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Abstract. In conventional empirical likelihood, there is exactly one struc-
tural consiraint for every paramcter. In some circumstances, additional con-
straints are imposed to reflect additional and sought-after features of statistical
analysis. Such an augmenied scheme uses the implicit power of empirical like-
lihood to produce very natural adaptive statistical methods, free of arbitrary
tuning parameter choices, and does have good asymptotic properties. The
price to be paid for such good properties is in extra computational difficulty.
To overcome the compulational difficulty, we propose a ‘least-squares’ version
of the empirical likelihood. The method is illustrated by application to the case
ol combined empirical likelihood for the mean and the median in one sample
location inference.

Key words and phrases: Empirical likelihood, least squares empirical likeli-
hood, maximum likelihood estimate, mean, median.

1. Introduction

Empirical likelihood, introduced by Owen (1988, 1990), is a remarkable com-
putation device which enables the development of parameter tests, free of any
distributional assumptions, but with identical first-order asymptotics to those of
classical likelihood ratio tests. Empirical likelihood (EL) is defined by maximizing
o multinomial likelihood subject to various structural constraints. To illustrate,
an empirical likelihood of an unknown mean # allocates notional weight p; to X,
the i-th of n obsecrvations, then defines the empirical likelihood function of € as

(1.1) L(#) = max Hp.,,
i=1
subjoct to . p; = 1, p; 2 0, and the structural constraint
k3
(1.2) > p{Xi—8)=0.
i=1
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The structural constraint reflects the fact that 6 is a mean. Different types
of parameters yield different structural constraints; for instance, if  had been a
population median, then {1.2) would be replaced by

(13) > pisgn(X; - 6) -

where sgn() is the sign function.

It has been shown in a wide range of situations that an inference based on
empirical likelihood has the same order of accuracy as the bootstrap. At the same
time it has some good propertics not shared by the bootstrap, such as respecting
the range of parameters and determining the shape and orientation of a confi-
dence region naturally from the data; see Hall and La Scala (1990) and Chen
(1993, 1994). Qin and Lawless (1994) studied constructing empirical likelihood
for parameters determined by estimation equations. They showed that when the
number of structural constraints exceeds the number of parameters the maximum
empirical likelihood estimate is no longer equivalent to the bootstrap estitate. The
log empirical likelihood ratio is still asymptotically chi-square distributed which
enables construction of confidence regions and tests for the paramcters. Recently,
Wood ef ol (1996) study the computation of empirical likelihood in situations
where the constraints are not linear, like U-statistics, and the computation is dif-
ficult. They propose a method of sequential linearization of the constraints in the
computation of the empirical likelihood.

The character of empirical likelihood inference is determined by the con-
straints, and it is of great interest to see how empirical likelihood behaves when
additional structural constraints are imposed. When the number of structural con-
straints exceeds the number of parameters, it is natural to hope that the resulting
empirical likelihood might have ‘the best of all worlds’, in adapting naturally to
whichever of the structural constraints that puts the most pressure on the data.
For instance, in estimating a location parameter 8, the structural constraint (1.2)
for the mean might be combined with (1.3) for the median to provide robust-
ness. If the data were ‘well-behaved’, an estimate like the sample mean might

result. but if severe outliers were present, something claser to the sample median

iy, Sl OLILIG Pl BLIICT 15 CIOSCr ISR RESFLVA §4 Lo{ 8 B R A

could occur. This combined empirical 11k911h(md can be viewed as a way of using
the implicit power of empirical likelihood to produce natural adaptive statistical
methods, entirely free of subjective choices such as tuning parameters.

The present paper studies the use of combined empirical likelihood as a way
of constructing natural adaptive statistical inference. It turns out that the asymp-
totic properties of combined empirical likelihood are very good, but that there is
a price to be paid for such good properties, namely, in extra computational dif-
ficulties. Tt becomes necessary to construct instead a smoothed version, making
combined empirical likelihood schemes become workable practical propositions.

Our proposal for smoothing centers around the observation that in regu-

. . . 1. . - S —p— N
lar empirical likelihood, maximizing > log{np;) can be replaced by maximizing

- . \ o
L (np;), where g is any concave function, smooth near np; = 1. The reason is
that the constraint 3 p; = 1 enables an arbitrary linear term in np; to be ex-

tracted from g, until ¢ < 0 with maximum 0 at np; = 1, whence concavity makes
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this g locally equivalent to log(np;} —np; + 1, with consequent identical asyinptotic
behaviour. The simplest version of g is the least-squares choice g{(np) = (np— 1)2.
This ‘least-squares’ version of empirical likelihood is actually the Euclidean like-
lihood discussed briefly in Owen (1991). However, to emphasize its link with
ermpirical likelihood, we call it least-squares empirical likelihood.

The rest of the paper is organised as follows. In Section 2 we introduce the
least-squares empirical likelihood and compare it with the empirical likelihood in
a general setting. Sections 3 and 4 contain results from applying least-squares
empirical likelihood to combined mean and median location parameter inference.
Results from a simulation study are presented in Section 5. Section 6 is a short
discussion section, and proofs are deferred to the Appoendices.

2. Least-squares empirical likelihood

In this section we introduce the least-squares empirical likelihood in a general
setting and study its asymptotic behaviour.

Let Z1(8), Z>(8), ..., Z,{8) be k dimensional independent but not necessarily
identically distributed random vectors, relying on an unknown paramecter 0 of
dimension p. We assume 8 has a true value 6y and E{Z;(fs)} = 0. In this paper,
we concentrate on situations when &, the number of structural constraints, is larger
than p, the dimension of the parameter 8. The components of the {Z;(8)} provide
the structural components for the constraints in empirical likelihood.

The log emnpirical likelihood ratio for 8 is

¢(f) = min [72 > log(npi)]

where p; satisfy

n

(21) Zp.i =1 and ZptZ,(H) =10
i=1

=1
Using Lagrange multipliers, it ean be shown that the optimal p; are
pi =n {1+ AT Z(0)) 1,

where A & R* satisfies

Z;{8
(2.2) > H—/\jguzl@ = 0.

Thus
00y =2 log{l + AT Z(6)}.

The computation of £{f) involves either solving A as a root of equation {2.2)
by Newton’s method (Hall and La Scala (1990)) or minimizing a dual function

FA) = - Slog{l + AT Zi{6)} within a compact set D = {A | 14+ AT Z;(0) = 0}
(Owen (1990}). However, when & > p, the number of structural constraints exceeds
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the number of parameters, the competition among the constraints may cause the
empirical likelihood not to exist at some 6 values, and make the computation of
empirical likelihood impossible at those parameter values.

In order to make the idea of the combined empirical likelihood computation-
ally possible, we consider the least-squares empirical likelihood, which is defined
as

(2.3) Is1(0) = min > _(np, — 1)”

where p; are subject to {2.1). It is easy to show that /s/(f) is just the dominant

term in the Taylor expansion of £(8) at p; = 1/n. Because Isl{8) = n*Q(f) —n
where Q(#) = min}_ p? subject to (2.1}, we shall find (2(8} directly.
Using Lagrange multipliers o = (av, .. -, ap)T, choose p; to minimize

ZPE + g ZP?: +at Z'piZi(H)_
1 i i

This is quadratic in {p; }, minimized by
1
(2.4) pi= =54+ > a;Zi(8)
3

Let of = (g, a1,...,on), VT = (Vi,..., Vi) where V; = 7, Z;;(8), and R =
(R, Ykxi where Ry = 3, Z;5(0)Z;5 (). From (2.4) the constraints in (2.1) yield

.
(2.5) 10 - O)T—%(g ‘%)a

Define e; = {1,0,...,0)" and

n V7T
(v %)
then {2.5) can be expressed in matrix form as €4 = f%Ba. This and {2.4) imply

that the optimal p; are
pi= (1, Z50)B ey =n 40 WV — Zi(0)Y HT'V

where H = BR—-n—*VVT, Like the empirical likelihood the least-squares empirical
likelihood also assigns unequal weights p,. However, the least-squares weights can
be negative, for instance when the location parameter # is outside the convex hull
of the data. However, as pointed out by Owen {1991}, this can be advantageous
for allowing a small sample based confidence interval to be extended outside the
convex hull of the data.

Some simple algebra reveals that

1
Q) = ZofTBo: =T B 'y = (B~
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Therefore,
(2.6) Isl{#) = VIH V.

A refercc has pointed out that (2.6) is equivalent to a generalized method of
moment estimator considered in Hansen (1982).

In more conventional adaptive schemes, Z,;(#) could be the derivative with
respective to #; of some convex function ®(r;) of the i-th residual, in some lin-
car or other model. Iere, because k > p, there are additional components
in each Z; and the particular function € could also depend on j. The null
means of {Z;} are zero. The natural test statistic is no'V
covariance matrix is n~2H. Therefore, an asymptotically Xi test statistic is
(n= V)T (n 2H) (n~'V) = VT H!V, which is the same form of least-squares
empirical likelihood given in {2.6). But, the least-squares empirical likelihood can
avoid tuning parameter choice or nuisance parameter cstimation by the optimiza-
tion procedure in (2.3). Another advantage of combined empirical likelihood is
through the resulling internal studentization. In contrast, the sample covariance
matrix H has to be used in conventional inference. This could be a problem when
the sample variance estimates are erratic.

Next we compare [sl{#) and €(8) for 6 within an n~ /% neighbourhood of
8y. According to the expansions (A.1) and (A.2) devcloped in Appendix Al we
sec that both £(6) and Isl(0) have the same first, order term. The second order
term and one of the third order terms of [sl(#) also appear in the expansion for
£(0). Therefore, [s1(#) approximates £{f) at least to the first order for # within an
n~1/2_peighbourhood of 8.

It is clear from (A.1) and (A.2) that at ¢ = 6, both £(8) and [sl(8) have a

ot

and Tt N——
, and its estimated

limiting chi-square distribution under some mild conditions, for instance the ones
given in Chen {1994, p. 284). These allow us to construct confidence intervals for 8
by looking at chi-square tables. Similar calculations to those of Chen {1993) reveal
that the third order cumulant of the sign root of Isl(6g) is not of an order smaller
than n~!. This implies that the least-squares empirical likelihood based confidence
intervals are not Bartlett-correctable. However, the coverage accuracy can be
improved by bootstrap calibration. A description of the bootstrap calibrations of
empirical likelihood is available in Hall and Owen {1993) and Chen and Hall (1993},

and can be directly applied for calibrating least-squares empirical likelihood.
3. Combining mean and median

We now concentrate on inference for a location parameter 8 defined by (1.2)
and (1.3). Suppose that X;,..., X, isa random sample from a distribution which
is symmetric about . Then, inference on # can be made by treating  both
as the population mean and the population median. In a related work, Jing
(1995) studied empirical likelihood inference for the mean by assuming a symmetric

11
distribution, but without the median constraint.
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3.1 Maximum likelihood estimnates
The log empirical likelihood and least-squares empirical likelihood ratios for
g are

Tt

(3.1} () = min -2 log(np;}
Lp=l
(3.2) Ist{8) = mln Z np; — 1)

subject to the mean constraint (1.2} and the median constraint (1.3).

e ta diceantinnity of the gion fiimetinn hath 208Y and Tl srimr ot aaeh
LUE L0 GISCONIUIIUILY O LNe Bign nunciion, OOLl €17 ) allG 56V JUulllp at eacit

data point X; and arc contimious between two successive data points (X, X4}
for = 1,...,n — 1, assuming the data have been ranked in ascending order. The
maximum empirical likelihood estimate or the maximum least-squares empirical
likelihood estimate is either at a stationary point inside (X;, X;41) or at a data
point X; for some 3.

Define X; = j 7! ZLI X; and X = (n—j)! Z;L:jﬂ X, as the lower j
and the upper-(n — j) sample means respectively, and lct
. 1. - _ -
Bj:f(Xj +Xn*"’.) if 95,'6 (X;,',Xj+]).

2

The following theorem, whose pr()o_f is deferred to the Appendix

THEOREM 1. [sl(f) and €(8} have the same stationary points, at some 6;.

A good gauge for the behaviour of the two likelihood curves is §; = 1(X, +
X#=i). If 6 falls outside (X;, X;,1), both £(6) and Isl{f) are monotone in
(X;,X;41). If 8; < X,;(> Xj), both are monotonically increasing (decreasing).
Therefore, the two likelihood functions increase or decrcase at the same time,
which indicates that the least-squares empirical likelihood basically captures most
of information in the empirical likelihood. Note in passing that %(X X" s

anymothing whirh haoo characterictice of hath thae masn and the medi=n
SOHICUIE Wikl 1labs CaalaCierisads UL DO e I8all alide Ll ICAiall.

As there are three possible definitions for sgn(0), there are three values for
both £(#) and Isl(#) at any data point X; for 2 < j < n — 1. They are {£(X]),
E(X?),E(Xj_)} and {ZSZ(X;'),ESE(X;]),lsl(Xj_)} respectively. Neither likelihood
function has finite left limits at X nor right limits at X,,. However, the probahility
that the maximum likelihood estimates are at Xq or X, is zero. So, we need to
consider only X, for j =2,. .., n— 1. We define

HX;) = min{E(XJ.’),E(X;.’),g(X;r)} and
1s1(X;) = min{lsl(X ), Isl(X]), Is1(X )},

Tnfé el and G be the ma

el il Upnisl 20 it

Y imum empirical likelihood and maximum least-
SQUALCS LIILplI‘lLdl likelihood estimates for 6 respectively. Then, each of them is
either a b‘ satisfying X; < éj < Xjy1, or a data point X;, whichever has the
sallest Iikelihood Value.
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{a) EL and LSEL curves {b) Smoothed EL and LSEL curves
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Fig. 1. Empirical likelihood and least-squares empirical likelihood curves for the loca-
tion parameter of the Short’s data set.

3.2 An example

To illustrate our findings in Subsection 4.1, the two likelihood curves are
plotted in (a) of Fig. 1 for a data set of Stigler (1977), which is Short’s 1763
measurements of the parallax of the sun. There are 18 observations ranging from
Xy = 7.99 to X,, = 10.57. In the figure we also plot kernel smoothed empirical
likelihood and its least-squares empirical likelihood curves by smoothing the sgn()
function in the median constraint. The median constraint becomes

X;— 0
()

where G{z) — [ e {(y)dy, K is the Gaussian kernel function, and A is the
smoothing bandwidth chosen by a standard method in kernel smoothing. To
identify the stationary points ,, we plot in (c) §; = 1(X; + X™7) as a step
function of X, and the identity function. Clearly, (;?j are the crossing points of the
two functions. Also a histogram of the data is given in (d).

We observe from (a) and (b} of Fig. 1 that both likelihood curves have similar
shapes but arc not convex at all. When ¢ is in the middle of the data range, the
likelihood curves go up and down representing a tense competition between the
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mean and the median constraints. When # is in the two extreme data ranges,
there arc plateaus associated with the empirical likelihood curves. These plateaus
represent computational difficulties for empirical likelihood as an optimal weight
p; does not exist and an artificial value of 1000 has to be assigned to rescue the
computer program from an infinite number of iterations. Note that the height of
the plateaus is log{1000) = 6.91. We observe that when the empirical likelihood
curves have finite values, both empirical likelihood and least-squares empirical
likelihood curves in Fig. 1{a) increase or decrease at the same time. We also see
that both likehhood curves have the same three stationary points, which corre-
spond to the three crossing points in Fig. 1{c) as predicted by Theorem 1. By
replacing the sign function sgn{) with the Gaussian kernel function, we sce some
of the ups-and-downs in the likelihood curves are removed. However, there are
still plateaus with the kernel smoothed empirical likelihood curve, which means
that kernel smoothing does not solve the computation difficulty.

4. Asymptotic results for LSEL

In this section we show first that the maximum least-squares empirical likeli-
hood estimate for the location parameter 0 is asymptotically normally distributed.
Then we prescnt a result which has implications for least-squares empirical likeli-
hood confidence intervals.

4.1  Asymptotic normality

The asymptotic normality will be derived heuristically, as it is a complicated
exercise to do rigorously. However, a rigorous proof can be pursued alone the lines
outline below. Without loss of generality we take the true parameter value g = 0.
Define

52 =n"1 Z(X’ -X)  p®)y=n""' Z(Xi — X)sgn(X; ~0) and
&;gn((ﬂ) =pn! Z sgn(X; — 6)% — {n—l Z sgn( X, — 9)}2

According to (2.6), b,,1,; maximizes VT H 1V where V = n{X —6,n"1 ) sgn(X,—

8)) and 57
H=n ( :EE) ap(e(}f?)) '

For the simplicity of notation, we write émgs,f as §. It may be shown that
6 = s = O,(n~"/?). For small & write V and H as
V=Vy+ 8V, +6Vs+--- and

(4.1) - ;
H=Hy+6H +0“Hy+ .

Denote X = Z1/yn by 81, n7 1Y sgn(X;) = Zy/y/n by S and f = f(0), the
value of the probability density function of X; at the true center. Note that

2
(Z1.22) = N ((0,0), ((;75’ ﬁf)) in distribution
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as n —» 00, where o? = Var(X,) and 8 = E(|X,]). Checking details carefully gives

g 1
Vo=n'"2(Z.2)",  Vi=-n(l,2/)T and Vi =0,{n'?).

ot 8 P2
wzy 7T o H =0, ), Ha = 0y(),

Use (4.1) and the expansion

(Ho+ Ay ' = H; '+ HOPAHG ' + HYPAHTAHG -

xr - PR ¥/ Al & 2 B 13 . T TR T, ro
We can approximate to VY H 'V in small powers of § and then choose & to
minimize. Assembling the terms which are linear and quadratic in 8, and using
the orders of magnitude given in (4.2), eventually yields

; Vi Hy 'V

misl = m{l + op{1)}.

In turn, from the expressions for Vg, V) and Hy in (4.2),

Zi(1 = 28f) + Zs(20%f - 28

4.3 V20 g =
(4.3) sl (1 _453f + 4d2f2)

Noting that Var(Z,) = o2, Var(Zs) = 1 and Cov(Z,, Z,) = 3 gives the asymptotic
variance for 6,1, a3

2 ﬁ2
L= 287 + 4770 — 5)

(4.4) n Var(émts.!)

As checks, the special cases X ~ N{0,0%) and X ~ Laplacc(s) give in (4.3)

rn.!.si ASJ_ H.l'ld Hmlsl = 82

respectively. This means that in two classical cases where either the mean or the
median is efficient for €, the combined least-squares empirical likelihood estimator
reduces asymptotically to each of those two cases.

It may be shown from (4.4) that the asymptotic variance of leg;,g is less than
V‘Lr(X b and Var(m) respectively. In fact, the asymptotic variance in (4.4) coincides
with that of an arbitrary lincar combination of sample mean and sample median,
with weights chosen to minimize asymptotic variance. Conseqguently, least squares
combined empirical likelihood estimation is at least as efficient as both sample
mean and sample median. This extends a result in Qin and Lawless (1994) which
maintains that the variance of the empirical likelihood estimate cannot decrease
if a constraint is dropped, provided that all the constraints are differentiable with
rospect to 8. Here the median constraint is not differentiable.



T06 BRUCE M. BROWN AND SONG XI CHEN

{a)n=20 {b) n =40
2 2
ao L
= E = @
g %
2 2
FE g -
% S
L L
o o A
o ——— T — T T o e e e SR e M S e
-3.c 2.0 -1.0 9.0 10 20 ao -3.0 -2.0 -1.0 0.0 1.0 20 3.0
{ocation parameter location parameter
(c)n=60 {(d)yn=80
2 2
4 1 —— EL
® =1 . Y
3] 7]
§ - g -
g‘ o g o
LB L=l
o ——— T — T T— T T o —— T
-0 -2.0 -1.0 o0 1.0 20 3.0 -3.0 20 -1.0 a0 10 2.0 30
location parameter location parameter

Fig. 2. EL and LSEL curves for the location parameter for simulated V{0, 1) data sets.

4.2 An issue on confidence intervals

For a regular empirical likelihood where k = p, Hall and La Scala (1990)
showed that if € is a smooth function of means, the empirical likelihood confidence
interval for # (region) is connected without voids. In case of k > p, the Wilky’
theorem was established by Qin and Lawless (1994) for estimating functions de-
rived from an independent and identically distributed sample. We have shown in
Section 2 and Appendix A.1 that Wilks’ theorem holds for more genecral cases.
However, there is no guarantec that the empirical likelihood confidence intervals
(regions) are connected without voids when £ > p. Indeed, we have obscrved in
Fig. 1 that both £(8) and Isl(f) are neither continuous nor convex for the location
parameter.

However, the following theorem implies that in the combined mean and the
median case least-squares empirical likelihood confidence intervals for 6 are asyrmp-
totically connected without voids.

THEOREM 2. Suppose j = [npl + 1 for a fized p € (0,1) where [np] is the
largest integer smaller than np. Then, as n — oo,

(1) }j{%(XJ-l-XT]mJ)EXJ_;_l}—)l ';'f p<l/2,
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(Xj—‘an_j)SXj}_’l if p>1/2  and

o] —

(i) P {

(iil) IsH(X7)/Isl(X]) =14 0p(n™")  and
LX) /IsUX,)) =1+ Op(n ')

The proof is deferred to Appendix A.3. The theorem means that: (a) asymp-
toticalty 1sl(#) is monotonically non-increasing (non-decreasing) within cach
(X X)) if § < n/2 {j > n/2); (b) asymptotically the three least-squares em-
pirical likelihood values at each X; become closer and closer. Therefore, asymp-
totically {si(f) is a continuous convex function, and the least-squares empirical
likelihood confidence intervals are connected without voids.

To illustrate the agymptotic results, in Fig. 2 we plot the empirical likeli-
hood and least-squares empirical likelihood curves based on the standard normal
samples of size n = 20, 40, 60 and 80. We observe that as the sample siz¢ increascs,
both curves become smoother. We also find that both likelihcod curves are very
close to each other around #y = 0. This is reassuring as we have shown in Section 2
that lsl(6) approximates £{#) up to at least the first order when € is within an
n~12 neighbourhood of .

5. Empirical results

We have indicated in Section 1 that the objoctive for the combined empirical
likelihood is to scck ‘the best of all worlds’, hoping that the empirical likelihood
would adapt naturally to whichever of the structural constraints put the most
pressure on the data. For combining the mean and the median, if the data are
‘well-behaved’, either the maximum empirical likelihood or least-squares empirical
likelihood estimates will be close to X, the maximum likelihood estimates under
the single mean constraint, but if severe outliers are present they will be closer to
the sample median h.

To sec how maximmum likelihood estimates behave, we deliberately corrupt
the Short’s data set used in Fig. 1 by increasing the largest data value z,, by 5
each time for 7 times. Table 1 contains the maximum likelihood estimates in and
B i1, the sample mean X and the sample median /.. We see that (i) both 6,; and
é,j_gcg are closer to the sample mean when no corruption is made and ¢, = 10.57;
(ii) as @, is corrupted, both 6.; and 8, are very robust and become closer to the
sample median. It seems that both empirical likelihood and least-squares empirical
likelihood have achieved ‘the best of all worlds’.

We also conducted a simulation study designed to investigate the bias and the
standard crror of the least-squarcs empirical likelihood estimate 5 in compar-
ison with X and 7, where the latter two are the maximum empirical likelthood
estimates under the single mean and the single median constraint respectively.
We genorate random samples from the standard normal distribution N(0, 1) and
a Laplace(1.0) distribution with a density function

Fla) = 5 exp(-[z),
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Table 1. Robustness of #.; and @401 on Short’s 1763 sun data.

rn 1057 15.57 20.57 2557 30.57 35.57 40.37 45.57
Breer 80 880 866 8.66 B8.66 860 860 860
B, 880 880 RS8O0 850 850 850 K50  8.50

X 883 09,10 938 965 993 1021 1049 10.77
i 863 863 863 K63 863 863 863 863

Table 2. Simulated bias and standard error (5.E.} for 8401, X and rh.

(1) standard normal.data

n X étsgt T
bias S.E. bias S.E. bias 5.E.
(.0005 0.3139 —0.0003 0.3311 0.0005 0.3711
annng N9 =0 0012 (3.92365 00000 02RT1

U [FREV, V] (LB i) =uLuul s ULASGO0 VU ULatd

30 0.0008 0.1804 —0.0005 0.1926 —0.0017 0.2216
40 —-0.0017 0.1550 —0.0005 0.1646 —0.0002 0.1910
50 —0.0012 0.1401 -0.0007 0.1510 0.0008 0.1716
60 —0.0001 0.1275 0.0000  0.1359 0.0016 0.157:
70 0.0002 0.1199 0.0008 0.1275 0.0005 0.1482
&) —0.0006 0.1111 —0.0014 0.1195 -0.0008 0.1393
60 -0.0009 ©0.1050 —0.0016 0.1126 —0.0008 0.1297
100 0.0003 0.1020 0.0007 0.1082 0.0006 0.1247
(2) double exponential data
10 0.0089  0.4505 0.0027 0.4631 0.0025 0.3786
20 —0.0013 0.3250 —0.0071L 0.3240 -—0.0030 0.2578
30 —0.0043 0.2583 —0.0067 0.2462 -—0.0042 0.2029
40 —0.0042 0.2229 —0.0055 0.2082 -C.0051 0.1683
50 —0.0027 0.201% -0.0012 0.1802 —0.0024 0.1549
60 —0.0004 0.1853 —0.0031 0.1667 -0.0002 0.1413
70 0.0019  0.1708 0.0009 0.149% 0.0008 0.1298
&0 0.0007 0.1583 0.0008 0.1380 —0.0026 0.1201
90 —0.0009 0.1503 —0.0013 0.1316 -0.0023 0.1147
100 -0.0022 0.1411 -—0.0001 0.1226 -~0.0018 0.1063

using the routines given by Press et al. (1992). The sample sizes considered range
from 10 to 100.

Table 2 contains the simulated bias and standard errors of X, é‘[sej: and m
for data generated from the normal and the Laplace distributions. Each entry in
Table 2 is based on 2000 simulations.

We observe that the bias is negligible when compared with the size of the
standard error for cach of the three estimators. The standard error of X is less
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than that of 75 for the standard normal data, and vice versa for the Laplace
data. These just reflect the well known theory about sample mean and median
estimators. It is interesting to see that the standard error of the maximum least-
squares cmpirical likelihood estimator 8,41 is between those of the X and 7 for
both cases. ‘The standard errors were closer to those of X for the standard normal
data, and were closer to those of the sample median for the Laplace data were
generated. These are not surprising, having be anticipated by the asymptotic
study in Subsection 4.1,

6. Discussions

We introduced the notion of combined empirical likelihood for situations when
the number of structure constraints exceeds the number of parameters, hoping
that the resudting empirical likelihood will have “the best of all worlds” in adapt-
ing naturally to whichever of the structure constrainls that puts the most pressure
on the data. To facilitate the computation of the combined empirical likelihood, a
least-squarcs version of the empirical likelihood is introduced. We demonstrated
in Section 2 that this empirical likelihood has a high level of accuracy in approxi-
mation to full empirical likelihood, in quite general settings. The computation of
least squares empirical likcithood is straightforward.

To illustrate the power of least squares empirical likelihood, a comprehen-
sive study was carried cut in the one sample location problem by combining the
mean and median constraints. The least-squares empirical likelihood curves follow
those of the full empirical likelihood closely. The least-squares empirical likelihood
estimate is asymptotically normally distributed, has an asymptotic variance not
larger than those of sample mean and sample median, and at the same time is more
robust than the sample mean as demonstrated in the analysis of Short’s data.

The least-squares empirical likelihood can be extended to other situations. For
instance in linear regression the constraints on the mean residuals can be combined
with those on the median residuals to make regression inference more robust. Also,
additional constraints can be added to protect any particular parameter against
outliers in the residual crrors or wrong entries in the design matrix.
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Appendix; Expansions and proofs

A1l  FEzpansions for EL and LSEL

We present Taylor expansions for £(6) and {s{(#) in this appendix, which are
used to compare the two likelihood functions in Section 2. To be specific, we
consider # = 8, + n~ V2227 where 7 is a k-dimensional constant vector and
Y =n"1Y Cov{Z,(0u)}, the average covariance matrix of Z;(#y), and is assumed
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to be non-singular. We define W, = £71/27,() with the j-th component Wj;,
& = Y T E(Wy, - W) and
Afde = 1 Z(I/Vt.j1 c Wi, — a,jl...jk}_

From a Taylor expansion given in {3.1) of Chen (1994),

(A1) n YO = (A+n 120V (A+n 20y

: — {A“""Ic + n_1/27'3"(A + nA]/zT)k[Q} + nilTka}
(A4 2 (A+ T 2k
+ g(&jkl + Ajkl + nfl/‘ZTjékl[S] . Q&jkmAIm)
3

A(A+n VP (A4 PR A £ 07 2!
+ (&jkndlmn _ _;_&yklm) (A + n—i/QT)j(A + n*l/27_)k

(A + n_lfzr}l(A + n""l/zfr)m
+ ATAR A+ 0P (A + 07 Pk 4 Oy (n ™),

where §7% is the Kronecker delta. We use here a convention that terms with
repeated indices are to be summed over, and a rule that 77 A%{2] = 77 A% + 7% A4S

a okitan

and the same rule applies for 735%{3].
Using the same method in Chen (1994), it may be shown that [sl(#) admits

the following Taylor expansion:
(A.2) n"Hsl ) = (A+n V20 (A4 n 20y
—{A* V(A4 a2 2] 4o iR
A+ n71/27)<1(A + Tfl/gT)k
A+ V20 (A 4 n )
(A+n PN A p V2
+{At nfl/z'rj(A +n 1 20)N2) 4 n i)
(A + n~1/2%r ) (A + n_”‘"T)’”
x {AF 4 n7V20R (A 4 n 720 2] 4 i lr R
+ ()p(n_5/2).
A2 Proof of Theorem 1

T 1 PRI il o P o 1 7 3 Zorm I3
11 TNe NOLALION O JCCTI0N £, W Nave B — 2, pp— 1, ZniUT) = L
ot and

where
62 =n1 Z(X‘i - X3, p@)=nt Z(Xi — X)sgn(X; — 6) and
2
ag,n{() Z sgn(X, — 6)% — {nfl Z sgn{X; — 9)} .
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According to (2.6),

(A.3) n~\si(8) = (X 8,03 sgn(X; 9)) !
. ()_( —f,n! ngn{Xi - 9))T

As both p(8) and 62, (8) are step functions, we write them as p(j} and Gann ()
for 8 € (X, X;41) respectively. It turns out that

pliy = (1= j/m) X" = jX;/n+(1-2j/m)X  and
asgn(j) =1 (1 - Qj/n)2'

Put ¢; = {6762,,(7) - p(4)°} ™" Then for 8 ¢ (X;, X;j41),
L81(6) — ¢, {(X — 0)%70(G) + (L 2i/n)%% — 2(X — 0)(1 - 27/m)p(i)}

A stationary point in (X, X;41) at which [sl(#) has zero derivative value is
. [
9_? - 7(1“2.?/”)10 J)/qull(j)ZE(Xj+X{L J)7
provided (;j is inside (X, X;4+1).
So to finish the proof of the theorem we only need to show that any station-

ary point of £(8) is equal to %()_( 5+ X"77) for some j. The optimal weights p;
determined by empirical likelihood at # are

(A4) pi=n {1+ A (X - 0) + dasgn(X; - 0},

whore Ay and A; arc the Lagrange multipliers. As £(6) = —23" log(np;),

7_22 ap*— o Yo r2nSp M

So, if # € {X;, X 1) and af(g) =0, A; must be zero and

p=1/(n+X) iFi<j and p=1/(n—A) ifi>j.

Substituting the above p; back to the median constraint (1.3), we have Ay = 2j —n.
Therefore,

po=1/(25) ifi<ji and p=1/2n-27) Hi>j

The mean constraint gives & = 5(X; + X"77).
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A3 Proof of Theorem 2 _ '
We start with proofs for (i) and (ii). As X"™7 = —ﬁ‘;Xj + n%j)_(, then

(A5) X+ Xn—

For a continuous distribution and any 1 < j < n—1
P(X;, < Xj) =1 and P(Xﬂ'ij > Xj+1) =1.

Also for j = [np] + 1, the probabilities of X > X;;; if p < 1/2 and X < Xj if
p > 1/2 approach to 1 as n — oo. Thus, if p < 1/2, using the last expression of

27 ~n

_ _ . 1
P(XJ--I-XH_J = Xj+1+—.Xj+1) — 1 as n — 00.
J
Because j = [np] + 1, QJL” — g”;—l and & — 119 as n — co. So

P()_(j+X”*j22Xj+l)—>1 as n — oo.

So (i} of Theorem 2 is obtained.
Similarly, if p > 1/2 using the middle expression of {A.5), we have

P(Xj+Xn'_j52Xj)—>1 as 1 — o0,

which leads us to (ii) of Theorem 2.
'To prove {iii) of Theorem 2, we define for 1 < j <n

_{ 4 p(7)
i~ (pu) 1= ggme)
oo a; . p(7) (X; — X)
PTG X X)) 1= = (25— 1)/n)2~1/n }"
Then from {A.3),
IsUX) =n(X — X;,1 =207 + )/m)E71 (X ~ X;,1 - 2( + 1)/n)",
l.sl(XQ) =n(X ~X;,1 —(2j - 1)/n)% fl(X —X;,1— (25 - 1)/n)"  and
Isl(X)) = n(X — X;, 1= 25 /n)S, HX — X;,1 - 25/n)T,
where [s/(X;") is defined for j = 2,...,n, lsl(X;)) forj=1,...,nand lsE(X;“) for

7=1...,n—1
We define furthermore for j =1,...,n

] X; —X

. ] ;
L= ka - X (4j+2)/n—2) and

- 0 X, -X
POAX, -X —1-(2n—45+1)/n /"
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As p(j = 1) = p{j) + 271_1(Xj — X'), we have ;1 = X; + 2n~'T; and ¥jp =
Ej + n_lI‘jD, Thus

1_2 o 18T+ 0p(n7?) and
o = FnTiEy lr‘joz:;] +Op(n™?).

i—

Substituting the above expressions into [s{{X}), we have

sI(X) = Lsl(X]) +2(X — X;,1 — 2j/n)z;1rj2;1()2 —X;, 1 =25/n)7
+ (0, -7 HE ~ X;,1 - (25 +2)/n)T + 0710, -2)2;1(0,-2)T
Op(n ).

Let § = [np] + 1 for some p € {0,1), &, be the p-th population quantile and

o = /OO xf(x)dx/ OOf(m)dsnr;.

3" &

It may be shown that as n — oo, 1 —2j/n — 1 —2p,
X — X, -+ 8 — &,  in probability,
and X;, 3,1 and ¥,y all converge in probability to

( Var(X) 2(1 — p)(AP — 8))
201 —p)(or -6) 1-(1-2p* )~

IsUX)/IsUX) = 1+ 0p(n"),

Similarly, we can show that

ISUXO /sl (X ) =1+ Op(n™"),
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