 1,n= N—1and2F1{-, ;- -} is a Gaussian hypergeometric function

given as
o

T{a+ j)T{b+ j)T{c)2?

oFi{a,bieiz) = JZU C(a)T(B)T{e + 4)3!

Let & be any real number such that (p + 2k) > 1. The k-th moment of B is

P(3+0)r (2 )

n -+ 2k p--1
JI —+J

where the random variable J follows Negative Binomial {n/2, (1~ A)) distribution.
Algo see the expression {29) in Muirhead (1982) for details.

(1.6) E(R)* = By
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The MLE A, , = R has mean and variance given as

(1.7) E{R)= A+ %(1 . a—%)\(l ~A)+0n *;  and

4A(1 - N2 (n—p+1)?
n(n+ 2)(n +4)

Var(R) = +O(n™%).

Obviously the MLE is blased and its bias function is

(;::—1—2)\)(?sz\)Jr

(1.8) Bias (Aso) = O(n~?).

Olkin and Pratt (1958) have shown that the UMVUE of A is

L (n—2) {n—p+3)
(1.9) Ao = _'(ETTETFTF(1 R) a (1 R R 1—-R>
- (p—3)
=Rt B
2(n ~ 2)

] —
“mfp+Um~p+$uiR)+Om2y

Hence a first order approximation of A, is

2(n—2)
(n—p+1j(n-p+3)
~ R %(1 CR){(p—3) + 20— R)}.

< (p—3)
(1L.10) Ay = R-— m( R) —

(1 — &)?

Using the result (see Muirhead {1982)) that

el (c—a=—b)

(1.11) o {a,bie;1) = e al(c—0)

for ¢ #£ 0,-1,-2,..., and ¢ > (e + b), one can show that at B = 0, Ay =
—{p—1}/{n—p~—1); L.e., the unbiased estimator A, can take a negative value even
though X is always nonnegative. Therefore, the truncated version of :\u, say :\,1‘,
given as 5\;: = max(0, :\u) is more desirable than A,,. Simnilarly, 5\::(1) is preferable
to 5\7,(1).

It appears that not much work has been done so far on estimation of A from a
decision theoretic point of view. The main objective of this paper is to investigate
the praperties of varions estimators of A in a decision theoretic setup under the
seeared error loss function.

(1.12) LA A = (A= 22

The performance of an cstimator ) is evaluated based on its average loss, or risk,
which is defined as R( /\,)\) = F L()\ Al It is found that the risk expressions of
the usual estimators {MLE, first order UMVUE ctc.) are extremely complicated
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and hence it is nearly impossible to apply the standard decision theoretic tools
(for example, Blyth’s (1951) limiting Bayes method, Karlin’s (1958) generalized
Bayes approach, ete.) to check admissibility and /or minimaxity of these estimators
under the above mentioned loss. To avoid this difficulty we use the asymptotic
decision theorctic approach of Ghosh and Sinha (1981) and study second order
admissibility /inadmissibility of various estimators of A.

For two given estimators A1 and Az of the parameter A, A; is called second
order better than Ay under the squared error loss function provided

(1.13) E(h =A< B -2 upto on7 V¥ A

and strict inequality for at least one parameter point (i.e., we judge an estimator hy
its approximated risk after neglecting the o{n~2) terms of the risk). An cstimator
Ay is called second order admissible (SOA) if there doesn’t exist any other estimator
Ay satisfying (1.13).

For notational simplicity we will use RQ(S\, A) to denote the sccond order risk
of the estimator X |, i.e., R(A,A) = Rz(X, A) + o{n~2).

In the case of one parameter {say, €} exponential families Ghosh and Sinha
(1981) considered estimators of the form b, = bnLe +c((§MLp;) /n for the parameter
¢ (where () admits Taylor series expansion at #) and gave necessary and sufficient
conditions under which &, could be SOA. These conditions are similar in nature
to Karlin's (1958) sufficient conditions for admissibility of generalized Bayes es-
timators. To prove admissibility of a given generalized Bayes estimator Karlin's
{1958} result essentially puts restrictions on the tail behavior of the corresponding
itaproper prior, whereas to prave second order admissibility Ghaosh and Sinha's
{1981) result puts restrictions on the bias function of the estimator under consid-
eration. Ghosh and Sinha (1981) also indicated how to construct a new improved
SOA estimator if a given estimator turns out to be second order inadmissible.

In the next section (Section 2} we consider second order point cstimation of A
under the loss function (1.12). The main result here is that the MLE turns out to
be second order inadmissible when p, the dimension of the underlying multivariate
normal distribution, is greater than 7. For 2 < p < 7, the MLE is SOA. In Seclion
3 we have produced two classes of simple estimators which are uniformly better
than the MLE for suitable dimensions and these improved estimators are obtained
without using the technique suggested by Ghosh and Sinha (1981). Interestingly,
the first order unbiased estimator /A\u(l) is SOA always. We have also presented
some numerical results to compare various improved estimators.

2. Estimation of A

Motivated by the structure of the first order unbiased estimator we consider
a class of estimators of the form

(2.1) Sap =B — %(1—R){a+b(l ~R)L

where a and b are real numbers (of order O(1) as 1 — o). Note that a = b =0
gives the MLE and a = {p — 3),b = 2 gives a slight variation of the first order
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unbiased estimator of X. In Subsection 2.1 we compute the asymptotic bias and
variance of A, . In Subsection 2.2, we address the second order admissibility of

Agbe

2.1  Asymptotic bias and variance of 5\&75
First we derive the asymptotic bias of )A\a,b. The bias of Aa,b 18 gIven as

(22) Rmuﬁx&:zﬂﬁfx)_%Eu—Ry—%Eu—Rﬁ.

It can be shown that

(n—p+1)

(23)  E(R-X=1- (1 = NaFi(1,1, (n/2) + 1A} — A

Expanding the Gaussian hypergecometric function as an infinite series, and after
some simplifications we get

(1?M@—1—ZM+2M1—M

(24) E[R-X = . =

({p+1) - 8X) + o(n™2).
Thus the biag of Agp 1o

(1-Np-1-2)

(2.5) Bias of Ay j =

M YRHUE RNy

Cb(n—p+L(n-p+3)
n n{n + 2)
A= N2 R (2.2 (n/2) + 2; A) + O(n™2).

Again expanding the Gaussian hypergeometric functions and after some simplifi-
cations we get

(1-MN{p—1-2})
n
A R R O )
n i
Cb(n—p+1){n—p+3)
n n(n + 2)
+0(n™?)

) VS B
i)

(2.6) Bias of A, =

1= A1+ 0(n™)

(1 - M- 2) + 02,

Note that (1.8) follows immediately from (2.6) by using @ = b = 0. Next we
compute E(R — X\}2. Observe that

B(R— \? = E(R?) — 2AE(R) + )2
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We can write

o) Br- a2 = TR IR @2 ) 28

(n—p+1)

-2 (1-A) B (L L(n/2)+ ;A + 1
- 2,\{1 - W(l — A 2Py (1,1 (n/2) + 1;/\)}
+ A2,

After some simplifications (see Appendix A.1),

CR2(p+ 1)1 - A N 5EAZ(1 ~ A)2
2

+o(n™?).

0 n?

Note that

{2.9) Var{R) = Var(R — A)
AN1 - A2 N

T

=FER-N*—E(R-N]?= O(n™?).

Second order variance or risk of Aqp can be derived easily from (2.6), (2.9) and

using the moment expressions in Appendix A.2. Risk of j\a,b is also presented in
Section 3.

2.2 Second order admissibilily of S\G,b
Consider the class of invariant estiiators of A of the form

c(R)

T

(2.10) Me)=R+
where the function c(-) is assumed to admit a Taylor series expansion at A. Given
an estimator A(c), wo can consider another estimator AMd) = R+ d(R)/n (in the

same class (2.10)) and the risk difference (RD) between the risks of these two
estimators is defined as

RD = R(A(d), A) — R(A(e), A).

Under the ordinary quadratic loss function (1.12), the risk differcnce can he ex-

pressed as
2 2
{R+@—,\} *{mc(—@—/\} }
n n

[ 02 e,

RD=F

T n
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where g(R) = d(R) — ¢(R). Using Taylor series expansions of g(R) and ¢(R) at A
and after some algebraic simplifications we obtain

RD = 5 [g3(A) + 20(A(X) + 29’ ()M — A)2)] + o(n2),

7

where b(A)}/n is the bias of {E + ¢(R)/n} up to o{n~"). Therefore, the estimalor
A{d) is second order better than A{c) provided

(2.11) GHOAY + 2g(DON) + 29 (AJEAI — N <0 VA,

with strict inequality for at least one A. Following the proof of Ghosh and Sinha
(1981}, the only solution to the inequality (2.11) is g{A) = 0 if and only if the
following two conditions are satisfied for some X, € {0,1) :

(M‘Al[”m{‘ﬂAAb“”@“U*fﬂﬁ“m}}/MAU‘n%dA:co and

(2.12)
A, "
(b) /U [exp {f)\ blu)(4u(l — U}Q)_ldu}] A — N)2)dA = .

In the light of above two conditions we now study the second order admissibility
of a simple class of estimators of the form

: 1

(2.13) ey =R—=(1-R){at b1 R).

n
It is enough to check the above two conditions (2.12) for the estimator )A\a,b. Sub-

stituting the asymptotic biag expression of )A\a,b in (2.6) we get

(2.14) LHS of condition {a}

/%Mu—»%*

a

A
« exp{-— [\ (p—1—a—b){1 - wl/[du(l —u)? du

A
"/ (1 w6~ 2)]/[4u(l — u)?) du} X

[ k3 N
TS, ABrpea-h /AL X){T—pra)/d T
where k3 is a suitable positive constant. The convergence or divergence of the last

integral is not affected by the term A~GTP=a=8/4 for any A € (A,, 1). Therefore,
condition (a) holds provided

1
[ (1 — 2y H=ral/d gy — og
o
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which is true provided 11 — p+a > 4; e,
(2.15) LHS of condition (ay =0 & p<a+T.
Similarly,

A
, s I ki
(2.16) LHS of condition {b) = /0 T DA N (T a7 dA,

where &7 is a suitable positive constant. Again
(2.17) LHS of condition (b)) =00 <= p=l+a+b.
The following results is now obvious from the above derivations.

THEOREM 2.1.  For cstimating A, an cstimator :\a,b of the form (2.1) 45 S0OA
in the class (2.10) provided 1+ a+b<p<a+T.

Proor oF TueoreM 2.1, Clear from the inequality {2.11) and combining

(2.15) and (2.17).
The following corollary now follows easily from the above theorem.

CoroLuARry 2.1, (a) The MLE )A\O,o is SOA in the class {2.10) provided the
dinension s less than 8, t.e., 2 < p £ 7. for p > 8, the estimator 5\0’0 is second
order inadmaissible.

(b) If we take a = (p— 3) and b = 2, then the estimator j\(p_g),g, a slight
vartation of the first order unbiased estimator ;\u(l), 15 SOA in the class (2.10) for

any dimension p > 2.

Remark 2.1. 'T'he result in Corollary 2.1 (a) came as a surprise to us. It 18
similar to Stein's (1956) result on a multivariate normal mcan estimation where
the MLE is inadmissible for p > 3. In the present problem, the critical dimension
is 8. When p > 8, the MLE A, is sccond order inadmissible.

3. Improvements over the MLE

Following the proof of Ghosh and Sinha (1981}, it is now possible to find an

estimator A(d) = R + d(R)/n which is second order better than A,, for p > 8.
Define hy(A) as

(3.1) hy(A) = —%B .[,\l{i((s)) —'gb(u)}dujl wliere

, 1 . "\ .
i(A) = SRy and g{A) = 2()\)0){1){]/\0 bo(u)i(u) du},

b,(A)/n being the first order bias of Ao, and the function ¥(u) is a negative
function which is continuous and integrable over (0,u) ¥V 0 < u < 1. If we
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write dy{u) = h; (u) then the estimator A(dy) = R + dy(R)/n is second order

better than A, for p > 8. Ghosh and Sinha (1981) also indicated how to choose
the tunction {-) (in (3.1)) so that the resultant cstimator A(dy) is SOA in the
subclass (2.10). Unfortunately, in our present problem such an improved estimator
(AMdy)) has a very complicated risk expression and therefore it is impossible to
study the risk improvement (second order) attained by A(dy).

An important contribution of this paper is that we have found very simple
estimators of A which are uniformly second order better than X o (for p > 8) and
gome of them are also SOA in the class (2.10). This is shown in the following.

The risk expression of A,y is

RGan ) = E(R— N + 2—"Eu R %(1 _NE(-R)

2
+ Qbﬁ( - /)* - %(1 —A)E(1 - R)®+ %E(l - RY?
T

2ab

b‘),
(1~ R)*+ —E(1 - R)*
T
N R S N SNSRI e
= AN+ T DY) —12(p+ A1 - X)
A oran2(1 - 02 - L aalp— 11— A2 — )2
+n,2ao)\ (1—A) n24a(p 11— A) +n216a,\(1 A)
1 , 1 , 1 5
+ n—z‘)n(p — N0 =12 = E540.)\(1 — X7 - ;L-z—bb(p —1(1 =X

' g 1 .
F isﬁb)\(l — A% S ab(p— 1)1 = A)F —%161))\(1 — A
T T

L2 Nt o(n?).

+ — 1 a?(1 = A)? +—2ab(1— A+ =

n? T

After much simplifications we get

(32)  R(AapmN)
(1 ’\)2 2 A
= T{zm)\ +(p° = 1) — 12(p + 1A + 56X
T

—2a(p— 1) + 12a) + a® — 2b{p — 1)(1 — X)
+20bA{1 — A) + 2ab{1 — A} + (1 — A)*}
+ o(n"%).

We will look for improved estimators of A in the following two subclasses

(3.3) Cp = {Aosp = ab with a=0 and be R},
(3.4) Co = {hao=Agp with b=0 and a€R}

Fhe sccond order risk of an estimator Apy in Gy is

(35) Rg(:‘\g,h,}\) = %{477)\ + ( 1) — 12(p + )/\ + 5617
—2b(p — 1)(1 — A) + 20bA{1 — A) + b*(1 — A)*}
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Note that
a 2(1 A)3
S Re(os A = S b= ) + 104 - (p - 1)}
>  or < O e@b > or < bJ{A)
where ( 1) 10
p 7
b, =
(A) Ty

Also, the second order risk Ra(Aoe, A) is convex in b. It is observed that b(A) =
(p—11)/(1 — X)%2. We now consider the following two cases.

Case (i} p < 10, Then b, () is strictly decreasing and sup, b.(\) — (p — 1).
'Therefore, for p < 10, if & > (p — 1) then the second order risk of Ay is increasing
in b and one should prefer b= (p — 1) over b > (p — 1).

Also, infy b,{A) = —00 and as a result we can’t find a lower bound of b.

Cuse (i) p = 11. In this case b,(A) is nondecreasing and infy b.(A) = (p—1).
Hence for p > 11, R{Aop, A) is decreasing in b and as a result b= (p — 1} is prefer-
able over b < (p — 1).

The following result is immediate.

THEOREM 3.1, The estimalor Ay (p1) B8 oplisnal in the subclass (a) {)\U p|D<
(p— 1)} for p> 11; and (b) {Aos | b> (p— 1)} for p < 10.

Remurk 3.1, From the above theorem (part(a)}, it is clear that 5\0’(}3“-1) is
sccond order better than the MLE ( )A\O,b with b = 0) for p > 11. The above result

doesn’t produce any improved estimator for 8 < p < 10 (for 2 < p < 7 the MLE
is SOA in the class (2.10)).

If we look at the subclass C, (in (3.4)) then it is possible to dominate the MLE
for any p > 8. The second order risk of an estimator A, g in C, is

32
(3.6)  RBu(Agu, N) = %{4@)\ +(@* — 1) = 12(p + )X + 56N’
—2a{p — 1) +12a) + a*}.
Note that

2
%Rz( A0, A} = M{a (p—1) +6’)\}

n
> or <0 PR a> or < a.(A)

where a,(A) = (p—1)—6A. Second derivative of Ra(A, 0, A) with respect to a shows
that it is a convex function. Also, infy a.(A) = (p — 7) and sup, a.{A} = (p — 1).
The following theorem now holds easily.
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THEOREM 3.2. Let p > 8. The estimator (a) )A\(p_ﬂ’o is optimal in the sub-
class {5\“,0|a < (p -1}, and (b) 5\(1)_1)10 is optimal in the subclass {Ayola >
(p= 1}

Remark 3.2.  Obviously, the estimator X(p,7),0 is uniformly second order bet-
ter than the MLE for any p > 8.

3.1 Second order risk improvements due to ,i\(p_-[-),g and 5\0:(1,_1) over the MLE
From the expression (3.2) it is easy to get the second order risk of the MLE
as

J— 2 -

(3.7) Re(po, A) = UTTA){An/\ + (P2 = 1) = 12(p + )X + 56X2L
Using (3.5)—(3.6) we get the relative risk improvements {(RRIs) of iO,(pfl) and
j\(p,_,?),g over MLE. RRI of an estimator A over ;\O’n is:
RRI(A) = [{Ro{Xoo. A) — Ra{A, A)}/ Ro(As 6, A)| x 100%.
(L= - D {10 +A) —20A}
{dnA + (p? — 1) ~ 12{p + 1)A + B6A?}

0 as A —1

- ﬁplgxlﬂﬂ% as A — 0.
p -

Therefore RIRI of 3\0,(1,_1) cant be almost 100 at A — 0 for large p. The following

(3.8)  RRL(Ag(p-n)) = x 100%

table {Table 1) gives the RRI of ;\0,(},,1) for various values of p (p > 11).

Table 1. RRIof Ag 1y at A = 0.

P 11 15 20 25 50 00
RRI  835% 87.5% 004% 923% 96.1% 100%

Similarly,
(3.9)  RRI{Ag.70)
_ (p—T(p+5—12))
T {anA+ (2 1) 12(p + DA+ 56A%}
(p—THp+5)

x 100%

- x 100% as A — 0
(p? —1
- (p—17)
: x 100% as A — L.
[dn+ (p2 ~ 1) — 12(p + 1) + 56} ’ -~
Near A = 1, 5\(,{),7)9 scems to perform better than )\U:(p_]) since )\(p_7),0 has

nonzero RRIL Again, RRI of ;\(p_mﬂel, approaches 100% at A = 0 for large p.

Table 2. RRI of A7)0 at A = 0.

I 8 11 15 20 a0 =
RRI 20.6% 53.3% T7T1.4% 81.4% 94.6% 100%
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32 Are Ao (p-1y and A,_py 0 SOA ?

Since our proposed estimators 3\(;,,7) o and )A\u,(p_l) are better than the MLE
(for p > 8 and p > LI respectively) and competes with :\u(i) one might be in-
terested to know whether these two estimators are SOA or not. We can use our
earlier Theorem 2.1 to answer this question. An estimator 5\&,3, is SOA provided
l1+a+b<p<a+ 7. The estimator :\(pr),O is SOA since (@ = p— 7,6 = 0)
satisfics the above condition whereas 5\0,(1,_—1) is not SOA since (a = 0,b = (p—1))
does not satisfy the condition.

Remark 3.3. We can evaluate the exact risk functions of the estimators dis-
cussed above (in terms of hypergeometric functions). Irom numerical calculations
it has been ohserved that the second order risk approximates the exact risk fairly
well for k = n/p > 5.

L Figs. 1-3, we have plotted the exact and second order risk curves of the
estimators A, ,, j\u(l), }\(p_qr),() and XG’(p,}_}. The values of n and p are selected

004 T T T T
ER{Jgg) —
SOR{Ap) -~
0.035 |- ER{Ay)) 4
SORAuyy) =~
--dr__
0.03 v \‘ N
y
0.025 - g 4
If’ \\
e [
2 o0 /i -
Il'
0.015 F ’ .
0.01 .
0.005 T -
] [ | | |
0 0.2 04 0.6 0.8 1

Note: ER(Aes} = B{has A)
SOR(Aa) = Rz(Aan. A)

Fig. 1. Exact risks (ERs) and second order risks (SORs) of Ag,o and :\u(l) forp=2
and n = 20.
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0.04 T T 1 T
ER(Sop) —
\ SOR{Sag) ---
0.035 N ER(Aay) =+—

SOR(Auqy) -
ER({‘(;:—?J.O) -
SOR{Ap_ne) -

0.0Zo

0.02

Risk

0.015

0 nas

a i ] 1 ]
0 0.2 04 0.6 0.8 i

Note: ER(Aap) = R{Aap. A}
SOR(%ap) = Ra(hap )

Fig. 2. Exact risks {(ERs) and second order tisks (SORs) of )ﬁ\(]’g, 5\“(1) and ;\(p_7)
for p= R and n = 4

(for Figs 1-3) such that k = n/p > 5. Note that the second order risk curves of

Ap—7y,0 and Ag (p_1y are available only for p > 8 and p > 11 respectively.
Concluding Remark. We have seen that when 2 << p << 7, 5\0,0 is SOA and
S\Hm is SOA always {(both in the class (2.10}). Numerically we have found that
Ao performs quite well compared to A,qy for 2 < p < 7. Aury over takes the
MLE only when A is close to either 0 or 1. For p > 8, we know that )A\O,o is socond
order inadmissible and interestingly it is the ;\u( 1y Which seems to outperform the
other estimators, i.c., tor large dimensions (p > &), a shrinkage estimator {Ay1y)
performs well than the traditional estimator. Note that X?L(l) ¢an be improved
further by AXL by =
though it is SOA in the class (2.10). Therefore, the risk difference between Xum

max (0, iu(l)), In torms of exact risk :\u(l) is inadmissible even

and ;\I[ 1y must be of order o(n=?).
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0.025 T T T T
ER(Jog) —
SOR(Mg) ---
ER(Auqy) ~—
SOR{A ) *-
0.02 ER(Ap-no} *— |
SOR(Mp-ne) -
e ER(Aop-n) =
SOR(3ggp-1) 0 -
(6.015 | n
=
2
0.01 -
0.005 B
o 1 i | 1
1] 0.2 0.4 0.6 0.8 1

Nate: ER(L.4) = R(A.p. %)
SOR{Aap) = R2{Ras A)

Fig. 3. Exact risks (FRs) and second order risks (SORs) of 3\0‘0,;\“(1), ;\(p_7) and

i(_),(p 13 for p = 11 and n = 60.

Based on our work on A estimation, we propose A, , (MLE) if 2 < p < 7 and
Au1) (UMVUE) if p > 8 for practical applications.
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Appendix
A1 Derivation of (2.8) from (2.7)

y  (n—p+1){n—p+3) ) .
(R - ) = ) (1= N2 F2,2: (n/2) + 22 ))

(n—p+1)

-~ 2 (1 "”A)QFL(].,].;(W:/Z) + 1,)\) +1

oy {1 _ W_*gi}lu AR, 1;(n/2) ¢ 1;)\)} a2,

Expanding the hypergeometric functions we get,

. _(n-p+l{n—p+3) 8A
E(R—X) = nin+2) (1- /\)2{1 + (n+4)
7202 .
T rnmae o z)}
B 2n—p+1)

2\ 822 -
n LA {” e mromen o 2)}

+ {1 = A)?
R R ey
- 4(2(; ig)]))\(l M- nl(z(i 2)1(97;139 ohied
(1= A+ o(n?)
~%M1—M2+Qﬁjg&waﬂkfI%ZTUMlMg

hs
+ %,\2(1 — 0+ o(n™2).
A2 Moment expressions for (1 — R).
The general moment expressions for (1 — R) is given by (Muirhead {1982})

E(l N R)h _ {(n (Z/;)];L)/Q}h (1

where b is a positive integer and (g}, = (a)(a +1)---(a+ h —1). For h = 1,

o A)nQFl (h': h; (n,/?) + h‘: /\)7

1%1—3):gﬁigiihlfxpfualxnp)+hx)

oy AN 2 DMLY

n n?

8A2(1 — )
PECSUEEY

-2
" + o{(n™").
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The second moment is

(n—ptn—-—p+3)

E(l - R)? = (1~ N2F (2,2, (1/2) + 2, A)

nn + 2)
C o ez DOZNE SN e Dl DA
) i) n 12
N 16(p + 131)2\(1 —A)? N 72)\2(?12 A)? L o(n™?),

The third moment of (1 — R) is

Ba-pp - P *:L)(?(:Hf)’(; ?ES “PES) AL F(3,3: (0)2) + 3:A)

_q o S0- MNp-1-6%) 3(p-1)p-3)(1-N°

n n?
_108(p + 1AL - A)® N 288A2(1 — AP

-2
- 3 + o(n™%).

The fourth moment is (for the risk of A, » we only need O(1) term)

(n—p+1in-p+3)in—p+5)n—p+7)
n{n + 2)(n +4)(n + 6)

1= N F(4,4;(n/2) + 4;0)

(1-M'+0mn™").

E(1-R)?*=

i
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