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Abstract. The first order local influence approach is adopted in this paper to
assess the local influence of observations to canonical correlation coeflicients,
canonical vectors and several relevant test statistics in canonical correlation
analysis. This approach can detect different aspects of influence due to different
perturbation schemes. Tu this paper, we consider two different kinds, namcly,
the additive perturbation scheme and the case-weights perturbation scheme. It
is found that, under the additive perturbation scheme, the influence analysis
of any canonical correlation cocfficient can be simplified to just observing two
predicted residuals. To do the influence analysis for canonical vectors, a scale
invariant norm is proposed. Furthermore, by choosing proper perturbation
scales on different variables, we can compare the different inflnential effects of
perturbations on different variables under the additive perturbation scheme.
An example is presented to illustrate the effectiveness of the first order local
influence approach.

Key words and phrases: Canonical correlation analysis, local influence, diag-
nostics, perturbation, tests of independence.

1. Introduction

Canonical correlation analysis, or shortly, CCA, as an important method for
reducing the correlation structure between two sets of variables, is extremely sen-
sitive to outliers just as that in principal component analysis. However, influence
analysis in CCA has been less developed except several articles {see Radhakrishnan
and Kshirsagar (1981) and Romanazzi (1992)), in which only the influence func-
tion approach has heen considered. We know, two sample versions of influence
function, the empirical influence function EIC and the deleted empirical influence
function EIC(;, (Cook and Weisberg (1982)), are indeed some kinds of local in-
fluence under certain perturbation schemes (e.g., see Tanaka (1994}). However,
the basic idea of influence function analysis is usually to assess the influcnce of
each single observation. Local influence analysis, by perturbing all cases simulta-
neously, may disclose the most sensitive perturbation ways which may be used to
detect some joint influential cttect.
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The local influence approach was first proposed by Cook {1986) as a general
method for assessing the effect of minor perturbations of a statistical model. It
sugpests measuring the sensitivity of the analysis through the normal curvature of
the likelihood displacement surface LD{w) = 2{¢(8) — £(6,,)] when minor perturba-
tions were introduced in the postulated model. This method extracts a synthesis
information from the first derivative of the paramecter cstimate 0, with respoct
to perturbation w and the sccond derivative of log-likelihood function £(¢) with
respect to the parameter §. The former is actually the influence arisen by the in-
troduced perturbation to the parameter estimate 6. S0 il is reasouable Lo jusl use
the former as an influence assessment when only the parameter is of interest. In
fact, if we use other objective functions rather than the likelihood displacement for
local influence analysis, the normal curvature and the second order derivative are
relatively less important compared to the first order derivative which is non-zero.
Maoreover, Fung and Kwan {1997) showed that the normal curvature is not scale
invariant when the first derivative of the objective function is non-zero. Thus the
gradient direction of an objective function is used for diagnostic analysis in our

paper, which is also termed the first order local influence approach by Wu and
Luo {1993).

One advantage of the local influence approach is its ability to handle cases
sitnultaueously. Unlike the deletion influence of multiple cascs which in gencral
arises a lot of computational problems, local influence approach employs a differ-
ential comparison of parameter estimates before and after perturbation which is
simple in computation. Besides, different kinds of perturbation schewes can be
chosen to perform the local influence analysis based on different special concerns.
Lawrance {1991) logically distinguished different perturbation schemes into three
sorts, they are respectively perturbations to model assumptions, perturbations to
data values and perturbations to casc weights. More motivation of local influence
method can be reforred to Cook (1986). In this paper, we will examine the local in-
fluence in cancnical correlation analysis under two perturbation schemes, namely,
the additive perturbation scheme and the case-weights perturbation scheme.

The organization of the rest of the paper is as follows. Tn Section 2, we
present the first order local influence results for canonical correlation coefficients
and canonical vectors and their corresponding interpretations under the additive
perturbation scheme. Tt is found that the local influence of any canonical cor-
relation can be simplified to just observing two predicted residuals. When the
parameter of interest is a vector rather than a scalar, a proper norm is suggested
to meagure the influence Lo Lhe parameter vector. The comparison of the different
influential effects of different variables is also included in this section. The local
influence of canonical correlations and canonical vectors under the case-weights
perturbation scheme 1s outlined in Section 3, of which the basic resulls are actu-
ally equivalent to those of the corresponding empirical influence functions. Lee and
Zhao (1996) recently investigated the local influence on the Pearson’s goodness-
of-fit, statistic in generalized linear models, however, the local influence approach
has been less adopted to study the influence on test statistics. In Section 4, we
consider the local influence analysis of four common test statistics in CCA un-
der the above two perturbation schemes. An illustrative example is presenfed in
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Section 5. Some concluding remarks are included in the last section.
2. Local influence under additive perturbation

Suppose X, xp 18 a matrix of n observations of a p-dimensional random vec-
tor x and Yy, is the corresponding n observations of a g-dimensional random
vector 4 (p < ¢). Let the sample mean and sample covariance matrix be (Z,7)
and ¥ respectively, where S = (ZA]” %12

- ’ Yor X
of the population covariance matrix for (z7,y%) under the normal assumption.
2 2

The sample squared canonical correlations r{,...,r; are the eigenvalues of ma-

trices 21_112 1222721 ﬁgl and 5152122121_11 212, which are distinct and nonzero with
probability 1. For convenience, we assume 1 > r3 > 13 > -« > T‘2 > (). The i-th

) is the maximum likelihood estimator

canonlcal vectors Qi b; are respectively the eigenvectors of mdtm ey BT ) 212222 s
and EQ 5 3. 2 12 m ng corresponding to the i-th eigenvalue T’ , which satisfy the con-
straints

(2.1) 4} Bay = by
and
(2.2) b0 Suab, = 8,

where 4,; is the Kronecker delta.

Now we investigate the sensitivity of canonical correlatinn analysis to the mea-
surement errors in each variable by perturbing all the observations in all variables
simultaneously. Under such a perturbation scheme, the original data matrices X
and ¥ will be replaced by

(2.3) X, =X tw*sX

and

(24) m - Y ‘+"’ CU'YS

where w = (w;;{xp w;{xq) represents a well defined perturbation scheme and is

restricted to some open subset Q@ of R*®T4 . As indicated by Cook (1986) that
global measures of influence which characterize the behavior of an inflnence graph
over all of {1 are generally much more difficult to construct than local measures
which characterize behavior in a neighborhood of a selected w. Here we consider
a local measure of influence around wp = (wi,wd ) = (0,0), which represents
no perturbation on X and Y. SX = diag(sf,...,s%) and 8% = diag(s{,...,s})
convert the perturbation w” and w¥ to the appropriate sizes and units, so that the
alomonts of w® 8% and ¥ &Y are compatible with the corresponding elements of
X and Y respectively. If we denote the perturbed covariance matrix and the i-th
perturbed canonical correlation coefficient and canonical vectors as S{w), ri(w).

dy(w) and bi(\u), then we have

(2.5) S (@) 2 (W) 85 (w) Doy (w) i () = 7 (w)aiw),
(2.6) i (W) (w)ag(w) = L.
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'o find the gradient direction which can indicate how to perturb the data under
such perturbation scheme to obtain the greatest local change in the concerned
parameters, we need to calculate the first derivative of concerned parameters with
respect to w. For ease of manipulation, we denote wX = wi + 9L and w¥ = W +
1La, where | = vec(Ly, Ly} is a direction vector and 7 represents the perturbation
scale with 7 = 0 corresponds to no perturbation. By taking derivatives with
respect to 77 on both sides of equations (2.5) and {2.6) and then evaluating them

at wp, we get a system of equations. Solving the resulting equations, we obtain

(2.7) ‘%5;“’) = [(8%a;) ® (Vi — U3 ¥ vee(Ly)
+[(87h:) ® (U — Vi)™ vee(Lo)

and

(2.8) %—%—) - Fas ot foin,

where a; and b are the i-th pair of canonical vectors, U; = .Xal and V; = ff) are
two nx 1 vectors, and X Y L 1 and L. o are centered X, Y, L, and Ly, respectively.
The fis (k=1,...,p) are defined as follows

[(SX&L) R Uk]Tvoc(Lﬂ
i ) @ 0 )T
(2.9)  fu = ¢ +re((8%a:) ® (Vi — riln)) ] vee(Ly)
+Hre((SV0x) ® (U; — V)"
+r{(SVh) @ (U — Vi) vee(La)}y, ki #1,
[ —[(5%a:) 0 Ui]" VeC(Ll), k=i

The corresponding expressions for 9b;{w)/dnly—u, are similar to (2.8) and (2.9).
For brevity, they are omitted.

2.1 Identifying influential points for canonical correlations

According to the above definitions, the n-vectors U; and V, are the centered
gcores of the n individuals on the i-th canonical variables for x and vy, and r; is
the simple sample correlation coefficient of U; and V. If the = and y variables
are interpreted as the “predictor” and “predicted” variables, the U; score can be
used to predict a value of the V; score using the least squares regression. Since the
sample variances of U; and V; are both 1, the regression coefficient will be r; when
regressing V; on U;. Thus, we may term (V; — r,U;) as the predicted residual of V;
on U; and vice versa, (U; — r;V;} the predicted residual of I/; on V.

If the two scale factors 8% and SY are given, as indicated hy (2.7), the ex-
treme local sensitivity direction I = vec(Lq, Ls) for ; corresponds to the grar%ierlt
direction which is the unit vector proportional to ([{($%*4;)® (Vi-riU; N (SY b
(U, —r V)", and the norm of ([(5%a;)} & (Vi —rUs)) T. (SY ) o (U — VYT
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can serve as a measurcment of possible maximum local influence. This vector [
indicates how to perturb the data to obtain the greatest local change in ;. And
further, it should be noted that in this I every column of L; is proportional to
(Vi nUt) and every column of Ly is proportional to (U; — #;V;). That means
any observation which is the most influential in one variable of z is also the most
influential one for the other variables in z and similarly for y. Thus it is enough
- to just look at the two predicted residuals (V; — »,U;) and (U; — r,V}) if we are
only concerned about which observations are influential in the sense of additive
perturbation. In order to specify influential observations, it is better to give ref-
erence points or cut-off points. To set such reference points for influence analysis,
we need to know the distributions of Yib, — v, Xeé, and Xpa; — rlka” where
XT = (XT, e Xn) and V7 — (Y1 e YE). However, these distributions scem
to be intractable even under the normality assumption since they involve the esti-
mates of canonical vectors, whose distributions are intractable themselves. Never-
theless, we may use the normal distribution to approximate the distributions, the
plausible reasons arc given as follows.

LEmma 1. lf the joint distribution of (x®,y") is N({p}, py ), %), then (y —

po )b — pilz— )t a; and (x— ps) a,;—p,,j(y*py)[‘b,; follow N(0,1—p?), where p;,

a., and b; are respectively the i-th population canonical correlation and canonical
vectors.

It seems to be reasonable that this lomma is approximately true whon replac-
ing g, Fys Piy G and b; by their respective maximum likelihood cstimaters z, §,

7s, 6; and b;. That is, (y— ) bi—ri(z—2)"a,; and (x—z)Ta, —r(y— y)’b approx-

imately follow N(U,1 — r;). Furthermore, the sample variance of }kb — i Xt

can be calculated directly as 37 _ 1(}7;;5 -7 )H(kdl)ﬂ/n By the constraints (2.1}
and (2.2), we know both sample variances of Y;Lb and X4, are 1, and since the
sample correlation of ka and X,zba, is r;, the sample variance of ka -1y Xkab
will be exactly (1 — 72}, Similarly, we know the sample variance of Xy — 7 Yib;
is alsa (1 — r2) Thus we may use the 20 rule or 3o rule to set up the reference
cut-off points.

As for which columns play more important roles under such perturbation,
we should investigate the vectors (§%a,) and ($Yb;). To do this, we need to
specify % and 8. One reasonable choice for SX and SY is the sdmplo standard
deviation of cach variable, that is, $% = [diag{%,1)]"/? and SY = dld“(zgg)]l/z
Such a cholce has some nice properlies. Firstly, it makes (5%a;) and (57 by) scale
invariant to the rescaling of original data which is commeonly found in practice.
Secondly, (§%,) and (SYb;) under such a choice are the i-th pair of canonical
vectors if the correlation matrix rather than the covariance matrix is used to
perform CCA.

Thus we may identify not only which observation has a large influence on
the canonical correlation, but also which variables of this observation should be
further investigated to find the special cause of the sensitivity.
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2.2 Identifying influential points for canonical vectors

If we want to consider the influence analysis of canonical vectors, (2.8) and
(2.9) present some basic results. Since here a vector is monitored, a selection of
norm is necessary to measure the influence to the vector. We define the scale
invariant relative norms as

10 BN (aaaf;;)) _ (aaé;?(?w))i“iu (3&57(:))) ,

and

b (1) b\ [ Bbilw)
() (8 s (52).

which are the norms of vectors da,(w)/dn and 8b;(w) /8 in affine spaces spanned
respectively by (a,...,d4,) and (by,...,b;).  Thus the norm of vector
(D00 T

A (w)
2.1¢ 2
(2.12) R\I( o

) = (fiin + -+ foip) S (fan + -+ foi).

Now we put fi’s (k= 1,...,p) in {2.9) into form fi = af vec{L1) + 8] vee(La),
where o 13 an np x 1 vector and G is an ng x 1 vector. Making use of the
constraint in (2.1), we have

A, (w)
2.1 RN [ &
-

where F' = % _, ((ﬁ":)(ag, ALY, Similarly, RN(8b;(w)/On]4—w,) can be rewritten
in the same form as (2.13).

Similar to the method preoposed by Cook (1986) for studying the influence
graph, we may also use the eigenvector [, associated with the largest eigenvalue
of the matrix F to determine the direction of (vec(L1)T, vec(L3)T) in (2.13), which
can then be used to indicate what kind of perturhation may arise the preatest
local change in such defined norms of canonical vectors., However, in practical
applications, it may not be easy to use this method directly due to two main
reasons. One is that the F' matrix involves the definitions of §% and SV which is
usually difficult to be given in advance. The other is that when n or (p + ¢q) are
not so small, the eigen-analysis of Fy, (1 ¢y xn(ptq) Will be very time consuming or
even impossible. A better way to do this is to perturb one column only, and to do
s0, we can have the n x n influence matrix F if we set the value corresponding to
the perturbed column as 1 and other values as 0 in matrices $X and SY in (2.9).
The eigen-analysis result of F' can provide the most significant local perturbation,
from which we may indicate not only one or more influential cases by looking at
which elements in I, are relatively large, but also the group effects according
to the different signs in [,... Another important information directly from the

vee(T)
) Zh = (vee(L;)7, vec(Ly) )F(VBC(E2)>’

w=wn
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F matrix 1s the diagonal clements of £, which can be used to construct plots to
indicate the influential effect of each single observation in each variable.

Unlike the conclusion for canonical correlations, that is. if one observation is
the most influential in one column, it must be the most influential one for other
columns, however, for canonical vectors, the most influential observation in one
column is not necessarily the most influential one for other coluimns. Bot we
may only need to investigate carcfully part of the columns for any fixed canonical
vector, because perturbations on different columns under the same perturbation
scheme lead to different magnitude of influcnce to the above delined relative norm.,
Thus only those columns which have large magnitude of influence are noteworthy.
We may make usc of the maximum possible influence magnitude of each column,
which is the maximum eigenvalue of the corresponding £ matrix, to do the com-
parison. But these maximum eigenvalucs are not directly comparable because we
have not yet chosen a proper perturbation scale on different columns. A reasonable
choice tor this scale is to make the perturbation scale on each column proportional
to the sample standard deviation of that column, which results in the new max-
imum eigenvalues as the original maximum eigenvalues multiplied by the sample
variances of corresponding columns. Besides, such choice makes the maximuam
eigenvalues invariant to the rescaling of original data. These ideas will be further
illustrated in Section 5.

3. Local influence under case-weights perturbation

The ease-weights perturbation schemme has been used in many different areas
for influence analysis in which, quite often, a model must be specified, e.g., in
linear regression. However, it seems no such model ag linear regression ix involved
in canonical correlation analysis. What we are concerned about in CCA is just
the sensitivity of canonical correlation analysis to the observed data. Based on the
sense that case-weights perturbation is netually perturbing the weights of cages in
model or estimation, we set up the perturbation scheme as follows.

In CCA with n observations of (p 4 ¢) dimensional random vector (zf,y7),
i=1,...,n, by giving weighit w; to the i-th obscrvation rather than onc, we have

o () [t
where

{3.2) T(w) = ZTl— Zwa‘ﬂ?f,,

i=1%%

(3.3) ylw) = Z—nl_‘ zwiyi:

=1 % 50

and w = (w,...,w,)" dcnotes the vector of case-weights, obviously, wg =
(1,...,1)7 corresponds to the case with no perturbation. We denote the ¢-th
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squared canonical correlation coeflicient and the corresponding canonical vectors
under this perturbation as r?(w), &;(w) and by{w), then they %atlsfy the following
constraints,

(3.4) 1 @) 212 (W) gy (@) o ()i (w) = 1 (w)ds(w),
(3.5) (m)f i (w) =1,

and similar constraints for b;(w).

By taking derivatives with respect to w; (5 = 1,...,n} on hoth sides of (3.4)
and (3.5), solving these equations and then evaluating them at wo = (1,...,1), we
obtain

o, 1.5
(3.6) () = el (0] = rud) ol (] — )],
an W=y
Aiv; (w) i -
(3.7) — = fian + -+ flay,
de W= e
where Uy and V;, are defined as before and Uy = (ug, ..., ul)7, Vi = (v],... ,or)T.

The f{’s (k = 1,...,p) are defined as
_ mmui{vf —ruly+ v (ul -],k #4
3.8 4 i k
O S SN |
5[17(“1) }: k= 1.

As indicated by Tanaka {1994) that the EIC(x,,#) is equivalent to the par-
tial derivative of € with respect to w; evaluated at w; = 1, we can find that
Ori (W) /0w;|w—w, and da; ( ) /Bwjiwﬂ,o actually cu"e equival(:nt, to the empirical
influence functions BEIC{(x r; ,Uj) r;) and BIC((zT Ty, 7Y, é;) given by Romanazzi
(1992), but the expressions here are simpler.

The vector {dr;{w)/0wslw=uy.d = L,...,n} indicates the direction in which
the greatest local change for r; occurs. From this direction, we can observe not
only the influence of a single case but also the possible local group effect of several
observations.

Let the p x n matrix M; be (8a,(w) /0w, -, B8 (w) /A lu—,), denote
the nx 1 vector {f},..., fi)" as fg, then M; = (4,,...,a,)(f1,... , fo)¥. Suppose
I, is any nonzero vector of anit length stemmed from wo = {1,..., )7 in R™, then
the local influence of casc-weights for &; in directiom 1, is AMl,. To assess the
local influence in direction I, we may adopt the same definition of relative norm
as that in Scction 2, that is

RN(M;L,) = (Mil,)T301 (ML)

= 1T(MTS M),
IlT(fl,.. }(fll,...,&p) 211((1 ..... )(fl,...,fp)rl,'w
'”lT(jlu" )(fla"'vfp) w

= 1T Pyl
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"I'hus we can use the influence matrix F;,«,, i the same way as before. That is, the
eigenvector corresponding to the largest eigenvalue of F is to be used for finding the
most sensitive case-weights perturbation way which will lead to the greatest local
influence, and each diagonal element of F' indicates the local change of canonical
vector arisen by the case-weight change of the corresponding observation.

4. local influence for several test statistics

The study of influcnce on test statistics is not common in the literature.
Jolliffe and Lukudu (1993) studied the case-deletion diagnostics on simple one-
sample tests for means and variance. The influence of observations on the Pearson’s
goodness-of-fit and goodness-of-link tests in generalized linear models was recently
investigated by Lee and Zhao (1996, 1997). In this section, we will investigate the
local influence on several test statistics in CCA.

It is well known that canonical correlation analysis is concerned with the study
of dependence and correlation structure between two sets of variables. When we
test the hypothesis that the two sets of variables @ and y are independent, four
test statistics are conumnonly used (Muirhead (1982)). They are,

(1) Wilks’ A statistic,

dot(E fH(l—T
det(ZlL)det 222 =1

An approximate test of significance level « is to reject Hy if ~nplog(W) > ¢f(«),
where ¢y (o) denotes the upper 100a% quantile of a Xfr distribution with degrees
of freedom f = pyg, » is the sample size and p = 1 — (p + ¢ + 3)/(2n). Denote
—nplog(W) by T, which is given as —np >0, log{l — r).

(7} Haotelling’s trace statistie,

P

_ i
Ll_zl_r2'
*

(3) Pillai’s trace statistic,

LQ - Z ?‘1—2.
{4) Roy’s largest root statistic,
Ly — 2.
All the above test statistics are functions of canonical correlations. The local

influence analysis of these statistics is not difficult using the previous results about
canonical correlations.
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4.1  Additive perturbation scheme
“For Wilks® A statistic, we consider the local influence under the additive per-
turbation scheme for statistic T = —nplog{W) = —np 27_] log(t — 7). After
some algebra, we obtain
I {w ~ 2
() —np [Z} - fr% Gre W, nUYT

@)

(X & I vee(L))

w=ul

P
T o {Z 121'1 3 (bT & (U, —r V) )] (SY & I vec(iz).
i=1

For Hotelling’s trace and Pillai’s trace statistics, similar results can be obtained
and they arc presented as follows.

dL, (¢ d 25 N ) g i =
(1.2) _%ﬂ . ; %T?}Q(aj @ (V, = r,l0)7 )] (SX @ Iyvee(L,)
P 2 .
+ gﬁ{ﬁ(b?@( i — TV)T)]( @ I)vee(L,),
OLs(¢ : .
(1.3) 5?5”) ) wn— ;(27‘,&)(&?@)(1@ —rUNTY| (8% @ Iy vee(L))
iz
+ [Z(zn)(b’f @ (U, — VY| (ST @ I) vee(Ly).
2=1

Roy’s largest root statistic is the largest squared canonical correlation coeflicient,
and the local influence analysis can be found in previous two sections. We will not
repeat it here.
Making use of (4.1), (4.2) and (4.3), we can detect the influential cases column
by column. To compare the influence effects of different columns, we can take
= [diag{%;1)]V/% and 8Y = [diag{222)]*/?, and then compare the maximum
possible influence magnitude of each column.

4.2 Case-wetghts perturbation scheme

Under the case-weights perturbation scheme, the first order local influence of
these test statistics also equal the empirical influence functions (EIC’s) of them.
We just list the results as follows:

a1(w) ol (v — “”H—T2 Hul — rwl)
(4.4) =np . :
Ow; - ; 1- 'ri
(4.5) ALy (w) _ Zp: ol (?)f — riuf) + hv;’ (u! — r,;vf)
owy |y T3 (1 —r2)2 ’
O Lo(w P )
(4.6} Bi;(- ) Z?‘ wl (vl —rad) + vl ! — o)),
3 w=o =1

T'hese results will also be 1llustrated in the next scction.
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5. Example: fitness club data

The fitness club data. is a typical example nsed for demonstrating canonical
correlation analysis in the SAS mannal (1990). In this data set, three physiological
and three exercise variables were measured on 20 middle-aged men in a fitness club,
we denote these physiological and exercise variables respectively as 2, @y, @3 and
Y1, y2,ys. Here we will do the influence analysis of the canonical correlations,
canonical vectors and relevant test statistics.

For this data sel, the canonical correlations are respectively r, = 0.796,
ro = 0.200 and r3 = 0.07t. The third one is so small that we may régard it.
as unimportant and omit the influence analysis of it. Firstly, we will check which
observations are influential to r; and rs.

Under the additive perturbation scheme, Fig. 1 and Fig. 2 present the com-
parisons of two predicted residuals VUi = V; — r,U; and UVi = U; - »,V; for the
first two canonical correlations 7; and r2. By the 2¢ rule, it can be seen that for
r1, the physiological variables of case 19 and the exercise variables of case 14 have
large local influence; for ra, the influence of physiological variables of case 10 is not
negligible. As for which columns of these observations are more crucial in bringing
about a large influence to ry and ry, we should investigate the vectors ($%a;} and
(.QYE),;) In this example, we have (§%4,)7 = (—-0.775,1.579, —0.059), (Syél)T =
(—0.349,-1.054,0.716), (S¥ay)" = (1.884,-1.181,0.231) and (SYéQ)T =
{0.376,—0.123, —1.062). From these results, we may conclude that the z» vari-
able of case 19 and ys variable of case 14 exert the largest additive local influence
to 71, while both of the z; variable and x5 variable of case 10 have a large such
influence to rs.

On the other hand, under the case-weights perturbation scheme, from kig, 3,
the most outstanding observations for r) are case 9 and case 14. Although cases 13,
15 and 19 are not as large as cases 9 and 14, it should be noted that they may have
a joint influence effect with case @ and case 14. Figure 3 indicates that the increase
of weights on cases 9 and 14, and the decrease of weights on cases 13, 15 and 19
simultaneously will cause the greatest influcnce. The opposite effect of these two
groups of observations can also be observed from Fig. 1. It can be easily verified
that the sample correlation of VU1 and UV1 is exactly —r;, thus from Fig. 1,
it is obvious that existence of cases 13, 15 and 19 makes the lincar relationship
increase, while the existence of cases 9 and 14 makes it decrease. Furthermore we
can see from Fig. 1 that the influence of case 9 to ry is mainly from the exercise
variables of case 9, that is, from 1, variable of case 9.

Figure 4 presents the influence analysis result of ry under the case-weights
perturbation scheme. It indicates the same most influential observation as Fig. 2
does, thus ag for ry, physiological variables of case 10 ghould be investigated care-
fully.

Now we will conduct the influence analysis for canonical vector ;. Under the
additive perturbation scheme, we first caloulaie Lhe previously mentioned scaled
maximum eigenvalues of F' matrices. When the perturbation scale on every col-
umn is the same, the maximum possible influence magnitudes of different columns
are respectively 0.105, 7.829, (.279, 0.166, 0.010 and 0.007. But if the perturba-
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Fig. 1. Plot of two predicted residuals:
under the additive perturbation.
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Fig. 2. Plot of two predicted residuals: UV2 and VU2 for the influence analysis of rg

under the additive perturbation.
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Fig. 4. Index plot for the influence analysis of rg under the case-weights perturbation.

tion scale on every column is proportional to the sample standard deviation of
that column, the comparahble scaled maximmum eigenvalues are respectively 60.718,
76.253, 13.797, 4.401, 38.43( and 18.704. It seems that to 4; analyzing the influ-
ence of additive perturbation on 2 and x4 is much more important, the influence
of other columns to @, is comparatively minor. For perturbation on column 1z,
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Fig. 5 gives out the index plot of the first eigenvector [, of the F matrix. Cascs
19, 13 and 15 look extreme. It can also be noted that case 15 has an opposite
effect with case 19 and case 13 Fignre 6 is the index plot of diagnnal elements of
the same £ matrix for perturbation on column z;. The influence of every single
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Iig. 7. Influence analysis for é; under the case-weights perturbation: index plot of the
eigenvector of ¥ matrix.

observation is displayed and it can be seen that cases 19, 13 and 15 stand out from
the other cases. Iigure 6 can be regarded as a confirmation to Fig. 5 because they
arc consistent in this situation.

But for perturbation on xo, this consistency is not present. From the first
eigenvector of the F matrix which is obtained from adding perturbation on s,
cases 13, 15 and 19 are found to be the most outstanding observations. But
these cases are not the same as those indicated by the diagonal elements of the F
matrix for perturbation on column zy. The most outstanding cases detected by the
diagonal elements method are cases 9 and 14. In such situation, it seems reasonable
to regard case 9 and case 14 as most influential, because the first eigenvector of
the F' matrix may be less informative unless the measurement error happened to
be in the way as indicated by the first cigenvector. Nevertheless, these two groups
of ohservations (13,15,19) and (9,14) are found to be influential under different
aspects as discussed above. For brevity, the index plots are omitted.

Under the case-weights perturbation scheme, we also get an infiuence matrix
F'. The conclusions from the analyses by the first eigenvector and the diagonal
clements of £ matrix are quite consistent. Here we just present the index plot of
the first eigenvector in Fig. 7. Both the first eigenvector and the diagonal elements
of F matrix indicate that case 14 is no doubt the most influential point to 4;. From
Fig. 7, it is also obvious that cascs 14 and 9 have a great joint inflnence effect to
1. It can be anticipated that increasing or decreasing simultancously the weights
of cases 14 and Y in the estimation of covariance matrix will give rise to a great
change to the result of é;.

When determining if the physiological variables are related in any way to the
cxercise variables is our objective for this data set, we find that the independence
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Fig. 8. Index plot for the influence analysis of Wilks’ A statistic under the case-weights
perturbation.

test results given by the four test statistics are not all the same. From the Wilks’
A, the p value is about 0.0635, which results in marginally accepting the nuli
hypothesis at the 5% significance level. That is, the two group of variables are
independent. The p-values for the Pillai’s trace and Hotelling’s trace statistics are
given as 0.1551 and 0.0238 respectively. However, the lower bound of the p-value
given by the Roy’s largest root is as small as 0.0009.

The influence of local perturbation to the test statistics is also examined.
Under the case-weights perturbation scheme, all the influence plots of the Wilks’
A, Hotelling’s trace, Pillai’s trace and Roy’s largest root statistics indicate the
same most influential observations. Here we just present the influence plot of the
Wilks™ A statistic in Fig. 8, and the influence plot of Roy's largest root statistic
may be referred to Fig. 3. From these plots, it is clear that case 9 (and case 14) is
commonly the most influential case to every statistic. In this situation, case 9 1s
worthy to be investigated carefully.

If we assign zero weight to the case of interest and weight one to the other
cases, the case-weights perturbation scheme is just equivalent to case deletion. So
we recompute the statistics without case 9. The test results obtained from the
Wilks® A, Hotelling’s trace and Pillal’s trace statistics are quite consistent, the p-
values correspending to them are respectively 0.179, 0.113 and 0.282, which means
we cannot reject the null hypothesis at the 5% significance level. The lower bound
of the p-value given by Roy's largest root increases from 0.0009 to 0.0047. It seems
that case 9 iz more influential to the conclusion of the Wilks’ A, Hotelling’s trace
and Pillai’s trace tests, but less so to that of the Roy’s largest root.
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6. Concluding remarks

We have derived the first order local influence diagnostics under the additive
perturbation scheme and the case-weights perturbation scheme for the canonical
correlations, canonical vectors and several test statistics in CCA. In the case
when the objective function is not a scalar, such as the canonical vectors, we
define a scale invariant norm to measure the influence. Both the direction cosines
corresponding to the largest norm and the diagonal elements of the same influence
martrix prove to be useful in assessing local sensitivity.

The diagnostics under the case-weights perturbation actually give the same
expressions as the empirical influence curves. From this point of view, we may
interpret such diagnostics as not only the influence of every case but also the
most sensitive direction of case-weights. Under the additive perturbation scheme,
the influence analysis of canonical correlations is simplified to just observing two
predicted residuals, and by comparing the different influential effects of properly
scaled perturbation on different variables, the influence analysis for each canonical
vector is also reduced to just investigating the influence of perturbation on some
variables.

However, it is noted that, based on the notion that rcasonable conclusions
should not depend critically on the unusual aspects of the data, the above pro-
posed mcethods are centered on the identification of various influential aspects of
the data. Since diagnostic methods, especially the local influence approach, are
often exploratory, further comparison procedures may be needed in practical ap-
plications. For example, if one sort of perturbation is identified as influential,
assessing the importance and possibility of this specific perturbation is necessary.
More specifically, say, if a specitied perturbation involves slightly increasing the
weights of a large part of points and simultaneously largely decreasing the weights
of several points which are sporadically distributed far from the bulk of other
points, it will, of course. be important to investigate the actual influence of such
perturbation due to seome fixed perturbation scales. An obvious way for dealing
with this is to compare the results derived from the original and perturbed data.
Generally, it seems impossible to set up some specific universal ent-off points for
the proposed local influence measures, although we did set up some reference eut-
off points in the case of identifving influential points for canonical correlations
under additive perturbation scheme. More discussion about the ‘benchmmark’ or
‘eritical value’ in the context of local influence is referred to the discussion of
Cook’s seminar paper (Cook (1986), pp. 156-169).
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