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Abstract. A number of authors have been concerned with constructing large
deviation approximations to densities and probabilities associated with mini-
mum contrast estimators (equivalently, M-estimators) using a tilting approach
due to Field. These developments are an interesting and important extension
of saddlepoint-type methodology. However, in the case of a multivariate pa-
rameter, the theoretical picture has remained incomplete in certain respects, as
explained below. In this paper we present results which provide rigorous justi-
fication of the tilting argument, using conditions which it is feasible to check.
These results include a new formulation and proof of Skovgaard’s theorem for
the intensity of minimum contrast estimators, but under conditions which are
typically straigtforward to check in practice. Our most detailed application is
to multivariate location-scatter models.

Key words and phrases:  Elliptical distribution, exponentially small, intensity,
location-scatter model, M-estimator.

1. Introduction

nd let Y denote a vector of observations.
Given an objective function (Y, ), a minimum contrast estimator of 8 is a 3
which minimises (Y, 3) over g for given Y. In most situations, v will be such

that ﬁ satisfies
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Let 4 be a p-dimensional parameter
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i.e. the minimum of v(Y, 3} will be a stationary minimum.

In this paper, we shall focus on the case in which the data, Y, consists of
a sample of TID random vectors Xy,...,X,. and restrict attention to contrast
functions of the form

(12) V(Y. 8) = =D _h{X.,B),
=1
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where h is a given function. [Note: the minus sign is introduced in (1.2) because
later on we shall maximise —v rather than minimise ~.|

Our purpose is to present some results concerning the large deviation proper-
ties of minimum contrast estimators. Two particular problems will concern us:

(a) A proof, under suitable conditions, that the probability I( 13— Bo| > ) is
exponentially small for any v > 0 (in a sense which is made precise in Definition
2.1 below). In the above, 8y is the “true” value of &, defined as the limiting value
of 3, this limit being assumed to exist in probability; and |.| denotes the usual
Euclidean norm on R”.

(b) A proof of Skovgaard’s (1990) existence and representation theorem for
the intensity of local minima of the contrast function, but under conditions which
are far easicr to check in practice than Skovgaard’s.

Problems (a) and (b) are both of intrinsic interest. However, we have addi-
tional motivation for considering them: they are the key results which are required
for establishing the large deviation properties of Field’s (1982} tilting argument
for approximating the distribution of A. See also Daniels (1983) for related de-
velopments. For further details and references concerning the tilting argument,
sce Field and Ronchetti (1990) and Jensen (1995). We note that rigorous proofs
of the large deviation properties of the tilting approach are lacking when 5 is
multi-dimensional and (1.1) has multiple solutions; see Jensen ((1995), p. 114) for
further discussion of this point.

There is, of course, a substantial literature on problem (a) in the case of maxi-
mnm likelihood estimators in exponential families, starting with Cramér’s classical
large deviation theorem (sce e.g. Varadhan (1984) for an account of the latter). We
also mention Bahadur’s (1961) large deviation result for the maximum likelihood
estimator of a scalar parameter which lies in a finite interval. In this paper we
prove corresponding results for multivariate minimuimn contrast estlmators ranging
in an unbounded parameter space.

As an alternative to deriving the large deviation results given here, it may be

possible to use the general theorem of Sieders and Dzhaparidze {1987), which is
based on earlier work of Ibragimov and Has minskii (1981). However, some of the
onditions assumed by Sieders and Dzhaparidze are not very explicit and appcar
to be rather difficult to check.
In constructing the tilted approximation to the distribution of 3, we make use
of the intensity of local minima, rather than the density of a particular solution
of (1.1). The first rigorous result on the existence of the intensity was proved by
Skovgaard (1990). Unfortunately, one of his conditions {which he refers to as (C2))
is virtually impossible to check in practice. In this paper, we prove Skovgaard’s
(1990) theorcm under conditions which are much easicr to check.

On a first impression, it may appear strange that the intensity (as opposed to
the density) plays such a prominant role. Two points are worth noting: (i) it 1s
the intensity {rather than the den‘%l'ry) which appears na‘rurdlly in Field’s {1982}
tﬂting approacn, (11) due to \d,), the 1111.(,11:31@ puwnicb a ;;,uuu a};p”"}‘”lnau(}ﬂ to
the distribution of a suitable solution of (1.1) in a sense which we will make more
precise later. We also note that it appears to be extremely difficult to prove that
the density of 3 exists; the example given by Jensen (1995, p. 114) indicates the

o
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subtlety of the existence problem. The principal source of the difficulty is that (1.1)
may have multiple solutions, which rules out a direct application of the implicit
function theorem. Ewen in the case of maximum likelihood estimators in curved
exponential families, the problem is non-trivial; see Pazman (1986). Also, even
if we could prove the existence of the density of [;, we would expect it to be too
complicated for practical use.

As already indicated, if (1.1) has multiple solutions, as it will in many ap-
plications we have in mind, then the technical difficultics are greatly increased.
One point is worth emphasising: we should be clear about which solution to (1.1)
we wish to use as our estimator. In Clarke’s (1991) terminology, we need to de-
cide which selection functional to use. In this paper, we present theorems for two
types of selection functional: (i} the solution to (1.1} which globally minimises
~(Y,.) {Theorem 2.1); and (ii) the solution to {1.1) which is closest to a given
(“quick-and-dirty”) preliminary estimator (Theorem 2.3). In approach (ii), which
is based on an idea duc to Kester and Kallenberg (1986), the important point is
that the appropriate solution of (1.1) will inherit the large deviation properties of
the preliminary estimator,

The layout of the paper iz as follows. In Section 2, we present some large de-
viation theorems relating to (a}, with proofs given in Section 3. Section 3 contains
some auxillary results which may be of independent intcrest. In Section 4, we to-
cus on the case in which A in {1.2) is the log-likelihood ratio for an cHiptical model
and prove two intermediate results which enable us to appiy the general theorems
in Section 2. In Section 5 we prove Skovgaard’s theorem under an alternative (and
simpler) set of conditions, and in Section 6 we give a brief summary of the tilting
argument.

2. Main results

Before stating our main results in Subsection 2.3, we introduce the basic frame-
work and notation in Subsection 2.1, and state some assumptions in Subsection 2.2.

2.1 Framework and notation

In this paper we shall focus exclusively on the case in which the observa-
tions consist of a set of independent and identically distributed (IID} random
vectors X;,...,X,, where the X; lie in X, a subset of finite-dimensional Eu-
clidean space. It is assumed that we are intercsted in a p-dimensional param-
eter 3 = (8, ... ,ﬁp)T € RP. Consider a function A(z,d). We shall consider
minimum contrast estimators of 3 defined by choosing 3 to minimise —h(3) =
—n YT R(X;, 8) or, equivalently, to maximise A(3). In this paper it will be
convenient to work with the latter tormulation to facihitate discussion of the max-
imum likelihood estimators.

For u € R?, viewed as a column vector, we define the norm ju| = (uTu)!/2,
where u? denotes the transpose to u. We shall denote by Be(a) the open ball
{u:|u—a] <&} C RY. The closurc of a set A C RY will be denoted cl(A).

A bar will always indicate a sample mean, as in A(3) defined above, or e.g.
Qr =n""3" QL(X,), where the function Qp(z) is referred to in Assumption
(A.5) below.
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Probabilities and expectations will always be caleulated with respect to the

true underlying distribution of the X;’s. It will be assumed that E{h{X;,3)} has
a unique global maximum, fy, which will be referred to as the true 3. We define

H(B) =n""Y h{Xi,8) = h(X., Bo).
with expected value

eo(0) = E{H(8)}

the p x 1 column vector

. oh(z, )
Wz 8) = —5 5
and the p x p matrix of second derivatives
*h(z, 3)
da(z,3) = W

The derivatives d, (z, 3) and dy(x, 3) are assumed to exist for all z and (3, except
possibly on a null z-set which does not depend on 3. Note that H(8) = en{fy) =
J. We also define, for a set 2 C RP to be specified later,

(2.1} Yas =Ys6(X)= sup h{X,51)—h{X, Bo),
BLEBs (BYNQ
(2.2) es(B) = E(Ya,),
Mg s(0) = E[exp{0Ys 5}, and  Kg5(8) = log Mss(0).

In {2.1), the distribution of X is the same as the common distribution of the
X,. Detailed assumptions concerning these guantities will be given in the next
subsection.

The set 2 € RP will be open to choice. It will not necessarily consist of all
possible values of 3. Further clarification concerning appropriate choice of 2 in a
particular setting will be given in Section 4.

2.2 Assumptions
(Al) At € Q, E{di(X,8)} = 0and i = —E{ds(X, 3)} is positive definite.
(A2) There exists an £ > 0 and a function R{z) such that

Hda(a, 3) - dalx, Bo)ljel < B{x)[B— B!, 1<4,k<p,

for all 2 € X, and all 8 € Be(5).

(A3) The moment gencrating functions of d; (X, 3y), d2(X, o) and R(z) all
exist in a neighbourkiood of the origin.

(A4) The unique global supremum of eq(3) over 8 € Q1 is eg(Fo} = 0. In other
words, for any € > 0, supg,a_g,|». €0(J} < 0.

fAS) F‘nr any eompact set f e P]'(O)r th ey (;"X]_‘-,f} f‘znr_:tjon Q

) AL iy (R ERES PR Ll =

[h{x, 81} ~ hlz, B2)t < Qrlz} |51 — B2

. (x) such that
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for all z € X, and all 8,8, € L. Morcover, there exists a 8y > 0 such that
Eexp{0,Q.(X)} < occ, and for cach 3 € , there exists a 3 > 0 such that
Eexplfs{h(X, 5) fh(X o)} < 0.

(A6) Let & > 0. For any 0 < & < &y, there exist constants fy > 0, C' > 0 and
& > 0 such that

Y

| &
Ga) < = ——
)= T e
for all 3 € £}; and also, for any 0 < b < do,

ﬂ/fﬁ’é(

limsup eg(8) — —oc.
B 3i—oo

2.3  Main results

Our main results are summarised in three theorems. Proofs are given in sub-
section 3.5. First, we give a definition.

DerINITION 2.1, Let {A,},>1 be a sequence of events in 4 probability space
with probability measure P[]. We shall say that the sequence {A,} has expo-
nentially small probability or, more briefly, the evenf A, has ESP, if there cxist
constants & > 0 and p > 0 such that

PlA,] < aexp{—pn) forall n>1.

TUEOREM 2.1.  Suppose that Assumptions (Al) (A6} are satisfied, and write
Bq for the global mazimiser of H(3) over 3 € Q. Then, for any v > 0,

the event {IB o — Bol >y or Ao is not well-defined}  has ESP

Remark 2.1. In saying that 6’52 is well-defined, we mean that it exists and is
unique, in the sense that for some 3o € 0, H(fa) > H(3) for all 3 € Q such that
3+ Be. Otherwise, we say that Ba is not well-defined.

Remark 2.2, Note that 8q is only assumed to be well- defined with high prob-
ability. In continuous models, one would expect that, ty pically, g, would be well-
defined with probability one when n is sufficiently large. However, no general
results of this kind seem to be known, but see Pazman (1986) for such a result in

curved exponential models.

With certain choices of the contrast function h, the equation di (3} = 0 may
have a unique solution 8y € RP with probability one. In such cases, w e have the
following simplified form of Theorem 2.1,

THEOREM 2.2.  Suppose that Assumptions (A1)-(A3)} hold. If, with proba-
hility one, the equation di(3) has a unique solution By € RY then, for any given
v > 6, R

{130 — Bol >~} has ESP

in the sense of Definition 2.1.
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Finally, we consider a situation in which we have a preliminary estimator B_p
which, for any fixed v > 0, is such that

(2.3) {|3p — Bo| >~ or Bp is not well-defined}  has ESP
in the sense of Definition 2.1,

THEOREM 2.3.  Suppose that Assumptions (A1)- (A3) hold, and that we have
a pmhmmmu estimator [J‘p which satisfles {2.3). Define ,&5 to be the 6’ satisfying
d(3) = 0 for which |8 — Bp| is minimised. Then, for any v > 0,

{iBs — Bl >~ or Bs is not well-defined}  has ESP.
3. Proofs of theorems

We begin by recalling an elementary fact which will be used repeatedly in what
follows. Suppose that Z, 2, ..., 4, are independent and identically distributed
random variables such that E(e%4) < oc for some 0 > 0. Write Z =n"* .1 | Z,.
Then for any z > E(Z), there exist o > 0 and p > 0 such that

(3.1) P(Z > z) < aexp(—pn)
for all n.
3.1 Some infermediate results

The proofs of Theorems 2.1 2.3 depend on three results which may be of
independent interest.

ProrosiTION 3.1, Suppose that Assumptions (Al)—(A3) hold. Then there
exists a1 > 0 such that for all 0 < e < ), there exist positive constants o and p
with

Plthere exists o unique 3 e B(By) satisfying di(3) = 0] > 1 — avexp(—pn).

Moreover, if ¢ minimises |8 — Bo| over solutions, B3, of D\ (3} = 0, then for each
fized v > 0,
{18 — Bol >~ or B is not well-defined}  has ESP.
Prorosition 3.2.  Suppose that Assumptions (Al)—(A5) hold. Let L C 0 be
any compact set which contains a ball B¢{(Bs) for some € > 0, and write 5g for the

3 which mazimises H(3) over 5 € L if this mozimum is well-defined in the sense
of Definition 2.1. Then, for any v > 0,

{\f}L —Bal > v or B is not well-defined}  has ESP.

PROPOSITION 3.3, Suppose that Assumptions {A1)-(A6) hold. Let L be any
compact, set satisfying the conditions of Proposition 3.2 and write K = Q — L.
Then there exists o y < 0 such that

{sup H(3) > y} has ESP.
e K
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3.2 Proof of Proposition 3.1.

Put ig = —FE{d2(X,50)}. From {Al} the cigenvalues of iy lie in the interval
(ky, ko), for some k1 > 0. Choose & such that 0 < & < ky/(4p).

From (A3), we have the existence of positive constants k3, vy and py such that

(3.2) P|R > k3 or |[d2(Bo) +iglrs| > & for some r,s] < ag exp{—pin).
On the complement of the set
{R, > k3 or [[da(Bo) + io)rs| > 6},
we have from (A2)
[B(8) + ivles| < |28} — daBo)}rs] + 1[3a(fo) + olrs

< ka8 — Bo| + ¢
<24

when |8 5| < 6/ks and |8 — Bo| < € where £ is given in {A2). This bound implies
that there can be at most one solution to dy(3) = 0 with |8 — Fol < §/ks. If 3] is
such a solution then, for 3 # 3 with |3 — By < 6/ks, we have

336~ 6) = {&(B) - LEINE - B)
- —A (8 = BT ida(B1 + (8 — BN — B

< - {(8— Bo) (B — Ba) — 26p8 — Bol}
< — (k1 — 26p)|3 — Bi]
<0,

for 3 # B31. Conscquently, when 3 # 3y and 18 — 3o| < 6/ks, di(3) # 0.
Let ¢ satisfying 0 < e < §/k3 be given. If

@1 (80)| < ek — 26)

and we are in the complement of the set given in (3.2), then for any unit vector
v e RP,

(3‘3) vTaﬂ(ﬁU + E’U) = ’UT[(JT; (8[] + (:'U) — 0?1 (,@0)} + ’UTJ1 (60)
< ] vl dy (B0 + uv)vdu + %E(k’l — 28&p)
0

<~ gelky — 267)
< 0.

Brouwer’s fixed point theorem and (3.3) imply that there exists a 8 such that
|51 — Bol < € and ¢,{7,) = 0. From (A3), there exist ay > 0 and ps > 0 such that

(3.4) P [|&1([30)| > %ﬁ(kl - 26}))] < g exp(—pan).

The first resnlt in Proposition 3.1 now follows from (3.2) and (3.4} with v, = 6/ks;
the sccond result follows from (3.2) and (3.4} with e = v. [J
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3.3 Proof of Proposition 3.2

Choose € > 0 so that Proposition 3.1 holds, and let /31 be the unique maximum
of H(B) for |3 — Bg| < ¢ on the set (3.1). Note that H(Bl) > H(By) = 0. Write
L. = L/B.(8;). We will show that, under the given assumptions,

- n

(3.5} P {Sup H(B) > y| < ay exp(—pn)
el

for some ¥ < 0 and o4, p; > 0. Consider the function @ in (A5). Assumption
(A5) implics that there exist constants z € R and ey, pz > 0 such that

P{Qr > z) < asexp(—pon).

Let g = supge,, eo(8) < 0, and choose y € (g,0). Then choose & so that 226 <
v — g, and let {Bs(3) : § € L.} be a covering of L.. Since L. is compact, we may
choose a finite subcover

T 7 )

[ Y T { A
Bgip1)y ... BT

for some J and 3;, j=1,...,.J. On L, Bs(3;) we have

sup [h(z, B) — h(z, Bo)] < hiz, 3;) — h{z, Bo) + Qrlz)d

BELNBs(3;)
for 5 = 1,...,J and all z, and thercfore
sup  H(B) < HB)+Qré
BeEL-NBs{3;)
Consequently,

M

(3.6) P[ sup H(3) > y] <

P[ sup  H{B) >y
Bel.

AeL.nBs(f;)

w
il
—

PIH{(3;) + QL8 >y

Mu

—_

Sl

{PIQr > 2]+ PUH(B;) + 26 > y)}

B

.
Il
—

{P(Qr > z)

M

LY
Il

"';U‘ -t
]
B

)~ E(H(B;) >y — 26 —gl}

[A
~ 4
x
3
1
\%
2

;

(8) - BAG) > P2 ] .

w
il
-

_+_
INGR
!
—
o]

But y > ¢ and J stays fixed, so all .J + 1 terms on the right hand side of (3.6) are
exponentially small by Assumptions (A4) and (A5). [
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3.4  Proof of Proposition 3.3
By the second part of Assumption (A6}, there exists a é; > 0 and a t > 0 such
that
yo= sup es(B) <0
B/ By (Bo)
for all 0 < & < &,. Define
Ko = KnByf) and K;=K/K

where ¢ is chosen as before. We have

(3.7) P lsup H(B) > y} <P {sup H{3) > 'y] + P
dcK ge Ko

sup H(3) > yjl ,
BeEK,

and since Ky € By(80)/Be(86) € § for some £ > 0, the first term in (3.7) is
exponentially small according to (3.5) for some y < 0.

Let now G(_}),j c Zp, he a pcutluu’_)ﬂ of B?. Then
(3.8) P[ sup H(3) > 'q] < Z P[ sup  H(3) > y]
BeK, BeEGHNK,

jezr

for any r > 0. Lot us take

, i
G(j)—{u(ul,...,up)TeR‘”: (jq——) bo g < (jq )60, ,...,p}.

Then . )
sup H(B)<VYs s forany f3; € G(j)NKy,
BCGINKy
and
(3.9) P sup  H(B)>y| <P [Vs5 >y
BeG{1NK,

Then for y > yo the term (3.9) is, according to (A6}, exponentially small since
5; & Bi(Bo). The second term in the sum (3.8) is therefore exponentially small.
If r >t + 6, we get for the first term in {3.8) the bound

(3.10) > Pifse >0

32

where 3; = 8g + j8/(2p/?).
Finally, from (A6}, we have for all 3

PlYgs, > y] < lexp{Kas,(00) — boyi]”
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= Cg Mﬁ,ﬁu (Gﬂ)ﬂ
7
1

<
= TH 1B A=

for some constant ) > 0. Taking r so large that for some ng we have

("ﬂ-()
<1
2 {14 8151/ (2p! /%) o

i1z

we find that (3.1( ) is exponentially small. Consequently both terms in (3.7) are

pvnnnﬂh‘rl,\”v sma ]

CAPIIIICIILIALLY DT ; —

3.5 Proofs of Theorems 2.1-2.3
The proofs of Theorems 2.1-2.3 are easy consequences of Propositions 3.1-3.3.

Proor oF THEOREM 2.1. Let K C R” be any compact set which satisties
B (o) € K C ) for some £ > 0. Let Be and fx be the maximisers of H(3) over
g ¢ 2 and 3 € K, respectively. A direct consequence of Proposition 3.3 is that
Ax = Ba on a sel whose complement has exponentially small probability. Now
apply Proposition 3.2 to obtain Theorem 2.1. [

Proor oF TaeoreEM 2.2, This follows from the uniouenes

(RS LR In St u.u- £oaiad by o 210 vl Rl

! s
tion of the equation D1{3) = 0, combined with Proposition 3.1. [J

PROOF OF THEOREM 2.3, Let f§y be the solution of D (3) = 0 whose exis-
tence on a sot whose complement has exponentially small probability is guaranteed
by Proposition 3.1. We have, for any v > 0,

P{|Bs — o] > )
= P (IBS — Bol >, 18p — Bo| < %) + P (|/35 — Gol >, 18P — Bol > %)
r (|50 - Bol > %) + P(IBP — Bo| > %) ;

and so Theorem 2.3 follows from (2.3) and Proposition 3.1. [1

4. Application to elliptical contrast functions

In this section, X,,...,,X, will denote IID d-dimensional random vectors,
and we shall use X to denote a generic X;. We consider “elliptical” constrast
functions of the form

. 1 , o
(4.1) hx, 8) = ~5 log det(V) + log f{{z — )"V~ {z — p)}
where f : [0,00) — [0,00) is a given function. In {4.1), § = (p, V) where pis a

d-dimensional location vector, and V is a symmetric positive-definite d x d scatter
matrix. The effective dimension of 8 is given by p = d 4 $d(d+ 1) = 3d(d + 3).
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o . o Tiend . A1 2\ g
Remark 4.1, If f is normalised so that {;° r¢=! f(r®}dr = 1, then

(42) glz;p, V) = {det(V)} V2 f{{z - )"V (2 — )}

is a probability density function on R? for all /e Rtandall V >0 {where V' > 0
means V' is positive definite). Families of distributions generated via (4.2} are
known as elliptical models, because the contours of constant density are ellipses.
When d = 1, the elliptical models are precisely the symmetric location-scale mod-
els. See, for example, Chmiclewski (1981), Khatri (1988) and Mitchell {1988, 1939)
for further details of elliptic distributions.

The remainder of this section is divided into two parts. In Subsection 4.1,
woe present two general results which facilitate the application of Theorem 2.1
to elliptical contrast functions, while in Subsection 4.2 we briefly specialise the
discussion to maximum likelihood estimators (i.e. it is assumed that the contrast
function is the true log-likelihood).

4.1 Two general results
The natural parameter space for the contrast function {4.1) is

(4.3) {B=(0,V):p€ R:V(dxd),V >0}
The set (4.3) has a boundary
(4.4) {3 = (V) pe REV > 0,det(V) = 0},

where V' > 0 (V' > 0) means that V' is positive (non-negative) definite. It turns
out that some of the assumptions stated in Subsection 2.2, in particular (A5} and
(A6}, are very difficult to check at the boundary (4.4), and may even fail to hold
there.

For this reason, it is not a good idea to take the set Q in Theorem 2.1 to be
the whole parameter space {4.3). Instead, we adopt the following choice for O

Q={f=.V):pc BV >0,x(V) > o}

where Aq{V) is the smallest cigenvalue of V, and o7 > 0 is “sufficiently small”.
Wo deal with the complementary set

(4.5) Of = {8 =(u,V):pe RV > 0,0 (V) € (0,00}

separately. More specifically, we use a direct argument (Proposition 4.1 below) to
show that, barring exponentially small probability, no maximum of the contrast
function occurs in the region (4.5), provided o is sufficiently small.

Define the ellipse E, = £, {u, A} C R by

By, Ay ={z € R”: (z — p)TA™ iz — p) <}

for any € R* and any symmetric positive-definite d x d matrix A. We shall also
write § = (p,0, A) where V = oA, 0 = A (A}, and A{(A) = 1, and A will denote
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the set of symmetric d x d matrices with A (A} = 1. We shall identify H{p, o, A)
with H(4) =n~'>." | h{(X,, 8), where h is the contrast function defined in (4.1).
Consider the following conditions on f and the distribution of X.

{C1) For each unit vector £ € RP, the distribution of U = (T X is absolutely
continuous with respect to Lebesgue measure on R, with density ge(u) say. In
addition,

sup  sup ge(u) < oc.
££Tg=1ucR

(C2) The function f{y) in (4.1) is strictly positive, differentiable for all y > 0,
and satisfies (i) and (ii) below:

iy f ()]

(i) <M
ye(0,00) f(y)

for some constant M < oo; and

) : yf (y)

it lim sup < —p/2.

Remark 4.2. At first glance, Condition {(C2}{ii) may seem unfamiliar. How-
ever, it is casy to show that it is satisfied by any elliptical distribution whose
support is the whole of R?, provided the function f in {4.2) is ultimately mono-
tonic decreasing.

PROPOSITION 4.1.  Under Conditions (C1) and (C2), there exists a ot > 0
such that

{ sup Hip,0,4) > H{p,ot,A)  for some (u, A) € R x A} has ESP.
O<o<ot

Proor. Using Condition (C2), choose zg > 0 and v > 0 such that
zf'(x)
fz)

x> zy implies < —p/2 —;

and choose ™ > (¥ s0 that
p/2+7M—(1—x)(p/2+7)<0.
Take a fixed n > 0 and choose ol so that n/JT > xp; and define
u; = (X; - WA (X, —p),  J=1,...,n

Let T,, and I' denote the empirical and true probability measures, respectively.
So if € C R, then
#{’L : X.i S C}
T
and, for measurable C, ['{C) = P[X ¢ C]. On the sct

Ly (C) =

(4.6) sup  Dn{E,{p, A)} <,
{1, AyeRIx A
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the number of u;’s with u; < 7 is less than nw. When u; > nand 0 <o < al
then, still on the sct (4.7}, we have u;/o > n/o’ > g, and consequently

, n (M
5"(;(11,0, A) = —E [p/‘z +fnfl¥ (i}) __; ((HGJ\)} >0

for all o satisfying 0 < o < of, and all (g, A) € R? x A. Therefore on {4.6) we
have
H(p,o0",A) > sup H{p,o0,A)
ae{0,01)
for each fixed {ps, A) € R” x A. We must therefore show that the complement of
(4.6) has exponentially small probability.

In Pollard’s (1984) terminolgy, the ellipses in R constitute a class of sets
with polynomial discrimination. Consequently, an exponential ineguality of the
following type holds (see Pollard {1984}, Chapter 2, for more general results): for
any € > 0, there exist positive constants @ and p such that

(47 P [sup sup
7A=0 (p, AYCR*x A

Do Fy(p, A} — T{E,{u, A)}l > e] < aoxp(—pn).

However, since for any # > 0 we have

sup  [Tn{£(p, A} —~ T{E, (1, A)}]
(s, AYE R x A

2 sup rll{ETJ‘(M:A)} - sup F{ET}(FLA)}
(p, AcR*x A {pn.AYER? <A

it follows that

Pl sup T {E;{nA)} > sup  [{E,(u, A)} + €| < aexp(—pn),
(p, A R* (p.A)ERE A

where €, v and p are the same as in (4.7).
Let ¢; be the supremum in Condition (C1). Since

Enlp, A) C {z: €M e = )] <0}

for a suitable unit vector £ = £(u, A), we have the bound T'{E, (g, A}} < 2c17.
Therefore

lim  sup  T{E,{p, A)} =0

170, A)e R x A

Consequently, given any 7 > 0, there exist > 0, & > 0 and p > 0 such that

P[ sup T {E, (1t A)} > 7(] < Plsup T, > sup D + 7/2] < cvexp(—pn),
(14, AYER 3 A

as reguired,
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Recall that, for given o > 0, we define
Q=Rx {V(d xd):V symmetric, A (V)>ol}.

In Proposition 4.2 below, it will be assumed, without loss of generality, that 5, =
(0, Ia).

PrROPOSITION 4.2.  Suppose that the true density g and the function f in
{4.1) satisfy the inequalities

(4.8) 0< flalz) SO(1+ |27, gle) < Col+ o) flaT ),

where O > 0, Ce > 0 and oy > 1, ay € R are constants, and oy — oz > d/f2.
Then for any choice of 0¥ > 0, both parts of Assumption {A6) are satisfied.

Proor. Fix o > 0. Then by definition of Q, A;{V) > ol foral 8 = (i, V) €
¥ FANA Tr

Fa Tl p . L1 1 s : 9 2 2
0. Let 82 = s%(V) denote the largest eigenvalue of V' and write s¥ = s2(V}). Then
since Vfl > 8 21,, where I; is the d x d identity matrix, it follows that

(4.9) L {z— )"V (@ — ) > 1+ [z — p* /st
> 1+ (] — [ul)?/s7-

We tecall the following fact (see e.g. Mirsky (1955), p. 211): the eigenvalue
with largest absolute value of a d x d matrix W = {w,) is bounded above by
dsup, , [wrs]. Using this fact, an elementary argument shows that there exists a
$o > 0 so small that, for any 7 € €2, 5) such that [ — F| < 6, and 0 < § < &,
we have A\ (V)) > of /2. A similar elementary argument shows that there exists a
8 > 0 and constants C; = Cy{é1,07) > 0, i = 1, 2, such that

(4.10) det(V7 ) < Cydet{(V"H)  and  s77 > Cas™

for all 3 € © and all 3, such that |3y — 3| < ;.
Using (4.9) and (4.10), with 6 > 0 sufficiently small, we obtain

4.11 i )TV e — > iof |1 z| — 282
(41n) i (o) Vo)) 2 it [ (2l D) 1)

C[1+ (lz] = [u)?/s7]

IV

for some C* = C*(8,0%) > 0 independent of 3.
We now show that for 0 < & < 85,

(4.12) limsup es(3) — —oc.
AeQ,|B]——oe

es( ) :/ g(x) sup [h(x, 51) — h(z, Bo)ldx.
R |01 — A<
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Using (4.8)~(4.11), we find that

1 0, .
sup  h(Gy,z) < Oy — 5 log det(V) — cry logf(1 + (|z| — |p))?/s?],
Bzl — 8| <é

and therefore

(4.13) es(8) < Cy — %log det(V) — ey / glz)log[L + (|z| — |p))?/s%dx.
J R4

If | 3] — oo, then there are two possibilities: either (i) [V — 14| — oo, or (ii) [V — 14
stays bounded above and |p] — oc. For 8= (u, V) € , |V
if s2 — oc and det(V) — oo, because of the lower bound on A; (V). But the right
hand side of (4.13) goes to minus infinity as det(V) — oo, since the integral in
(4.13) is always non-negative, and so (4.12) holds in case {i}. In case (ii), we may
assume that s2 is bounded above. It is then clear that the integral in {4.13) goes
to plus infinity as || — oo, and therefore (4.12) also holds in case (ii).

The remainder of the proof is concerned with obtaining the desired bound for

e

T o 3 aaid e ey
— ld; == R 11 edllil Ullly

(4.14) Mg s(0)

ye [
[ . | 1/zf{(:vu1)’Vf1(:v~m)}¥ |
= Ld gla) {m_s_ué)l(\é{det(Vl)} %) dix.

The integrand in (4.14) may be written in the form

/

g(x) T A\1-8 -1/2 Tyr—1 ?
P ] sup a2 (G - )V @}

fatx) (318l <é

and using (4.8), (4.10) and {4.11) we obtain the bound

0/2 1 (1—B}os —cen 1 Oy
g.§ < O* ‘ - - .
Mast0) <€ @it [ (755) ()

where here and below €* is a generic positive constant. Transforming to polar
coordinates and integrating out the directional component we obtain

) . X L (1—8)ee1 ~ex2
c*{det(V)}—"/Z/ 'rdl( )
0

1+ 72
'(1+(»r—|u|)2/sz) dar

il [ (+25) (g —lml)?/s?)yaldr

-1
Q_g:(l—g)(lfl—(,}’g— ((52 )

Since, by hypothesis, oy — cp > d/2, we may choose 0y > 0 so that ay > %

(4.15) Mg (9)

FAN

AN

where
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Fix a > 0. In the remainder of the proof we obtain two separate bounds for
Mg 5(0p), onc in the region |u| < a and the other in the region |u| > a. Since
A (V) is bounded away from zero on €2, it follows that for some vy > 0 we have

(4.16) M s(f0) < C*{det(V)} /2
C*
<
T+ V= L
< CT
= (L8 Al

on || < a, where C{ is a positive constant which depends on a, ol and &.
To obtain the bound on |¢} > @ we bound the integral in {4.15) as follows:

[1] /2 -0 1 o 1 Bay
(4.17) (] -/ )( ) ( | ) dr
0 Hpl /2 L+ 2 1+ (T - “L‘)Z/SZ
fee] /2 1 xy 1 Oy
< . - - d
- /o (1 +r2) (1 + 1u12/(4sz)) '
X 1 (23]
+f ( .2) dr
ul2 N1 T
Bexy 2y 1
1 1
ol rrat)” ()
{(1+im2/(482)) |l

Putting (4.15)—(4.17) together we obtain the bound of the form

cs
(1418~ fol)7

Mg s{h) <

on |p} > a, for some v, > 0 and some positive constant C3 depending on a,6 and
of. Finally, if we put € and « in the statement of (A6) equal to max{C{,C5} and
min{~y;, vz}, respectively, then we have a bound for Mg s(6s) of the desired form
over the whole of €2. U]

Remark 4.3. A noteworthy feature of Condition {4.8) is that the tail of the
true density g should not be “too much heavier” than the tail of the contrast
density f. This condition seems quite natural and, presumably, is not very far
from being a necessary condition for the conclusion of Proposition 4.2 to hold.

Before moving on to maximum likelihood estimators, we spell out the strategy
for checking that a minimum constrast estimator, 3, obtained using an clliptic
contrast function f, is such that

(4.18) {i3-8

>~}  has ESP.

Given ¢, the true density of the observations, check that the Conditions (C1) and
(C2) in Proposition 4.1, and the conditions of Proposition 4.2, hold. Then check
Assumptions (A1)—(A5) in Subsection 2.2.
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4.2 Mazimum likelihood eslimators

Conditions (A1)-(A5), (Cl) and (C2), and the conditions of Proposition 4.2
are often especially easy to check in the case of maximum likelihood estimators
(i.e. when f = g). Consider, for example, the logistic density, and the { density
with known degrees of freedom. Rigorous large deviation results of the form {(4.18)
have not previously been established for location-scatter models based on these
densities. However, it is a straighforward matter to check all the conditions are
satisfied by these two deusities, so that (4.18) does hold in both cases.

For the ¢ digtribution with v degrees of freedom a generalization of the proof in
Copas {1975) shows that there is only one sofution to the likelihood equations for
the location and scale parameters when v > 1/2. {Note that v = 1/2 corresponds
to the Cauchy distribution.] Thus when v > 1/2 is known we may appeal directly
to Theorem 2.2,

Assume now that v > 1/2 is also unknown, but an estimate # is available. 1f &
has exponentially small large deviation probabilities, we can use U in the likelihood
equations for the location and scale parameters g and ¢ to obtain estimates of
¢ and ¢ which also have exponentially small large deviation probabilities. In
practice, an estimate of ¥ can be based on the configuration

X —m X,—m

PICICICI

r r

where m is the sample median and r is the inter-quartile range of the sample. A
particularly simple example of the use of this kind of statistic can be found in
Resck (1976).

When v < 1/2 the situation is more complicated and we do not consider this
possibility here.

5. Skovgaard's theorem

In this section we derive a representation of the intensity of a local minimum
of the contrast function. The result is very close to the result given in Skovgaard
(1990), but our conditions are more easily checked. Tnstead of requiring a bound
on a conditional density we require instcad a bound on a marginal density. In
Section 6, the relevance of Theorem 5.1 to the tilting argument should become
clear.

We first introduce some notation. For a p x p symmetric matrix € we let
8(C) and |C|| denote the smallest eigenvalue, respectively the lagest eigenvalue.
The first and second derivatives of the contrast function (Y, 8) are denoted by
Dy (Y, 3) and Ds(Y, 8) respectively. For afixed value 8 = b we write Dy = D1(Y, b)
and Dy — D5 (Y. b). Define the sets

Lie,8) = {y : D1{y,B) = 0,8(Da{y, 3)) > 6 for some {3 — b] < e},
i(e.8) = {y: ID\D; < &, S(Ds) > 6},
L{e,0) = L{e), L{e,0) = L(¢), and

Py, B+
M{y,e) = sup{ g, E TR vy, 4+ )

- 1:%1/[:1,13Ab|<e}.
dh'} Th=0 '
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TuEOREM 5.1.  Suppose that (i) the joint density f of (D1, D3) is continuous

and satisfies .

Fld d2) S e

for some constant ¢ and some £ > p+ plp —1)/2 and (1) for some positive o and
7 such that a(p+ 1) > p(p — )(p + a),
B{M(Y,e0)}?"™ <00,  E(||D2|[P™7).

Then the intensity g(b) of local minimas of v satisfies

o6) =l PPALEOY = [ 0.l
0 S(d2)>0
"T'o prove this theorem we use the following lemmas.
LEMMA 5.2,  Assume that
EM(Y, )Pt <00,  E||D}IPTT < o0,
for some positive eg, o, T which satisfy
alp+7) >plp —1){p+al

and assume that the density of Dy is bounded. Then for all A with p(p—1}/(p+7) <
A< af{p+ o) we have

lim SEP{L(@ \ L{e,e™)} = 0.

Proor. Consider € € {0,e9), and y € L{¢), and let 8 = A(y) denote a 3 for
which |3 — b < ¢ and Di{y, 3) = 0. Then Taylor’s theorem yields

(1) 0=Dily,0) = Dalgsb) + (A= H)Daly ) = sM (o)l b,

where wy is a p-vector with [y | < 1, and

(5:2) Daly, B) = Da(y,b) + M(y, <o)l 5 - 4@,
where @ = (@;7) is a symumetric p X p matrix with [Q;| < 1fori,j=1,....p.
Consider p/{p+a) < <L, n>p/(p+7)and 0 < XA <1 (. Then, from the
moment assumptions combined with Markov’s inequality, we have
lim ¢ P P{M(Y, ) > €76} = lim e PP{||D:]| > ¢ "} =0,

and we only need to consider the set

(5.3) (LN (e, M s My, eo) < e H Yy [ Dafl <77}
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From {5.2) we have on this set
(5.4) S(Dy) < * 4+ pet 7 < 262
for € small. And from (5.1} we find
D; € {evDo+ 2 Sw: | < 1,lw| < 1} = A0),
say. Using (5.4) and {|D2|| € e " we find that the volume of A(e) is bounded by

Cp(26'A + 274 (e! T+ 7P = PO (24 € O AL+ STt
A

Using that a(p + 7) > p{p — 1}(p + «} we can take 5 and { sufficiently small and
A sufficiently large so that A — n(p — a) > 0. Since by hypothesis the density of
Dy is bounded we have shown that the probability of (5.3} is 6{e?) and the result
follows. [J

LEMMA 5.3. Suppose that for fized ¢¢ > 0 and « > 0, we have
EM(Y,e0)Pt™ < oc. Then for all 0 < XA < «f{(p+ &) and all & > 0,

liH(l)F’JP{I",(e,RS)} < hII(l] e PP{L(e, ")} < hn(l)e_pP{f/(e)}.

Proor. Lety € L(¢,¢*). From (5.2) we have
S(Dy) > * — epM(y,eq) = {1 — €' pM(y, o) }.

if M(y,e0) < e* 'w. Then

Given 0 < w < 1/(2p) we have therefore S(Ds3) > % L€0) <

from (5.1) we obtain

1 1 0 2
|.D1D§1\ < €+ EM(y,eg)e2|w1DQ_1\ <e4 55’\71@?23 =¢e(1+w).

We have then shown that
L(e, ") C L{e(1 +u)} U{y M(y,e0) > *tw}.

Thercfore, using Markov's incquality, we have,

lim — P{L(e, M} < (1 4 w)? lim - ~ Plie)

-2} P
i — 6(1 o eI EM (Y, eq)Pte

e—0 €F Pt

1
= (Lt o) lim  P(L(O),

and letting w — 0 we obtain

lim — P{L(e A} < lﬂ%eipp[f’(ﬁ”‘

i} €
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For the reverse inequality, we start with y € i{e,&} and w > 0. It follows
from (5.2) that, if

My, e0) < dw/[2ep(1 +w)?]  and |8~ b < e(1 +w),

thon
S{Da(y B)} = 6 — ol pe(1 4+ w)
20, ol Qﬁp(l +L&))2p€

=15

-2
Defining

1
= —— b — } Diil
R(v) e(l—}—w)Dl(y’b e(1 4+ whv)Dy ™ + v,

we find from the expansion in (5.1) that for |v| <1,

Dip;tol _
Rw) < | + 3 M)l + wwD;!

1 +l de
T 14w 22ep(l+w
< 1.

1+w/4
Pt w

1
w)z <
)2£(l+ )5*

Using the fixed point theorem we find that there exists a v with [v| < 1 such that
R{v) = v or, equivalently,

Di(y,8) =0 forsome |b— 3] <e(l+w).

Thus for {e(1 +w)}* < £6

Ele. e} € L{e(L +w), [e(1 + )M} {y : M(y, o) _5“)_}

- 2ep(1 + w)?
Thercfore
lhr(l)e*"’P{f‘(ﬁ,é)} < (1+w)? 1111[1] e PP{L{e, )}

P o
ZEp(l + \'—U):II E]M((Y €O)P+o:
Suw .

e—0

+ lime™® [
= (14 w)? lim e P P{L{e, M)},
Finally, letting w — 0, we obtain
}Lﬂée_T’P{i(c.,é)} < }Lan{L(e,eA)}. 0

Proor oF THEOREM 5.1, Let C, be the volume of the unit ball in R”. Note
that the bound on f implies that the marginal density of D, is bounded, so that
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we can use Lemma 5.2, From Lemima 5.2 and Lemma 5.3 we have for any 6 > 0

1 ~
A 1 7,\ .
2 e THN = g Gy U O 2 i G AL )
= lim POt Fldy, dy)d(d)yd{dy)

Jididy t<e S(da)>5
= lim Cp"lf fleuds, dy)|ds |dud(ds).
le|<1,5(ds)>6

c—0

With the bound on f we can use the dominated convergence theorem and get

lim e PALE)} 2 j” £(0, d2)|d2 ().

Similarly, from Lemma 5.3 we get

. 1 : ) 1 A i .
- < i :
lim e,,CPP{L(E)} lim EPCPP{L(&E. )} < lim epCpP{L(E)}
= 3{{%051 o fleuds, do)|ds|dud{d,)
luf <1, 5(da} >0
e ),
JE{dp > 8

and the result of the theorem has been proved. O
6. The tilting argument

In this section we provide a brief account of the tilting argument, indicating
the relevance of Theorem 5.1 and the theorems given in Section 2. Consider an
estimate & for which the complement of the event

A, = {8 is the unique solution of (1.1) in B.{3s)}

has exponentially small probability for sufficiently small € > 0; relevant results are
given in Sections 2 and 3. Let us argue heuristically for the moment and assume
that the density f(h) of 3 exists. Then we can write F(B) = g{b) — h{b), where
h(b) relates to events where cither LB - o] is large and there is a second solution
to (1.1} at b or there are multiple solutions to (1.1} in a small neighbourhood of
3o. From Proposition 3.1 we have that the integral of h over a neighbourhood of
o is exponentially small. There exists therefore a neighbourhood of F, for which
we can do probahility calculations as though g(b) is the density of 4, thercby only
making an exponentially small error.

However, as noted in the Introduction, no useful results on the existence of f{)
seem to be available. Consequently, we should interpret the cxponential closeness
of the distribution of 3 and the (approximate) distribution determined by g(b) in
terms of probabilities rather than densities.
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In order to approximate the integral in Theorem 5.1 we use the tilting idea.
Define a new measure £% 5 by letting each of the n observations {assumed indepen-
dent) have density exp{( - d1(z,b)}/%((,b) with respect to the original measure
Fu b, where

is a norming constant. Then

O [ o) did@) = pie” [ PO £ ) dld(da)
S(da)>0

Stdsy>0 w(C,b)"

=w@wwj‘ Fen(0,do)lds|d(da),
8{d2) >0

where f ), is the density of (Dy, D) under the tilted measure P, ;. We then take
¢ = ((b) such that the mean of D) under I is zero. What is important here is
that for b in a neighbourhood of Gy the mean of D, under % 3 is positive definite,
and we can transform an Edgeworth expansion for fc, to an expansion of (6.1).
The relevant Edgeworth expansion results may be found in Bhattacharya and Rao
(1976); the only requirements are moment conditions and mild smoothness condi-
tions on the joint distribution of (Dy, Dy). The main term in the approximation

for (6.1) then becomes
n /2 '
weh" () 1m0

ar

where
(62) ) = [ZEAEON) D)

. 3€8C* (b8 '
where Dy = n™'Dy. The variance matrix formula in (6.2) is based on the two
results 51 b

n~Y2D, - N, (O, —Oi%—’—)) in distribution,
\ ULUN /

and

n" ' Dy — Epc(b)_b(Dz) in probability.

Note that the tilting formula (6.1) is derived here without the assumptions
made in Ficld {1982). As discussed above, it is difficult to establish a rigorous
expansion for the density of a minimum contrast estimator. Moreover, the condi-
tions given in Field (1982) do not scem to be sufficient to guarantee the expansion
given there. To get around this problem, we have chosen to interpret Field's tilting
idea in terms of probabilities rather than densities.
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