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Abstract. The recursive estimation of the regression function mx) =
E(Y/X = z) and ite derivatives is studied under dependence conditions. The
examined method of nonparametric estimation is a recursive version of the es-
timator based on locally weighted polynomial fitting, that in recent articles has
proved to be an attractive technique and has advantages over other popular es-
timation techniques. For strongly mixing processes, expressions for the bias and
variance of these estimators are given and asymptotic normality is established.
Finally, a simulation study illustrates the proposed estimation method.
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1. Introduction

Nonparametric regression is a smoothing method for estimating the regres-
sion function from noisy data and it has become a powerful and useful diagnostic
tool for data analysis. See the monographs of Eubank (1988}, Hirdle (1990} and
Miiller (1988) for a good introduction and many interesting examples of specific
applications of this method with real data.

Let {X;,Y:}"., be a observed sample of the stationary stochastic processes
[X,)V} = {X,)V; o0 <t < ~o} with unknown joint density f{z,u) and denote
the marginal density of X by fx(z) and the conditional variance of ¥ given
by 0% (). Several smoothing methods have been proposed for estimating the
regression function, m(x) = E(Y/X — 2}. Among the most extensively analyzed,
we find: kernel, spline and orthogonal series methods.

Recently, local polynomial fitting has gained acceptance as an attractive me-
thod for the nonparameliric estimation of m{xz). It was introduced by Stone {1977)
and studied by Cleveland (1979), Lejeune (1985), Miller (1988), Cleveland and
Devlin {1988), Fan (1992), in a context of independent observations, and by Masry
and Fan (1997} and Masry {19964, 19960) for dependent observations. The moti-
vation and study of this smoothing method can be found in the recent monograph
of Fan and Gijbels (1996). The advantages of local polynomial fitting include its
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simplicity, its easy interpretation and computation, its nice minimax properties
(Fan (1993}, Fan et al. (1997)}, its adaptation to the boundary of design points
(Fan and Gijbels (1992), Hastic and Toader (1993)), its application to various de-
sign situations and its adaptation to the estimation of derivatives of m(z) (Ruppert
and Wand {1994), Fan and Gijbels (1995)}.

If the {p 1 1)-th derivative of the regreasion function at the point 2 cxits, local
polynomial fitting permits estimating the parameter vector 5 = (8o, B1s- ., )k
where 3; = m(x)/(5), with § = 0,1,...,p, by minimizing the function

i P 2
(1.1) Uiy (B) = (Y = Bl X - w)’“) wi,

t=1 k=0

where the weights are of the form w™ = n=1K,(X;—z) with K, {u) = (VK (),
K{-) a kernel function and h,, a sequence of smoothing parameters. In particular,
when p = 0, the minimizer of expression (1.1) is the classical Nadaraya-Watson
estimator of m(z).

In this report we study the local polynomial fitting modifying the weights wf”)
as follows

. (n) 1 -"YI x 1
1.2 = —K =~ K{X; —x).
(1.2 ol = ok (BT ) = K

The problem of minimizing cxpression (1.1} with the sequence of weights pro-

posed in (1.2) would then provide cstimators B(R) = (Bf(,n), BY"), .., A"t which
are recursive, as will be proved in Section 2 using the recursivity algorithm of
Plackett-Kalman for regression models. It is important to point out that, by mak-
ing p = 0 again, we obtain as a solution estimator ﬁén), which coincides with the
recursive version of the Nadarava-Watson kernel estimator, whose explicit expres-
sion is

— Z;L:l Kt(Xt - I)Yt

. a{n)
1.3 g = 2=
(1.3) o (@) nK(X, )

As it is well known, recursive estimators are specially useful when the obser-
vations are gathered sequentially Tn this context, the recnrgive technigues allow
casy updating of the estimates as additional obscrvations are obtained, unlike non
recursive methods where cstimates must be completely recalculated when each
additional item of data is reccived. Thus, the recursive estimates provide two im-
portant advantages with respect to non recursive ones. First, the fact that not all
data have to be stored in order to compute the estimates with each additional ob-
servation leads to considerable saving of memory. Sceond, since it is not nccessary
to evaluate all the sample data again when the recursive estimator is used, each
updating of the estimate is carried out independently of the initial sample size,
unlike non recursive methods where the computing time increases with the sam-
ple size. Morcover, as it will be indicated in Section 4, the recursive algorithm
we propose in next section allows to update the estimation, for one fixed point,
with a speed 2/n times that of his analogous nonrecursive method, when dircet
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implementations are employed and n denotes the sample size. From the above con-
siderations it is clear that the recursive property is particularly interesting when
larger sample sizes are considered.

These computational advantages have a cost in terms of inefficiency. In fact,
the recursive estimates exhibit larger mean square error than the non recursive
ones, even though both show the same convergence rates., In any case, their
usc in sequential methods or in the study of temporal processes seems advisable.
Works studying recursive nonparametric estimators of the regression function are
those by Devroye and Wagner {1980}, Krzyzak and Pawlak (1984), Greblicky and
Pawlak (1987), Roussas and Iran (1992) and Rousas {1992}, among others.

From the previous paragraph, the use of recursive estimates is specially appro-
priate in time series analysis. However, in this setting, the assumption of sampling
independence is not realistic so that the present study has been performed for de-
pendent obgervations. In fact, we have adopted a standard approach to madel the
dependence which assumes that the processes {X,,Y,} satisfy some mixing condi-
tion. [n particular, the strongly mixing {(c-mixing) condition has been considered.

This paper is organized as follows: in Section 2, the proposed estimation
method is shown to be recursive and a iterative algorithmn is derived. In Section 3,
preliminary results are established, expressions for the bias and variance of the
studied estiimators are obtained and asymiptotic normality is shown. In Scction 4
a simulation study 1s performed and, finally, an outline of the proofs are presented
in the Appendix.

2. Recursive algorithm

In the frst place, it is more convenient to write the previous weightad least
squares problem {given in (1.1}) in matrix notation.

Let us denate 37(,‘1) = (Y1,...,Yn}, let X(,,) be the matrix design for a sample of
size m, whose (4, 7)-th element is (X; —z)/ "' with ¢ = 1,....n and _j‘ 1,....p+1,
and let Wi,y be the diagonal matrix Wy, = dia‘g(wgn),wén) w,l } where w( 2

is given by (1.2).
Then, the function ¥,,(3) can be written in matrix form as

(2.1 Ty = (Yo = X3 Wiy (Yiny — X)),

Minimizing this function provides the estimator

(22) g(n) - (‘Y(il) I'V(n))((n)) (‘Y(n)u/('n‘)y(n)) - S(nl)T(n)u
where Sy, is the matrix (p+ 1) x {p+ 1) whose (r,{)-th element is 61(7) = bH),
with

I )
(2.3) S =

Tl

1 .
— E (th.’}'})JKi(X,{—I), for 0§J§2p1
T

t=1

and f(”) = ( '(5”’), Tl(n), . ,”I}En)}t with

(2.4) TV' - Z(X, — eV KX, —2)Y;, for 0<j<p
T i1
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For estimator E(R) to be well defined, it is necessary for matrix S, to be non
singular, and a sufficient condition for this is that at least in (p+1) different points
we find pogitive weights. For ecompactly supported kernel this is true with praob-
ability tending to one because we will assume that nh, — oo, The problem can
be also solved if a non compact kernel is employed (for instance, Gauss weights).
Nevertheless, the lack of compactnoss presents the drawback of not being optimal
and computationally slowly. This issue is studied in Seifert and Gasser (1996).

We now prove that the estimator defined in (2.2) is recursive. Let (Xn41, Yni1)
be an additional observation to the original sample of size n. According to (2.1)

and (2.2), the new estimator of 3 based on the sample of size n + 1 has the form
(2.5) Binity = (XryWons X+ 1) ™ (X iy Went 1) Yini 1))

e 171 _‘.

- b(n+1)j(n+l)

and 1t is straightforward to deduce that

n+1) o -
(2.6) Sty = 77 75 )+WT(L+J5 }iﬂ(n+1)ﬂ"{tn+1)
. no o= 1 .
(2.7) Tintny = 771 +wh Y 1B )
where Fny1y = (1, (Xns1 —2)s o (Xng1 — z)P)t

Substituting expressions (2.6) and {2.7) in (2.2), we obtain

(2.8)  (Stns1) — wagh Ene1)E ey By = Tineny — Wi Y1 E -

From (2.5) and (2.8) it can be deduced that

2, N 1 o s, .
Sty Brngry = Bpmy) = Wf::; (Vg1 — GHATREY cIY L LR

therefore
-, 2 ntl . -, -
(29) ﬁ(n+1) = ﬁ(n) + w’£L+1 )(an-é—l - $€n+1)6(n))8(ﬂ+1)m(n+l)°

Thus, expression {2.9} indicates how to obtain the estimator E(n +1) from the

previous estimator B'(n) and the additional observation (Xn41, Yayt).

However, the usefuluess of (2.9) presents the drawback that with cach addi-
tional observation it is necessary to recalculate the inverse of matrix Sy, 1y, In
order to solve this problem we will make use of the following property of matrix
algebra: if A 1s a non singular matrix and ¥ is a vector, then

Aot AT

N
(2.10) (A+d0)  =A T A

Applying property (2.10) to expression (2.6) with A = {(n/(n + 1})S(,) and
7 = w(1ﬁ1)£<71+1), we conclude that

1 . 1
(2 11) Sf'l — (1 + 3) -1 Kn+1(X7L+1 - x)S(n)x(n+1)Ign+1)S(n)
. {n+1) T {n) 1o 4+ Ky (Xn-‘r-l — x)f(”‘kl)‘g@l)f(trwl)
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From expressions (2.9) and {2.11) a recursive algorithm can be easily deduced

for obtaining estimator E(n 1y of the regression function and its derivatives by
local polynomial fitting. The practical application of this algorithm requires the
definition of the initial values for the iteration. For this, we suggest to obtain an
initial estimation from the model based on the first r observations (r > p+1) and
then to modify recursively the model as new observations are gathered.

The second problem is the selection of the smoothing parameter associated
with each new ohservation. Tn order to solve this problemn it can be assumed that
h,, has a functional form, for instance h, = Cn~". In this case we could take v =
1/5 (which is the value that minimizes the MSE as will be shown in Section 3) and
C may be computed using a plug-in type technique. Other alternative suggested
by a referee is to consider the idea of global variable bandwidths (see Fan and
Gijbels (1992)). For this, we should take h; = gi/a(X;), with the usual choice
a(z) — fx(z)¥, v € R. This way provides an important motivation of (1.3) and
it is very useful when curves are spatially inhomogencous.

3. Asymptotic analysis

In this section the joint asymptotic normality of the estimator E(n) defined in
(2.2) is established. In our analysis, the following assumptions will be used:

(A.1) The kernel function K{u) is bounded with compact support.

(A.2) The sequence of bandwidths {hn} satisfies that h, > 0, Vn, h,, | 0 and
nhy Tooasn T oo,

(A.3) If we denote by ¢; = limp_.oo1/n Y 4y (he/hn)?, then 8; < oo, for
—1<j7<dp.

(A.4) The stationary processes {X;, Y} are strongly mixing {o-mixing) and
such that 5200 t<[a(t)]'~%/* < oo, for some 6 > 2 and € > 1 — 2/6.

(A.5) The joint probability density of Xy and Xy, Fx. x4, {2y, Tsya), satisfies
Fxoxe (@8, Ters) — Fx{z) fx{@ye)| < cst. < oo, for all T, 244 and s > 1.

(A.6) For all s > 1, it is verified that fx,x,,./v.vi,. (Zp@es ] Ytyers) < ot <
oo and fx, /v, {x,/y,) < cst. < oc.

(A7) E(|Y:]®) < oo, for some & > 2.

Assumptions (A.1) and (A.2) are not very restrictive and they are classical
when nonparametric regression is being considered.  Although condition (A.3)
appears to be more complex, it is also usual in the recursive estimation setting.
If the usual selection of bandwidth h, = Cn™ is considered, then #; may be
calenlated explicitly and is given by #; = 1/ (1 — vj). Thus, it would be enough
to choose v < 1/j.

The condition (A.4) is a summability requirement on the a-mixing coefficients
usually needed in strongly mixing dependence setting. Note that, among the
mumerous asymptotic independence conditions often imposed in this context, the
a-mixing condition (introduced by Rosenblatt (1956)) is one of the least restrictive
and it is satisfied by many processes. A wide and complete study about this con-
dition can be seen in Doukhan (1995).

Finally, it is interesting to point out that {A.6) and (A.7) are technical as-
sumptions which must be imposed in order to obtain the proofs.



734 J. A, VILAR-FERNANDEZ AND J. M. VILAR-FERNANDEZ

A similar approach to that employed in Masry and Fan (1997) to obtain the

asymptotic normality of the local polynomial kernel estimator of ﬁ Wﬂl be followed.
First, the asymptotic properties for the entries of matrices S,y and 'T(n) are stud-
ied in Theorems 1 and 2. Next, in Theorem 3, we establish additional condifions
for concluding the asymptotic normality of vector f(n). The proofs of these three
previous results may be found in the Appendix. Finally, from results stated in the
previous theorems, the asymptotic normality of the recursive estimator defined in
(2.2) will be established.

THEOREM 1. Under assumptions (A.1}, {A.2) and (A.3) we have al every
continuity point of fx

(3.1) lim E(h,7S™) =8 fx(z)u;,  for §=0,1,...,2p,

00

where p; = / u! K {u) du.
If, in ad(iition, (A4} and (A.5) are assumed, then we have

(32) nli.ﬁflx) nhﬂva'r(h;ajs_gn)) = 82_‘."—1.](')( (3\‘7)?/2;,', for 7 =0, 1! ey 2D,

The next conclusion follows directly from Theorem 1
(3.3) hy T8 TS 0 o () 1,
which can be expressed in matrix form as
(34) S Hyy ™5 fx ()8,

where Hy,) = diag (1, B, h2, ...,hg) and § is the (p+ 1) x {p + 1) matrix whose
{r,t)-th element is S, = Sp1(—2 with S; = &;u;, 0 < j < 2p. The convergence
result in {3.4) is interpreted in the sense that each elemeunt of the matrix converges
i mean square,

The next theorem establishes the asymptotic structure of the variance/cova-

riance masrix of vector T’(n) centered with respect to vector (m{X1),...,m{X, "
Let B
T’fn) = 57(7,"), . .,T;’(n))t,
where
1 <& )
(85)  Tim =~ 3K - 2) Ke(X - 2) (i -m{Xy), for 0<j<p
t=1

THEOREM 2. Leb us ussume that conditions (A1) (A7) are satisfied. Then
we have

(3.6) limm ke, Cav(h, JTJ (nyr e Limy) — Oer—1fx () (2)v) 4,

T



RECURSIVE LOCAL POLYNOMIAL REGRIESSION 735
for 0 < j.r < p and for every x continuity point of Cf%’ and fx.
Again as in (3.4), (3.6) may be expressed in matrix form as

{3.7) nhy, E(H %I(n) (H)H(n D—fx(@)ol ()5S as n — oo,

whore 5 is the {p + 1) x (p + 1) matrix whose {(r,¢)-th element is g,«:,, = Srpi—2
thS = 15,0 < g < 2p. _

\ore thaf the assumptions (A.4}-(A.7} have been imposed to eliminate any
effect due to the dependence of the data over first order terms in the expansion of
the variance of the estimates, so that the influence of dependence is only noticeable
over second order terms (these observations turn up along the proofs in Section 3).
Thus, when the observations are independent, conditions (A.1)-( A 3) are sufficient
to obtain the same results as in Thecrem 1 and Theorem 2.

The following result establishes the asymptotic normality of f(’;l)

THeonrEM 3. Lot uws asswme that conditions (A 1}-{A.T) are satisfied. In
addition, the following assumptions hold for some 0 < v < 1:

(A.8) Let be my = 3(2p—1) for p> 0 and my =3~ 2y for p=10. Then

a) hy, 18 such that nhl* — 00 as n — oc.

b) There exits a sequence of positive integers {s,}, s, — o0 a8 n — 00,

with s, = o{v/nhi') and such that

v nhn? g [ () —= {0, a8 n— o0,

t=8,

with mo =1 2p for p> 0 and 7o = —1 for p= 0.
(AY) The conditronal distribution, Y,/ X, = x, 18 contitnuous at the pownt z.
Then, if x is a continuity point of o5 and fx, we have that

(3.8) Vnha He 7(1;,) £, Nept1y (0,08 (x) fx(2)9).

Theorem 3 has been obtained by using Bernstein’s method, which consists on
approximating mixing sequences by independent ones. More specifically, the idea
iz to represent the sum of dependent variables as a sum of “almost” independent
random variables alternating with other terms whose sum is asymptotically neg-
ligible. Assumption (A.8) is needed in order to develope this procedure. Indeed,
8, s the size of the groups of variables whose suis can be ignored. (A9) s a
technical assumption that is required in the proof of Theorem 3 to guarantee the
continuity of the function

plz) = Var(V, I {{Y}| > M} /X, = z)

for each M > 0 and for every continuity point, x, of o3 and fx.
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From Theorems 1 and 3 {Expressions (3.4) and (3.8}) it can be straightly
deduced that

oo g
(3.9) Vb Hiay S Tl £ N (o v )3‘155—1).
fx ()
With these results, we can now establish the joint asymptotic normality of

ﬁ(n). Let M(ﬂ) = (m(X1),...,m(X,))", then taking the conditioned expected
value in (2.2} we obtain

(3.10) 5’(*”) = E{Q(ﬂ)/(X, ooy Xn)| = {X({r’a) W(H)X(n))_l X("n)W(n)M(n).

On the other hand, we have assumed the continuity of the first p+1 derivatives
of m{-) and as the polynomial fit is locally carried out in a neighbourhood of z,
then M, can be approximated by a Taylor series in a sufliciently small interval

(X1 ~ z)ptt ek

- {(p+1)¢
m () + o,

(p+ 1)
(X, —a)p*! hptt

which, after substituted in (3.10), leads to

(T—:—)l hp+1
(Pt 1) () % 1 "
™m x
£ 4+ — AT - . - p+1
Bty = B+ 57, G : topq > ht
i=1
S;;il pp+l

and using the established convergence in (3.4) and Toeplitz’s lemma we can deduce
that

L [t ()

(3.11) B, =4+ H) T WSy + o, (hﬁ+1(1,__.,1)t)] |

. t
where tly = (0pr1ptp115 - O2p1p2p+1) -
It must he nated that from Definitions (2.2) and (3.5) it follows

Sty Tow = By = B
and using (3.11) we conchude that
(312) Hio S5 Th = (Ao — )

,r”(:ﬂ"r'].) (z)

(p+ 1)!

From Expressions (3.9) and (3.12) we can deduce the following corollary that

hEtLS ™ igg + op (REFU(L, .., 1) ’)} :

establishes the joint asymptotic normality of cstimators ,@Y = () / (51}
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COROLLARY 1.  Under the hypotheses of Theorem 3, we have

Pl AR AR G P
vnh, [H(u) (rd(n) - ﬁ) - W—S Ilio]
ay (J«")

at the continuity points of 0% and fx whenever fx(x) > 0.

Corollary 1 is an analogous result, in a recursive setting, to those obtained
by Masry and Fan (1997) for the local polynomial fitting under p-mixing and
c-mixing conditions. Morecover, the first implication of Corollary 1 is that both
the recursive estimate and non recursive one exhibit the same rate of convergence
for their mean square errors {(although with different values for the asymptotic
expressions of hoth the hiag and the variance).

The asymptotic normality of the individual components, B,(Cn) = mEN () k!,
for 0 < k < p, follows directly from Corollary 1. The local linear fitting, corre-
spouding p = 1, is particularly interesting and shmple. In this case, if the selected
kernel function satisfies that pg = 1 and p; = 0, then Corollary 1 leads to

(3.13) /1 {(agm - ﬁo) L (a)f 2g, W] ELUN (0 }’ig;f;w{,)

(3.14)  /nk? [(,@Y‘) - [)’1) _mia, 03”3} LN (0 oy (@ )0”’2)
2 Bapiz fx(z)05u3

Statement, (3.13) atlows us to present a comparative study of the asymptotic
behaviour of the following nonparametric regression estimates: the estimator ob-
tained by lineal local fitting (LL), the recursive version of the Nadaraya-Watson
estimator (RNW) given in (1.3), and, finally, the recursive estimator hy linear
local fitting (RLL) proposed in this paper. The bias and variance of the above
three estimators are listed in Table 1.

Table 1. Pointwise bias and variance of the local linear fitting {LL}, the recursive Nadaraya-
Watson estimator (RNW) and the recursive local linear fitting (RLL).

Estimator Bias Variance
1 1 a2 (fn}

LL S {2)h2 g L4
o7 (@b i fx(?”)

Ny r 1 4, ; f&(«'ﬂ} 2 1 ‘Ty(i) )
RNW (gm {x} +m'(z) ——fx (cr)) b peaba i T (@) 1By

1 oy iz
LI %rn”(.r)h ey O Y( )

- ..
nhn fx(a:)yu '

In the first place, from Table 1 we see that the rates of convergence of both
bias and variauce are i) and 1/nl, respectively, the same for the three estimators.

As it is well-known, the local linear fitting has been shown to reduce the bias
of the Nadaraya-Watson estimator, while the variance remains the same. Table 1
shows how these properties are conserved when the recursive versions are used.
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Next, for the correct interpretation Table 1, the usual selection of bandwidth
hy = Cn~" will be considered. In such case, #2 = 1/1 —2v > 1 and §_; =
1/1 + v < 1. Therefore, if the recursive (RLL) and noorecursive (LL) estimators
by local linecar fitting are compared, then it can be observed that the RLL has a
larger bias and smaller variance than the LL. This result is expected because the
recursive estimator uses a bigger bandwidth (on average, or any other sense) than
the nonrecursive estimator.

By contrast, since the sum of variance and square bias is a complicated expre-
ssion involving the unknown functions fx, m’” and m” and depending of the kernel
and bandwidth selected, it is not possible to establish a general comparison among
the mean square error of the three analyzed estimators. Nevertheless, the extensive
simulation study performed in next section allows to deduce, in a heuristic sense,
that the RLL estimator presents a little higher mean square error than the LL
estimator when hoth of them nse the optimal bandwidth. This drawback is not
very serious and, in any case, the mentioned simulation study also shows that the
MSE of the RLL is lower than the ones of Nadaraya-Watson estimator and his
recursive version given by {1.3}).

We can conclude that the estimator studied in this work and defined in (2.2}
presents similar properties to those of the estimator of the regression function and
its derivalives oblained through local polynomial fitting. Moreover, it has the
additional advantage that it is recursive, as proved in Section 2.

4. Simulation study

This scction contains a mumerical study of the proposed nonparametric esti-
mation method comparing it to other classical methods. Three regression modeis
of the form Y; = m;(X;) + &, witht = 1,...,n and j = 1,2,3, being m;{z)} the
regression function and e; the error of the model, arc considered.

Model 1. The values of X; come from a uniform distribution in {0,1], the
regression function is my(#) = sin(57x) and the errar, &, follows an AR(1) strue-
ture, £, = pe,_1 + e, being {e;} a sequence of independent random variables with
a common normal distribution N(0,0.3).

Model 2. We choose ma(z) = 162%(1 — z)? and £, are independent and with
common distribution N(0,0.5). Here, the values of X; come from a variable with
density f(x} = 6x(1 — z)1j0,1)(2).

In the previous two models the regression functions are studied in the interval
[}, 1], making the difference between the boundary region, |0,0.3]U[0.7,1], and the
central region, [0.3,0.7].

Model 3. The regression function is mgs(z) = sin(2z) + 2exp(—1622), ¢, are
independent and with common distribution N{0,0.8). The variable X, comes from
a N (0,1} and the study is performed in the interval [—2,2], being the boundary
region [—2,—1] U [1,2].
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In all models, the regression function is estimated in N = 200 equally spaced
points in the interval under study and four nonparamctric cstimators arc used:
the Nadaraya-Watson cstimator (NW), the recursive NW given in (1.3) (RNW),
the local lincar fitting (LL) and the recursive local linear fitting {RLL). The used
kernel function is the quartic kernel (K (u) = (35/16}{1 — ¢)? il |¢| < 1) aud, fo
the recursive estimators, we have used bandwidths of the form h; = Ct~/%, being
' a constant to be empirically determined.

in the first step of the simulation, we took 500 random samples of size n = 200
and n = 500, for each one of the three regression models. Next, for every sample,
we computed the bandwidth (h,p:) by minimizing the average squared error (ASE),

N
ASE(in) = 3 (hle;) — me;) (),

i=1

where w(z) is a weight function that varies depending on whether the study is
performed in the center region, boundary region or global region. With this band-
width the ASE is computed for each sample as the sum of the squared bias and
the variance. The obtained results are averaged for the 500 samples. In Tables
2. 3 and 4 we present the results for Model 1 with independent errors (n = 200
and p = 0), Model 1 with dependent errors (n = 200 and p = 0.6) and Model 3
(n = 500}, respectively. For Model 2 similar results were achicved.

Table 2. Squared bias, variance and average square error of the Model 1 {n = 200}, with
independent data {p = 0), in boundary region, central region and global region.

Estimator

NW RNW LL RLL
Boundary R.
hept 0.045 0.104 0.050 0.135
Squared Bias  0.002 903 0,002 855 0.001 980  0.001 956
Variance 0009 H94 0002 773 0007 489 0,007 622
ASE 0.012 497 0.012 628 0.009 469  0.009 578
Central R.
Ropt 0.055 0.129 0.058 0.134
Squared Bias 0.001 334  0.001 465 0.001 567  0.001 642
Variance 0.007 163  0.007 6566  0.00G 67%  0.005 836
ASE 0.008 797 0.009 121 0.007 242 0.007 478
Global R.
hopt 0.047 0.116 0.058 0.135
Squared Bias  0.002 288  0.002 273 0.601 738  0.001 814
Variance 0.009 292 0.009 483  0.007 102  0.007 191

ASE 0.011 380 0.011 756  0.008 839  0.009 0G5
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Table 3. Sqguared bias, variance and average square error of the Model 1 (n = 200), with
dependent data (p = 0.6}, in boundary region, central region and global region.

Estimator

_ NW RNW LL RLL
Boundary R.
hopt 0.044 0.092 0.060 0.132
Squared BRias  0.002 772  0.003 854  0.001 816  0.002 030
Variance 0.011 186 0.012 243  0.008 983  0.009 528
ASE 0.013 958  0.016 104 0.010 799  0.011 559
Central R.
Ropt 0.054 0.135 0.057 0.143
Squared Bias 0.001 366 0.001 362 0.001 645  0.001 648
Variance 0.008 704 0.008 736 0.006 773  0.006 821
ASE 0.010 071  0.010 099  0.008 419  0.008 471
Global R.
ﬁopt 0.047 0.103 0.060 0.137
Squared Bias  0.002 271 0.003 141 0.001 715 0.001 909
Variance 0.010 616 0.011 373 0.008 384  0.008 739

ASE 0.612 887 0.014 514 0.010 129  0.010 647

Table 4. Squared bias, variance and average square error of the Model 3 {n = 500) in boundary
region, central region and global region.

Estimator

NW RN'W LI RLL
Boundary R.
Fopt 0.168 0.189 0.103 0.292
Squared Bias  0.001 351  0.001 465 0.000 781  0.000 854
Variance 0.004 510  0.004 699 0.002 842  0.002 886
ASE G.005 861 0.006 164 0.003 433 n.an2 740
Central R.
hapt 0.034 0.085 0.035 0.096
Squared Bias  0.000 750  0.000 802  0.000 815  0.000 871
Variance 0.003 181  0.003 298 0.002 783  0.002 900
ASHE 0.au3 Y3l G.0u4 00 0.003 HUS 0.003 771
Global R
.F_lnpt 0.044 0.123 0.047 131
Squared Bias  0.001 204 0.001 311 0.001 333 0.001 439
Variance 0.004 925  0.005 088  0.004 385  0.004 330

ASE 0.006 129  0.006 399  0.005 718  0.000 969
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In these three tables we can observe the good behaviour of the recursive esti-
mator by local polynomial fitting (RLL). It presents a little lower (but close to)
efficiency than its corresponding nonrecursive estimator (LL). Moreover, it con-
serves its properties in the sense that it improves the obtained results when using
the Nadaraya-Watson kernel estimator, both recursive and nonrecursive (RNW
and NW), specially in the boundary region.

— AL

(n x $00)

Fig. 1. Sguared bias of Mode! 1, with independent data (p = 0}, in the global
region of the four analyzed estimators.

In Section 3, we have shown that the behaviour of the proposed recursive
estimator under a-mixing dependence conditions are asymptotically equal to the
case of independent observations. Nevertheless, for finite samples, it becomes
evident that every kind of dependence must atfect the efliciency of the estimators.
Due to this fact, Table 2 (independent observations) shows better resnlts than
Table 3 (AR(1) structure for the error) for all estimators. The squared errors of
the estimators would be increased if a higher autocorrelation degree was employed.

In the second step of the simulation, we have studied the influence of the
sample size. In order to do this, we have carried out the study for n = 100, 200,
300, 400 and 500. In Iigs. 1 and 2 we present the results for Model 1, with p = 0,
in the global region. In Fig. 1 we have represented the graph of the squared bias as
a function of » for the four studied estimators. In Fig. 2 we have repregented the
quotient between the mean squared error of the NW, RNW and LL estimators and
the estimator we propose {RLL). Thus, Fig. 2 presents a measure of the relative
efficiency of this estimator with respect to the previous oncs. Similar graphs to
those of Figs. 1 and 2 were obtained when the studics were performed in both the
boundary and the central region or when the observations were dependent.

From Fig. 1 it can be obscrved that the estimators by polynemial fitting (re-
cursive and non recursive) present smaller bias than the Nadaraya-Watson kernel
estimators (both the recursive and the nonrecursive one}. In fact, our simulation
study allowed us to observe that this property becomes more noticecable 1n the



742 J. A. VILAR-FERNANDEZ AND J. M. VILAR-FERNANDEZ
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Fig. 2. Relative cfficicncy, as o function of n, of cstimators LL, NW and RNW with
respect to the RLL estimator of Model 1 with (p = 0} in the global region.

boundary region. Figure 2 shows clearly that the estimators obtained by poly-
nomial fitting (recursive and non recursive) have smaller squared crror. "L'hat is,
they arc more efficient than the classical Nadaraya-Watson estimators. Note that
this advantage is present for the different employed sample sizes. On the other
hand, it is interesting to observe that the differences between the results provided
by the non recursive and recursive estimators are very small, both in the case of
the estimation by local polynomial fitting and with the Nadaraya-Watson kernel
estimnator. We find a slight improvement in the non recursive estimator, which is
the price that has to be paid for the advantage of the recursivity of the estima-
tar. The same conclugions ecan be deduced from the study of the other simulated
models.

As we have pointed out in the introduction, other relevant property of the
recursive estimator is his computational officiency when the observations are re-

ceived sequentially. In fact, from {2.9) it is clear that if a previous estimation g,
hag been calculated from n data, then the updating of the recursive estimate with
each additional observation is independent on the initial sample size n. ''herefore
a better behaviour in terms of computing expedience of recursive estimate over
non recursive one may be expected.

In order to evaluate the computing time we stmulated random samples of size

n (with = 100, 200, 500 and 1000} from Model 1 and we computed A3, by using
both the LL estimalor and the RLL estimator. To make fair comparisons, the
estimations were made for one fixed point (xg = 0.5). First, we computed the
LL estimation by direct calculation. Secondly, from an initial estimation based
on n — 1 data (which is again obtained by using the LL estimator), we computed
the RLL estimation based on n data by employing the updating algorithm given
in (2.9). Finally, we compared the computing times concluding that, for a given
sample size n, the quotient between the computing time for LL estimator and the
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one employed to update the estimation by the proposed recursive estimator was
n/2. Therefore, as we expected, we can conclude that the recursive estimate is far
faster than the non recursive one when the observations are sequentally obtained.
Although, this computational advantage increases with sample size, it becomes
important even for moderately large sample sizes.

1.5 1

0.5

Fig. 3. IEstimates based on the simulation of Model 2 for n = 100.

Finally, in order to observe the global behaviour of these estimators we have
calculated, from simulated samples, the estimation of the regression function us-
ing the RLL, LL and RNW estimators for all models. The results for Model 2
can be scen in Fig. 3. The used bandwidths are global and have been empirically
obtained. The use of variable bandwidths, such as those proposed in Fan and
Gijbels (1995), provide better results, specially in the local polynomial fitting
estimators. In this case, there is a larpe difference between the band that must be
usged in the boundary region and the one used in the central region.

5. Appendix: proofs

In this appendix we detail the general lines of the proofs for the theorems in
Section 3. In what follows, the letter ' will be used to indicate generic constants
whose values are not important &T].(.] m ﬂy Vﬂ.T‘y,

Proor oF THEOREM 1. Let

Xe -2\’
V,,m,,-:( tht ) KX, —z).

Assumptions (A.1) and (A.2} allow us to apply Bochner’s lemma (Wheeden
and Zygmund (1977), Theorem 9.9} to obtain

(5.1} Jim BV, ) = fx (2,
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= ] 2y — o
(0.2) tlgrolo htE (V;J) - f)((ZL')VgJ.

Note that, from (2.3), we have

1~ [}
tim E(h_"" “(n - ( “) E{Vi ;).

n—oo
t=1

Now, the limit (5.1) and the Assumption (A.3) allow ws to apply Toeplitz’s
lemma to obtain {3.1).
For the second moment we proceed as follows. First, we write

(5.3) Var(h,, ?S(" ) = h; 2Jp(” +h 2JP2(T;)j
where
n .
(54) P =2 3o AP Var(V),
t=1
b3 T ]
(5.5) Pz{j;) = op 2 Z Z (h, b)Y CovV,,, V..,).
r=1 s=1
r<s

Using (5.1}, {(5.2) and similar arguments to those employed to prove (3.1), we

obtain

\ iy 1 N 1
(5.6) h, P = mf’%—lfx(i)"w o (W) '

If we show that h*2"P(”) = o(1/nh,), from {5.3) and (5.6) it is clear that the
proof is completed, 1nnlely (5 2) is established. For this, let ¢, be a sequence of
integer numbers such that ¢, T oc and hye, | 0 as n T oo and let us decompose

PZ(T;) in the following way

(57) Py = P + PL

where Pz(fi is the sam in {5.5) with r and s such that 0 < s — r < ¢, and where

Pg(;?)j- is the sum in (5.5} with r and s such that s — v > ¢,
From Assumption {A.5) and the stationary property of the process X, it is
casy derived that f% (z)p7C is an asymptotic bound for Cov (V; ;,V, ;). Hence

Pz(l” < (n~? ZZ (hehy) < Cn~ (',Lth’

r=1s=1
0<s—r<on

Now, applying Toeplitz’s lemima again, we conclude that

(5.8) I P = o( ) = o(1).

T3
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In order to show that P(")- is asymptotically negligible, it is neccesary to find
a better bound for Cov(V ;, V ;). For this, we will make use of the Davydov's
inequality. Note that, for some :5 > 2, we have E|V,. 3|5 h}féDT,j, being

85
% — T 1 % — T
‘J fl K( fop )

Once again, Assumption (A.1) guarantees the applicability of Bochner’s lemma
to eonclude that

&
fX (?L) du.

(5.9) Dyy — fxiz) /_OO W] [K(@)|° dv < .

Thus, by the Davydov’s inequality, we obtain

|Cov(Vr g, Vi)l < 8lads — )] 20 (hehy)t 20 (Dy;Ds ) e

Hence
T n

1P < 16072 SN (b, U0 (s — )P HO(D, D, )Y
g
g1 n—k

. 1-2/6 /—11515 ~141/6 178
= 16n"" Z [a(k)]L 2 [Z(h{ o / }U E'+k+ / tJ/rk,j ] :

k=cn+1 t=1

Using the Cauchy-Schwarz inequality and since D, ; > 0, the inner sum in the

2(;,- 1+1/A)D2/é

above expression can be bounded by 370 A Hence

n—1
h=cn+1 i=1

Tinally, from the Assumptions {A.3} and (A.4), from the limit (5.9} and from
the Toeplitz’s lemma, we have

Tl (e, )"’PZ(;)J) — 0, as n— oo,

which jointly with (5.8) and (5.7) allow us to conclude that h, % I ") o(1/nh,)
and then the proof of (3.2) is stated. [

Proor orF THEOREM 2.  Similar arguments to those used in proving Theo-
rem 1 are employed again. For this reason we will only provide the main differences
below.

First, it must be observed that conditioning 17, , on Xy = (X1, X

we find that E(T;(m/}?(n)) = 0. Hence

Cov {1, oy P T my) = B TV E (T 0T ().
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Now, in the same way as in the proof of Theorem 1, we denote

(5.10) Urj = (X*h_”’) Ky (X, — )Y, — m(X}))

i

and we write

(5.11) h, (”‘)E( "y L) = ho UH)(QU +Qz

gal
where

QSZ{' =n? Z WY EU, ;UL

t=1

Q2 Vo= 27y S T RRLEU, U, ).
r—=1s8=1
s

Ry conditioning on J?(,L) and appiying Bochner’s lemma, we have

(5.12) hE(Us,;Us) = /(”f;l‘)mf{? (u;x)afz(u)fx(u}%

B /ZJHK (2)(o¥ fx )@ + zhe) dz =5 od (2) fx (2)via,

at continuity points of o2 fx. From (5.12), Assumption (A.3) and Toeplitz’s
lemma we conclude that

(5.13) lim nh,h, (J*‘)an)- = b 100 (2) fx (@)v4q.

n—xs

Since (5.11) and (5.13), it is suffices to show that b, uﬂ)@gnj)& = o{l/nh,) for
completing the proof of (3.6).

Reasoning as in {5.7) we can descompose Q2 i in the same way as P,z ™) Thus

(5.14) QS =272 | SN WREW, U + Y WREU, U,
0ca <o ren

(n)
'_Q‘I,Jv Qaz,‘;a
By conditioning on (¥, Y,), we have

(5.19)  E(Up;Us4)

]/ [/ {v, —mlu,}) (vs — mus)) fyvv. (vov,) dudog
e — 2\ uy — 2\
. ( . ) K, (u, —x) ( " )

- K, (’U‘, - :E} fX,\XS/Y,\Y_g (u'r'us/v?”vb‘) du,du,
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Since K has compact support and m is continuous, there oxists a constant
C such that € = supj,_, <, im{u}|. On the other hand, from (A.7) and the
Davydov’s inequality, it follows that E(|Y ||Y,]) < € < co. These considerations
and assumption {A.6) allow us conclude in {5.15) that

B (U, ,0,.0)] < CopELIY: |+ C) (V] + O] € Cpgprs < 0, for 74 .

By using this bound and identical arguments to those cmployed for proving
(5.8), we can deduce that

(5.16) nhahy UTRQSY = O (cahin) = o{1).
Now, it only remains to prove that

517 poUTiol !

(5.17) n 922,3'1' =0 % :

By conditioning on Y, and by using Assumptions {A.1), (A.6) and (A.7) again,
we obtain, for 6 > 2, that

éfo ho

: |'Ur - m(ur)|6 fX,./YT (ur/vr) fr. (vr) dr,dus

< CE(Y,|+C)° hi-? f 2|9 K% (2)dz < Chl™®

Up - T

55
(5.18) EiU, ; K?{u, — )

From (5.18) and Davydov’s lemma, we obtain
E(UrUsy)] € Cla(o 7)1 (hehy) 00

Finally, replacing this bound in the second sum in (5.14), and proceeding as
in the last part of the proof of Theorem 1, we deduce (5.17) and therefore the
validity of Theorem 2 is established. [

PrOOF OF THEOREM 3. Lel @p e an arbilrary linear cotnbination of h;jTJ’-’:(n),

p .
@n = 3 ah T,
F=0

DBy (3.5), vnh, @, can be also written in the form

1 1 &
5.19 Vb, Qn = —=%i0y = —— Eitnys
(5.19) Nk \/ﬁ; ()

where
&ft.(n} = hnGt,(n) (Xt - m)(}ft - ?’T?,(Xt)),
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with
P au 7
Guin() = Y a; () Kilw)

If the asymptotic normality of v/nh, @, is established, then (3.8) is followed
from Cramer-Wold theorem. In order to do this, we have used Bernstein’s method
also known by “the big small blocks technique”. Tn what follows, we limit ourselves
to develope this procedure assuming that p > 0. A similar analysis is required for
p=0.

Step 1. Decomposition of 2,y into blocks.
By Assumption (A.8) there exists a sequence, {r,}, r,, T 00, such that

(5.20) rosn =0 (W) ’

(5.21) ra(nh) YN o]0 — 0, with 8> 2.

t=s,
Let ug define a new sequence {b,}, in terms of {r,}, by

VnhiPt }

(5.22) b, = [
o
where [a] denotes the integer part of a.
Next, for each n, let kn, = [n/(b, + s, and let us split L,y into 2k, -+1 terms
in the following way,

kn—1 fn—1
(5.23) Ym = Z D, + Z T+ Mg, = () + Xsfm) + Lo (n)»
=0 §=0
being
h,. [/20 n
(5.24) @J = Z&E;J_f.i,(n)g T:,' = Z £€j+i,(ﬂ)7 Akn, = Z ‘E'!:,(Tl)
i=1 i=b,+1 i=eg, +1

with €; = j(bn + 8,), for j = 0,..., ks — L. Thus, each ®; represents a large block
summing b, variables, each Y, is a small block summing s,, variables and, finally,
Ap,. s a residual block.

Step 2. Both the sum of the smaller blocks, X, 1.y, and residual block, ¥, iny,
are shown to be asymptotically negligible. Thatl is, we need Lo prove thatl, as

n — 00,
1 ’ ! :
5 (ﬁgﬂa(m) — 0 and FE (%En(m) > 0.
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Since E{£, () = 0, we conclude that E{®;) = E(T;} = E(A;,) = 0. Thus,
from (5.23) and {5.24) we have

k,—1 —1lkn—1
(5.25)  B{Z.m) < Y E(T;f) *22 ST IBE(YiY) =M+ N.
j=u i=0 =0
i

First, we pay attention to M. By using Davydov inequality, we have, for
&> 2,

b+ 8
(5.26) EIT;* < > Eltml®
t=b,+1
bntsn  bntsn
+16 35 3 et
F=bntl g=ba+]
f>g
where | X| s denotes (£]X[?}/°.
Let Uy ; be defined by (5.10). Using Minkowsky inequality and (5.18) we can
conclude

£y rmlls 1 1am s

P
h
(5.27) lomle < BY2> a; (h) Uesls
J—0 "
/2 p 3
< C_}gm aj (h—t) < ChYF.
h't i—o hfn

On the other hand, from (5.12) we have

P

h i+j—1
(5.28)  E(|&,m]7) < ZZG*O‘J (—t) hE (U U )| < CRL7?P.

=0 3=0

Naw, since Yoo, [o(t)]}%/% < oo by Assumption (A.8), we replace (5.28) and
(5.27) in (5.26) and we obtain

kn—1 baotsn kn—1 5, $n

(5200 M<c S Y a3 N laf -9 TR

G—0 t—b, 1 F=0 f=1g=1
F>g

Sp—1
k‘n.,‘:‘n k-nS'rt \ 1-2/6 k nSn
< Ip -1 +C Zp—1 Z[ (f)] ! < Cogpmt Zp—1r
hn hﬂ t=1 f

Secondly, in order to establish bounds for N, we note that

k,—1k,—1 bu+8n bntsa,

(5.30) N <2 Z Z > D Blrrmberam)l

=0 =0 f—batlyg—byt+l
i>j
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Since 7 > j, the indices e; + f and e; + g must differ in, at least, b, units and,
therefore, if the Davydov inequality is applied, the above expression is bounded
ag follows

n—by, i
(531) N <4 Z Do 1B mam)]
=1 g=f+bn
rn—b,
<‘32h1 2p Z Z lelg — f]l /8 < hQTJ : T?Gf 1-2/6
J=1 g=[+bn 7
From (5.22) and (5.20), we deduce that, as n — oc,
8n SpTn Sn
. =~ 0 = P
(53 N T IC R

Hence, we can replace Y2, {o(t)]'~ e py o s ()] /¢ in (5.31). From
this and (5.29}, we conclude in (5 25) that

. 1 Finsn
(5'33) gE(‘ESv(")‘Q) < ¢ (nh’lp—i 2;0 1 Z (): 1 2/6) .

t=5n

The second summand in (5.33) tends to zero by (A.8) and, from definition of
ky, it follows that

b 7 5, 5
T —~ ' —~ 71

p—1 "~ 2p—1 2p—1
nhyF by + 35, nh:F b hyF

— 0,

as n = oo, by {5.32). Hence it is deduced that 1/nE(|¥, my[?) — 0 as n — oco.
Taking into account that k, < b, + 8, < 2b,,, the same arguments employed
for bounding n~ E(|E, )]} lead to

1 5 b, C
— . < m— — — (.
E(‘ET,(TI” ) = C(nhipul) T4 U

Step 3. The summands in the large blocks, 24 (), are shown to be asympto-
tically independent. Namely, it is required to prove that, as n - o,

kn—L

(534) Luk..b (n) H F iudr, —"
From Volkonskii and Rozanov (1959) lemma we have

ko o-1 ,
E(eP0) — [ Ble™®)| < 16(k, — Derlsn) =, alsa),
. bi’l
and now (5.22) and (5.21) lead to

o0

50
. n n 1-2/8 Tn 1-2/8
(5.35) —a(s,) < — E [ (1)] Y — E [ev ()] s 0
bn sy, \/nhip—l =8,

A
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and (5.34) is stated.

Step 4. We prove that

=
; Z ‘IZ‘(CI);,-)‘3 ———>a%, as n — 0o,

(5.26) -
where 0, = 3% (30 @08, 0i-1vici fx(2)ad (2).

First, (3.6) yields Var{yv/nh, Qn) — O’%, namely, n~*E(3,)? tends to crf?.
But this fact together with established results in Step 2 lead to

1 .
(5.37) ;E(Eb,(n))z — O’%, as n — 00.

Then, since

1 | Fn =] g nlkn 1
(5.38) Z (S 0)? = — E@®,+ =3 Y F(®:8)),
i=0 i=0 =0
i>j
the limit (5.36) follows from (5.37) and (5.38) once we have shown that the second
summand in (5.38) tends to zero as n — oc. For this, by using the arguments
employed belore for bounding N, we find

kn—l oy, — o

1 —
n Z Z thwl Z[a(t}]l Y60, as n— oo
u u e t=38,
= 2>;

Step 5. Let M be a fixed truncation point and let us denote
(5.39) Yy = ViI{|Y:] < M}

We have that ¥, = Y; p + ¥ ear, with Yo pr = Y2I{|Y3| > M}. By replacing
Y, by Yi ar we can write

mar{z) = E(Y,m /Xy = 2),
U:}Z/ mlx) = E((Yenm ~ mar (X)) 2/Xf. =),
Eintimy = VG ny(Xe ~ I)(lt M mu (X)),

V nhy, Qn M = \/—EM (n} — % ; gt,M.(n):
Q'n, M — Qn‘? Qﬂ.,M'

Then, reasoning as in the proot of 'heorem 2, we can obtain

n—os

P P
lim Var (MQ'”,‘M) - U%,M (o) = Z Z a.‘.ajgi-ﬁ-j—1”:2-7-ij(1')5$’,:‘\/1(:r)
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Step 6. The asymptotic normality of @, ar is established.

From Steps 1 to 4, it suffices to shown that ®,, »; (the big blocks with the
truneated variables £, a7 0.3} satisfy the standard Lindeberg Feller condition for
asyrptotic normality under independence. Here, this condition takes the form

k-1
1 .
(5.40) A — > E{®%y I {I®0.m] = coguvn}) — 0,
on £

as n o0, Ye>0, = k.

By Assumption (A.1), we have

by,
1/2—
|(I)j,b,M| < Z ‘£Ej+‘i,M,(ﬂ,)l < Cbnhn/ p,
=1
hence
—1/2 bn 1
max  |n P om| <C Ay + 0, as 1 — oo.

0 <hn—1 \ /nhﬁp_l Tn

Therefore, {|®;5 m| > €0 pr/n} is an empty sct when n is large enough, and
therefore (5.40) holds and

(541) \/ nhn (gn,M _('i_') N(D» U%,.M’}'

is concluded.
Step 7. It is proved that
2
{5.42) wo.(ty — w7 (1),  as n — oo,

a
where g, (t) and LpZ,Q (t) denote the characteristic functions of /nh,, @, and of a
random variable N{0, Ja(i)) respectively.
In order to show (5.42}, we proceed as follows. By using the same notation
that in {5.42), we have

0'2 0'2 \’."2
pau®) = 0 ()] < leauutlivg (B =11+ 95 (1) — g3 (1)
2
+ I(an,A{ (1) — (P;Q M (0= 51+ Sy + Sa.
Next, the convergence to zero of each 5;,7i = 1,2, 3, as n — o¢ is shown.
Plirst, in the same way that in proof of Theorem 2, it can be proved thatl
p —
nl_iu{{}(\ Var(v/nhy, Q,, pr) = Z aiaztiv; v fx(x)Var(Y, sm/ X = 2).
T i,§=0

Nevertheless, if M T oo then Var{(Y, p/X; = z) tends to zero by the domi-
nated convergence theorem. Therefore 57 converges to zero.
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The dominated convergence theorem again and assurnption (A.9) lead to the
convergence to zero of the second toerm (S2) as M T oc.

Finally, the convergence to zoro of Sy follows from (5.41} and the Levy theo-
rem, for every M > 0.

Thus, (5.42) has been stated and then the Cramer theorem allow us to conclude
thal iy, @, converges in distribution to N (0, a’%) and the proof of Theorem 3
is completed. O
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