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Abstract. The circalar normal distribution, ¢'N{g, k), plays a role for an-
gular data comparable to that of a normal distribution for linear data. We
establish that for the curved and for the regular exponential family situations
arising when & is known, and unknown respectively, the MLE 72 of the mean
direction g is the best equivariant estimator. These results are generalized for
the MLE E of the mean dircciion vector & = (ui,..., )" o the simultaneous
estimation problem with independent CN{ui, £), i = 1,...,p, populations. We
further observe that E is admissible both when s is known or unknown. Thus
unlike the normal theory, Stein effect does not hold for the circular normal
case. This result is generalizod for the simultaneous estimation problem with
directional data in g-dimensional hyperspheres following independent Langevin
distributions, L{ft., k). i=1,...,p.

Key words and phrases:  Admissibility of estimators, Bayes estimators, best
equivariant estimator, Langevin distribution, mean direction vector, Stein effect.

1. Introduction and summary

Dircetional data arise in several situations, notably astrophysics, atmospheric
sciences, geology, meteorology, oceanography etc. The von Mises or circular nor-
mal distribution, CN(u, k) with mean direction parameter p,0 < p < 27, and
concentration parameter s, & > 0, plays the role in circular data parallel to that
of the normal distribution in linear data. A natural extension of the C'N distri-
bution to the distribution on a f-dimensional hypersphere leads to the Fisher-von
Mises or the Langevin distribution L{#, ). For £=3, i.c. for spherical data, this
distribution was studied by Fisher and is often termed as the Fisher distribution.
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For further discussions see Mardia {1972). Here we study the exact properties of
best equivariance and admissibility of the maximum likelihood estimator {MLE)
of the mean directions and the mean direction vectors in simultaneous estimation
with several independent circular normal and Langevin distributions, all having
the same concentration parameter.

Conventional linear results if and when applied for the analyses of angular data
are to be viewed with caution and often lead to paradoxes. However, we obscrve
that for « known, CN(u, ) reduces to a member of a (1, 2) curved exponential
family (Amari (1985)). Then, exploiting the associated results of Kariya (1989),
we establish that the MLE for p is the Best Equivariant Estimator (BEE) under
a natural (angular) loss. This result is extended (Result 1) to the case when « is
unknown. These results are finally generalized to establish (Theorem 1) the Best
Equivariant naturc of the MLE £ of g = (ps,..., ) in simultaneous estimation
with several independent CN (y,h k)t = 1,...,ppopulations for both x known and
unknown cases. Next, we consider the property of exact admissibility. We note,
either directly from Bagchi and Guttman (1988), Zhong (1992) or as a special
case of the resulis in Watson (1986), that as in the normal case, the MLE for p in
CN (u, &) for a single population is admissible. This follows, for example, from the
Bayes character of the MLE for an uniform prior. Admissibility of the simultaneous
MLE [ for g = (p1,..., pp)" in p independent CN(;, ),i = 1,...,p, x known or
unknown, then becomes a natural question. It is known that as & — oo,

VE( ~ @) 5 N(0,1) for & ~ CN{y,x). So, e.g., by Brown’s results one would
then expect the simultancous MLE to be inadmissible for p > 3, at least for large
x. However, we show that the MLE is in fact admissible for all p, all x and all
sample sizes. This is a marked departure from the usual normal theory, ie., we
establish here that unlike in the normal theory, the Stein effect does not hold
here. ‘This result (Corollary 2.1} follows from the general theorem (Theorem 2)
where we establish the admissibility of the MLE of the mean direction vectors in
simultaneous estimation with p independent Langevin distributions, L(}ii, k), 1=
1,...,p

For the sake of completeness it may be worthwhile to make a few observa-
tions for the case when x is the paramcter of interest. Note that for u known,
say s+ = 0, CN{0, k) is a member of the one parameter regular exponential family
(REF) with  as its canonical parameter. Then taking the convex support of the
uniform measure on the perimeter of the unit circle as compact (say & < K < oc)
yields the canonical statistic, cos#, as an admissible estimator for £. But this is
not at all a sensible estimator of s, since 0 < k < co—also sce, e.g., the caution
in Exercise 4.17.4, 136 137 of Brown (1986). Also u& = (0,...,0,1,0,... , 0y
L{u, k) results in a one-dimensional REF with  as its canonical parameter and
hence the preceding comments for the CN case thus hold here too. In general, the
¢-dimensional L{i, ) is a member of the {-dimensional REF and hence standard
results for estimation, e.g., existence and unigqueness of MLE {Jupp and Mardia
{(1979)) etc., hold with respect to its canonical parameters. However for studying
the MLE of its usual parameters g and &, it is necessary to consider its not so con-
venient ({Brown), 76-78) mean value parametrization. Further difficulties for such
study may also be encountered--—see e.g., p. 150 and also Exercise 6 21.3, 204-205
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of Brown. Thus the admissibility for and any possible improvement on the MLE in
simultaneous estimation of p concentration parameters &; of L{}ii, kiht=1,...,p
seem to be interesting problems for future research.

2. Best equivariant property of the simultaneous MLE }z in several independent
CN(IJ’??’ ’i)

Let 8),02,...,8, be independent with 8; ~ CN{u;, k), known. Then the
p.d.f. of 0 = (61,6,...,6,) is given by:

zl—‘

]
(21) fO |, 8) = [27T,(x)] pi Zcow—m}, 0<0,p<

Let Q(l),GN(z) . 9(” be a random sample from f{# | 4, ). Then the joint

density of Q(l), Q(z) 6’(") is given by

f(g(l),g{z),...,g(n) | @, k) = [2nL,(k)] " exp KZZZ(‘.OS(Q,EJ) — L}

g=11i=1

»
= [2n1,(k)]" P exp !TLH Y(cos p:Cy + sin ;Lt-.g];)l( ,
——t )

i=1

where

L1 : 1 :
Ciz—Zcosf)f-J), Si:EZsinﬂgﬂ, 1<i<p.

j=1
The MLE of ¢ is given by [, the solution to:

of S;

(22) COS iy — W’ S'Hl,u,l‘ = == 1<4< .

crraye RS
2.1 Case 1: &k knoun

We consider the problem of estimating g = {p1, 2, .., pip)’ with a natural
loss in the circular context. Let C; = cos#;, and S; = sin#;. Then, consider the
group G acting on Z = [[0_{wz |y — 5l <1} given by

G = {ga, : Xi— A; Xi| A, : 2 x 2 orthogonal; i = 1,2,...,p}
cosT; —S8inTy
—{QT?XV-i”Av:Xm@Ai*( e):

. E[O,QW);1<i§p}.
sin 7 COS T

Let us first consider the case when p = 1, i.c. a single CN population. Suppose
that 6,82, ...,60, be a random sample from CN{(u, ).
Then,

FlO1,6a,. ... 68,) = 2rlo{k)]™" expi{nsC cos g+ nkS sinp}
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where

1 Z(,Obﬁ S ! i ;.

- , = — sin
Pt ' n

Clearly, (C,S) is sufficient for u. Let, 1 = cos g and 52 = sin p. Then, from
Mardia (1972), the joint distribution of (C, S) is giver by

2

(23) (0, 8) = 2r [ (w)]~"n* exp{n(Cmy + Sma)}on (n3(C? + §%),
C.9efylyelrr o<yl <1}

Then the distribution of (C, 5) belongs to the curved exponential family with
0= Q“EG:QJ:w(p,ueT}whereﬁ*):IRQ T=[02r)and ¥ : T — ©
defined by ¥(u) = (cos p, sinp) is clearly a bimeasurable bijection onto ¥(~y) =
O c 6.

Consider the group G acting on Z = {y ¢ IR?,0 < || ¥ || <1} given by
G = {ga: X - AX| A:nxnorthogonal with | A} =1}

_ {gTI‘K***A)S, e (COS’." —smr), OST<27T}.

sin T COsS T
Then, G is a topological group and the group action on 2 is moaaurable (being
connnuous). Further, the joint distribution of (y1, 12} = ¢.-(C, §) is given by

flyr.ye) = K(r,n)expne{y (n cosT — nosinT)

+ ya(mp sinT + pacos ) Hon (02 (¥ +92)),  K{-) being a constant.
So, gP{©) = P(O) with gFy = Py.g~ ! Vg € §ie. P(6©) is invariant under G.
Further, g, = g, (i.e., §a = ga) so that § = G. Also, § acts homeomorphically on
Z by

(©) -+ (5)

Defining g, — 1~ '§,9, we have,

i

N L 4 fcosp
Gr(p) = 7 grp(p) = 'gT( . )
sin
COS picosT —sinpusin T
= ’1[ I # ]:(#Jr'r) mod 27.

COS [{SIN T + SIN QL Cos T

Defining G acting on ¥ by G = {3, (#) = (f+7) mod 27,0 < 7 < 2x}, we have G is
a homeormorphic image of ¢ (and henc,e of G) and the subfamily P(6) = { Py |
n € Y} is G-invariant.

It is clear that the orbit of G is © so that the action of G on © is transitive.
It follows easily then that the action of G on T is transitive.

LEMMA 2.1, R = u(C,8) = (C? + §))V/2 is a maximal invariant statistic
under G.
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Proor. We first show that u(C_', 5’) is G-invariant.
u(g-(C,8)) = l(g-(C,8))(g-(C. NI
= [(C,8) AA(C, 8)'/? = [(C.5)(C, S
»5).
Next, suppose that u (Cl, S1) = u(Cy, S2). Then R} = Cf + 5% = C3+ 8% =

:U

oy
i"}l
| LQI

B2
IfB[ = Rz = U, then é-] = 02 = 51 = 5‘2 = 0 so that go(é[, Sl) = (62,52).
So, now supposc that R) = Ry > (1 Let

c, 5
.

— =12
R, | -5, C] e

Then P, P» are orthogonal matrices with determinant 1 and

Oy

> 2\
P 5‘1)

2/

|
r"-\
Cm Q|

1,50)) = (W(Cs, 82)) (
So,

C s 1 CiCy + 5,8, €18 — 5;C,
( 1) P’PZ( ) PPy [_'1_2—4-?2_1 152 711. z]
5y Sg R1R2 S0, — 18y CCy + 825

N s e 024528 — =015 45.0,
Get 1 such that cost = ————mr—LRl et sInT ———1—“1 o .
Then

() ()
gT ; Sl ' 7 s Sz ) ¥
so that u{C,8) = R is a maximal invariant under G.

LEMMA 2.2.  Assumptions 2.1 and 2.2 of Kariya (1989) hold in our above
set-up with the CN{p, k), £ knoun, model.

Proor. Note that A{n) = [|nil is a maximal invariant parameter under G.
So © in (2.3) may be expressed as © = {# € © | A(6) = 1}. Further, the map
gr — §r = g- is measurable. So, Assumption (2.1} of Kariya is satisfied.

The MLE of p is given by fi(C, 5), where ji(C, S) is the solution to

Pal

C 5

(2.4) cos = m, sin gt = H(@ STk

It may be noted that excluding the set {{0} x [~ 1, 1]} U{[-1,1] x {0}} of
measure zero on 2, [i{C. S) defines a bijection from Z onto [0, 27).

Detine, .
-5
el

Ly Cyl

1
MES) = TE [
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Then,
. cosT — Ssint —Ccost — CsinT
ACH(N) pp—— g : g
CS C 1HT+SCO§T Cceost— SsinTt
(hu((f‘ S\
TATY AT
Define, 7(C, §) = (W{C, 8),u(C,5)). Then = is a continuous map defined from Z
onto G x Y where ¢/ = [0,1] is a measurable space. Let 7(Cy, 81) = 7(Ca, S2).
Then, B _ B B
1 Cy =5 1 [sz —Sz-l
—= = | = =~ = T="=1 | = = and
C1,=)[l LSt Cr | DGz, o2)| o2 G2z |

1(Cy, 51)1 = I{C2, S2) .

Then €y = Cy and 5; = 84, so that « is injective. Next, we show that 7 is
onto. Let a € G x . Then write

T :t\/ 1—z2] =
a =
N
So ’JT(U.:L Tuy/1 —1z2) = a so that 7 is surjective. Writing a as above, define
G XU — Zas: n Ya) = (uz, Tuvl — x?).

Then it follows, imitating the steps for the proof of the injectivity of m, that
71 is well-defined.

We next show that  is continuous.

Let the metric d on Z be the usual one, ie., for £,y € Z, d(z,y) =
(o —91)* + (22— 921" = [z —y ||

Viewing G as a subset of IR* we define the metric in the natural way on G x4
by p, where

pl((a b )un) (@b ), u)) = {ila, ~a, [P+ 1b —b i+ (w —ua)?}P7
={2)le, —a |+ (u — up)® }1/27

. 0 -1
since (¢,,b JeG=0 = [1 0 :lfi.

Fix ¢ > 0. For (€1,5) € Z, by the continuity of 1/y/1+ (S/C)2,
1/\/1 + C/S and (Cz + 52)1/2 38 > 0 with (C] - ) (S] — 52)2 < 8,3
C;/Ri 02/R2)2<€2/8 (SI/RI 82/R2)2<E2/8 and Rl )2<€2/2. SO,

2 1/2 o -
p(ﬂ(él,gl),ﬂ(ég,gz))< (% X4+%) =€ for d((ChSi),(Cg,S;g))(&

Hence, 7 : 2 — G x U is a continuous function. It follows that 71 is also
continuous.

So, there exists a bijective, bimeasurcable map from Z onto G % If such that
if w(2) = (h(2),u(z)), then w(gz) = (gh{z),u{z}), where z = (C,8Y € Zand U is
a measurable space.
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Hence, Assumption (2.2) of Kariya is satisfied. [J

Now, let the loss function be given by
Lia,u) =1—cos(a—p), 0<a,p<2r.

Then, from Theorem 2.1 of Kariya it follows that a best equivariant estimator,
when it exists is,

B(R(C,8),u(C. §)) = h(C, S (e, w(C,5)) = (T, 8) + ui (u(C, 5))
where fi{C, §) is as defined in (2.4) and g} minimizes the conditional expectation,
(2'5) E.u[l - COS(JE + i (u(é’ S)) - ,u) ! u(és SH = Eo{l - COS(ﬁ + Ml) | u(é: S_')],

by the transitivity of &.
To minimize the above w.r.t. gy observe that p] satisfies the equation,

Eofsin( + 43) | u(@. )] = 0.

Thus, sinu Eolcosii | w(C,§)] = 0, since from Mardia (1972), 7 | (C? +
SHY2 L ON(0, £(C? 4+ 8H)Y2), and for 6 ~ CN (0,k), E(sin6) = 0. So,
sin gt A(k{C? + §%)1/2) =0, yielding p] = 0 or 7.

Now, Eolcos{fi + ) | u(C, §)] < 0, while Eg[cos i | u{C, S)] > 0, so that (2.5)
is minimized for p7 = 0.

Consequently, the MLE 7 in (2.4) is the best equivariant estimator.

Further, G being compact, the MLE 7i is minimax in the class D of all es-
timators, (Ferguson (1967)). Further, it is also admissible in the class D of all
estimators for .

2.2 Case 20 k unknown o
It may be noted that the distribution of (C, .S} belongs to a regular exponential
family (REF) with © = {{j, &), u € [0,27),x > 0}. Then, as before, consider the
group ¢ acting on Z = { € IR0 < ||y | <1} given by
G = {ga: X — AX| A:nxnorthogonal with |[A] = 1}

=4 Lo

{gT:{(ﬁA)N(,A-" (COST WSH’T), D<T<2ﬂ}.

sin T COST

Proceeding as before, we obtain the joint distribution of (y1,y2) = g-(C,S) as

f(yy,42) = const. (k,n)expne{y{n cosT —nesinT)
o (msinT + nycos ) Hén(n® (47 + 132))-

So, gP(O) = P(O) with gPy = Py.g~ Vg € G Le. P(©) is invariant under §G. Also,
the induced group action on the parameter space © is given by g, (u, ) = {(p + 7)
mod 27, ). This shows that the induced group of transformations G acting on
the parameter space is not transitive. The same arguments as before provide us
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with u(C,S) = (52 + ?2)1/ 2 as the maximal invariant statistic. Also, it can be
shown, following the arguments similar to the ones for the case k known, that the
MLE of y, there also given by f{C,5S) (in eqn. (2.4)), is equivariant under the
group G. To find the best equivariant estimator under the natural loss, we are
to find p1, as a measurable function of the maximal invariant, 4(C,S) such that
the risk, £, .[1 — cos(Z + p1(u{C,S)) — p) | u(C, S)] is minimized uniformly for
all (g, k) € ©. To minimize the above risk w.r.t. y;, observe that uj satisfies the
equation

Buulsin(@ + ui — p) | u(C,9)] =

Thus, sinu] E, «[sin(f — p) | w(C,5)] = 0, since from Mardia (1972), ji | (62 +
) ., _ .
R RERN C’N(,u.,rc(cz + Sg)lm), and for § ~ CN{y, &), E{sin(f#l — 1)) = 0. Hence,
sm,ulA(m(Ez + §2)1/2) = 0, yielding pf = 0 or 7. Now, E, .[cos{fi — pu + 7) |
u(C,8)] < 0, while E,, ,{[(,05(# w | u(C,8) >0, so that the risk is uniformly
minimized for u} = 0. This leads us to conclude thd,t the MLE is the Best Equiv-
ariant Estimator of the mean direction, under the given natural loss, even when
the concentration parameter is unknown.

Result 1. The MLE i in (2.4) for p in CN{u,x) population, s known or
unknown, is the Best Equivariant, Admissible and Minimax estimator in the class
of all estimators for p.

Let us now cousider the simultaneous estimation problem. Following the same
arguments as for the case p = 1 above, the induced action on the parameter
space is given by gj¢ = {(p; + 7)) mod 27, ¢ = 1,2,...,p}. Further, the action
is transitive with the parameter space as the orbit. It is easy to see that the
MLE for ¢ is given by E and is an equivariant estimator for g. Imitating the
steps in Section 2, we get the constant vector to be a maximal invariant statistic.
Then, the only equnivariant estimators for 4 = (1, p2,. ..  ip) are of the form
88} = (81 + 1) mod 27, (82 + ¢2) mod 27, .., {8, + ¢p) mod 2m)". To find the
best equivariant cstimator under the natural loss function,

L{p,a)= Z cos{p; — a;)

=1

we look for the equivariant estimator having minimun risk. To minimize the risk,
we are to find the values of ¢1,¢s,..., ¢, such that the risk,

P

=F |p- Zcoq(pt — ;)

i=1

P
— Z cos(p; — (H; + ¢;) mod 2x)
i=1

is minimized. This gives us, following steps similar to those used above for p = 1,
that the minimum risk is achieved when ¢; = 0; i = },2,...,p. Thus, combining
cases 1 and 2 as in result 1 above, we get,
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THEOREM 1. The MLE ;Z of Y in the simultaneous estimation problem with
p independent CN (j1;,6),1 = 1,...,p, & known or unknown, is the Best Equivari-
ant Estimator.

Remarks 2.1, Generalization of Theorem 1 above to several independent
L(,u #) populations seems to be non-trivial. For example, even with a single
La,ngpvm population and even with x known, the approach of Kariya seems to fail
when one tries to find the BEE of the mean direction vector. We are able to claim
only that provided a BEE exists, the MLE, being both admissible and equivariant,
is the BEE. However, it has not been possible to confirm or deny the existence of
the BEE

3. Admissibility of the MLE in several independent L(gi,ﬂ)

2.3 Case 1: k knoun
Let ©1) ©2) . 0™ he arandom sample of size n from p independent popu-
tations of I-dimensional Langevin {or von-Mises-Fisher) distributions Lz . k), i =

1,...,p. Then, the random variables are matrix-valued and are from,
P B
F© 1 M,K) =ar P(r)exp {KZQ'(QQW } 11 Hm i1,
i=1 i=1 j=1
@:(Qla-'-agp);M :(E‘»l"”’&-p)’ 0<91_‘J?#EJ<T{J

1,2 =20 =1,2,. ., 0 < Oy iy <27, i=1,2,...,p,
and () is such that

wy (%) = cos Iy

i1
wi(z) =cosz; [ sinam, 2<j<e-1
m=—1
i1
’Ue(i’i} = H SN Ty, O<a<mi=12...,0-2;0<zp. <27
m=1

Then, as before, the likelihood function of M, given the observations is
LM |0 o2 . o)

P p n €1
= a "P(K) |exp {nn Z w'(g)u{ ,u_)} sin f*iggg_l)

i=1

where
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The MLE of M is given by H, the solution to the system of equations
(3.1)

w'(p)a(p)=0 and |u(p)i=1  1<i<p
8;,”, ~p ™ ~

~

Let A have the prior density

p
W(M):KHHSine_jﬂ?:(j—l), O<pyy<m, 1562,
i=1j=2

0 < “i(f—.l) < 277:- 1 S i S P,
where the constant K is such that

(32) f ’:’T(M)d}il e dﬂ-p(ﬂul) =1.

Then, the posterior distribution of M is given by,

(M el el 8k

-1
H (|38, )I)] |exp{rrn (1 )2(0 )] sin’"

J Hi(5-1)

Then, given the observations and &, ¢, ¢
posterior distribution of ¢ as,

n{p | 00,63 00 k)~ L B el G(0)| i=1,....p
A ? prr ] ”U(H )” ~i ) gy I

AV

gre o B are independent with the

Under the loss function,

(3.3) L(M, A) = Ju(a)

. A=(a

i Ms

the posterior Bayes risk for a decision rule A is given by

P
W, e, = (6§ §
r(m, A) = ( Z ué )| e ,0 ,ﬁ), A=(,...8)

~1°

To minimize r(m, A) it is enough to minimize

( § :u o, ’@m;,{)
N?
) _ 1 |
=p- E ’{J(QE)E”[{{(&) Lot b, e

N )
= p - SO ) Aslnrfia(0 ) (6) 1=

< lu( )i

ey
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To obtain the Bayes cstimator, it is enough to obtain the rule minimizing the
above. We thus have the first order conditions

O wisa@)—0 and [u()

35%; ~ oS A

So the Bayes estimator is given by,

u(9))
B B B T I~ P'\/>
B = (éz ,---,fip ) where {z satisfies u (8;) = m
=\
Thus A satisties (3. hence, the MLE of M is the unique Bayes esti-

1
1
mator w.r.t. the prior (3.2).

2.4 Case 2: & unknown .
As before, here also the MLE for M is given by M which satisfies the equations
(3.1). Let

p €1
(34) m(M, k) o [T TT sin™ gy e = ko), 0 <pyy <,
i=1 j=2
lgjgg_zg 0<,Ll.1'(g_1)<27r, 1<i<p.
Then, the posterior density of M and & is given by

M,k | O 1 <i<n)
£—1

x H H sin’ ™7 51y exp{nn}z’(fii) u (i) Yag 't (nel| G(0;)])).I{x = Ko,

i=1 j=2
O<pyy<m, 1<j<€-2, 0<pypy<2ml<iZp

Then, under the loss (3.3), the posterior Bayes risk is given by,

P
) =F [m z'n" 6~ E{'Jr(u )}(—)(1) Q(n)l-l

L U, UL e JJ.
i=1

To minimize r(m, A}, it is enough to minimize,

B{u(e)e,0® .. 0 k)

pe2.

P
u'(0
i=1
»
Z w! (8 VB (p)|OW, . ...00, k).
This is the same as minimizing the above for & known and equal to k. Then,

Lo Bavee sctimastor
he Bayes estimator for M w.r.t. the prior ( 4)

[

< l‘h’\Y\ h‘f
ol A

1 o
L35 HORRo S B

A©W, . 0™y = M, the MLE
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'Thus, we get,

THEOREM 2. For p > 1, & known or unknown, the MLE of M = (it ,.... [t )

') R

in p independent, {-dimensional, £ > 2, Langevin populations, L{}t l,ﬁ:), i
1,...,p, is admissible.

COROLLARY 3.1. For p > 1,k known or unknown, the MLE of n
(fe1y s pip)' in p independent Circular Normal populations, CN{(p, k), i =
1,...,p, is admissible.

fl

Remarks 3.1. (i) The above corollary is a special case of Theorem 2 for £ = 2.
This also follows directly (SenGupta and Maitra (1994)} by taking an uniform prior
on 4.

(u ) In particular, for the case n = 1, we have ¢ is admissible for ;£ where # is
an obscrvation from (2 1). But, from Mardia we th(—‘

Ve ) S NOT)  as ko oo

By Brown’s results or otherwise, one would then expect, intuitively, the MLE
to be inadmissible, at least for large k. However, our result holds for all x, in
particular for large s also; something that runs counter to our intuition. The
authors are thankful to Prof. 5. R. Jammalamadaka (formerly, J. S. Rao) for
drawing their attention to this interesting point.
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