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Abstract. We analyse an exponential family of distributions which gener-
alises the exponential distribution for censored failure time data, analogous to
the way in which the class of generalised linear models generalises the normal
distribution. The parameter of the distribution depends on a linear combina-
tion of covariates via a possibly nonlincar link function, and we allow another
level of heterogeneity: the data may contain “irmune” individuals who are not
subject to failure. Thus the data is modelled by a mixture of a distribution from
the exponential family and a “mass at infinity” representing individuals who
never fail. OQur results include large sample distributions for parameter estima-
tors and for hypothesis test statistics obtained by maximising the likelihood of
a sample. The asymptotic distribution of the likelihood ratio test statistic for
the hypothesis that there are no immunes prescut in the population is shown
to be “non-standard”; it is a 50-50 mixture of a chi-squared distribution on 1
degree of freedom and a point mass at 8. Our analysis clearly shows how “neg-
ligibility” of individual covariate values and “sufficient followup” conditions are
required for the asymptotic properties.

Key words and phrases:  Censored survival data, immune proportion, covari-
ates, mixture models, fallure time data, exponential family, boundary hypoth-
esis tosts.

1. Introduction

The use of “generalised lincar models” (“glms”), proposed by Nelder and
Wedderburn (1972), revolutionised statistics by extending the class of normal dis-
tributions to a wide ranging exponential family of distributions with (possibly
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discrete) density of the form

Here # and ¢ are parameters to he estimated. In a similar way we propose and
analysc in this paper a generalisation of the class of exponential distributions to
an exponential family of positive random variables with (possibly discrete) density

(1.2) flty = e MalFgA+h{t) (s gy

where ¢(t) is a nonnegative function and A is a paramecter. These distributions
provide a variety of models for the analysis of censored non-negative survival time
data. We allow a further generalisation; the population may contain an “immmune
or cured proportion” of individuals who never fail. We cater for this by modelling
the distribution from which the data is drawn as a mixture of the distribution
given by (1.2} and a “point mass at infinity”. There has been a great deal of
recent interest in such “cure” models in medical statistics; sec for example the
literature reviewed in Maller and Zhou {1996).

One of the major strengths of the generalised linear model approach is its
ability to deal with a covariate vector of information x; associated with a response
variable ¥; having density (1.1) corresponding to paramcter 8;. Covariate infor-
mation is linked to the parameter #; via the relation ®(E(Y;)) = 8%'z;, where @
is a known “link” function and § is a vector of parameters. In exactly the same
way we link the parameter A in (1.2) to a linear combination of the corresponding
covariate vector, and allow the “immune proportion”, if auy, to depend on (pos-
sibly different) covariates, again via a generalised linear setup. This formulation
allows us to test for the presence of immunes. This is a test of a boundary value
hypothesis, leading to a “non-standard” asymptotic result.

Our analysis is based on the likelihood theory, and our methods of proof are
similar in spirit to those of Fahrmeir and Kaufmann (1985), who dealt with glms.
Like them, we strive for minimal conditions on the covariates. These take the
form of “uniform asymptotic negligibility” conditions and are much weaker than
requiring the covariates to be uniformly bounded, for example. However, there
are two respects in which our analysis is quite different to that for glms. In the
first place we allow for (right) censoring of the failure times, so the question of
“qufficient followup” arises. This is, essentially, the question of how “heavy” the
tail of a censoring distribution may be, relative to the survival distribution, while
still permitting consistent estimation. It is manifested in our analysis by an in-
tegral condition relating to those tails. Sccondly, allowance for immunes in the
population also raises considerations of the interplay between the censoring and
survival distributions, and these in turn interact with issues concerning the co-
variates. Our large sample analysis, by drawing out these relationships, highlights
their importance for data analysis. We discuss these matters further in Sections 3
and 4, where we also relate them to examples and to some previous work on special
cases.
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2. Model specification and assumptions

We will work with an exponcential family whose densities take the form
(2.1) fialty = a(t)e ey >,

with respect to a o-finite measure g whose support T = {f > 0 : a{t) > 0} docs
not depend on A. The function ¢ is nonncgative on [0, oc). The natural parameter
space of the exponential family is

{A eR: | I(gpldy) < OC} :
[0,50)

We will take the “parameter space” A of interest to us to be the intcrior of this
space. Clearly, A is an open interval of the form {—o0,00) or {a,2¢), @ > —o0.
For each X in A, we assume that

(22) Fy(f) = [ St 120
- R

defines a proper non-degenerate cumulative distribution function (c.d.f.). In prac-
tice, the main situations of interest are when pu{dy) = dy is Lebesgue measure, or
when 4 is a counting measure on a discrete set of mass points {a;};>,. Let

ro =inf{t > 0: Fy(t) >0} and 74 =sup{f > 0: Fy(t) <1}

denote the left and right extremes of Fy, so that 0 < 7_ < 75 < oo, These do not
depend on A since T does not depend on A Also define the tail of £y on [0, 00}
by

(2.3) Fy(r) = j( D)

By applying Theorem 7.2 in Barndorff-Nielsen (1978) with the positive o-finite
measure v defined by dr = a{f)dp, we obtain
(i} the function g is infinitely differentiable on A, and
(ii) F(q?(fy)) is finite for all § = 1,2,... and all A € A, where t, is a random
variahle with ¢.d.f. Fy and the expectation is with respect to Fy.
The data we wish to analyse consist of censored survival times t; with associ-
ated covariates ; and g, 1 < 4 < n, which may be the same or more generally may

be independent random variables with possibly improper c.d.f.’s F' = p, Fy,, where
the Fy, are proper c.d.f’s as in (2.2), and 0 < p; < 1. Assume that the parameters
are “linked” to linear combinations of the covariates by

(2.4) A = n(k;}, where w; = 8z,

and
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(2.5) pi = ((p), where  p, = ”f‘Ty-f:-
Here 7 is a function from R to A and { is a real function. The covariates x; and y;
are fixed (non-stochastic) vectors in R** and R** which may vary over individuals
i, and 3 and -y are k1 and ks-dimensional vectors of parameters to be estimated.
Then (2.4) {2.5) together with the vector 8 = (37~7)7 of dimension k = k; + k2
represent our “generalised linear” parameterisation of the model. The parameter
space @ to which € belongs is supposed to be of the form © = 6, x - - x O where
the &;, 1 < 7 < k, are nonempty intervals.

The improper distributions F*(¢) = p; Fy, {t) can be thought of as arising from
11!’\!\}\Qﬂl"fﬂf4 11]\'11]"\1"\? ‘f"}I}ﬁJJlW]()Q - ‘If] }1 [D(R 1\ 1 — ":D(R —_ n\ '-.1](’}'\ *})Af

unol ved auxili ry vi B,withP(B;, =1)= P(B, = 0} such that,
forall ¢ > 0, Pty <t | B; = 1) = F\,(t) and P(¢} 5 t | B, =0) = 0. Thus the
survival function of £ is

(26) PE>1) = (1 p)PU >t B =0) +pP{t; > t| B = 1)

The interpretation of this model is that, when B; = 1, individual i is subject to
failure at a time ¢} drawn from the c.d.f. F,(¢), while when B, = 0 the individual
never fails, or, formally, 7 = oo. Let u; be censoring variables with proper e.d.f’s
(7; which are noninformative, i.e., do not depend on the parameter & The observed

data consist of n observations on 4; = {7 Awy, where we fake {7 A w, = u; when
t; = oo. When B, = 1 wo obscrve a censored value ¢, = wu; if £ > u; and
an uncensored value ¢; = ff otherwise. When B; = 0 the observation on the

individual 4 is censored at value u;. We do not observe B, so we do not know
whether individual ¢ is immune or not, but we do observe censoring variables
¢i = lym<y;y- An important part of our analysis will be to decide whether or
not immunes are in fact present in the population. We assume that the {7 and
u; are all conditionally independent, given the I3;. Our analysis then takes place
conditional on the values of the B;, which we can ignore from now on.

The “true” value of 8 i3 Oy = (ﬁf{ T where 3y and ~g are the “true” V‘dum
of # and v. Let Aip = n{kie) where ki = 82 24, and py = C(pin) where po = iy,
Rauther than £, F nd Fo o we will write fo. Foooand B Alse for brevity

LA LTCTD Liiall J 3 w03 £ Ao alld £y 0 ¥R W4 write J'iﬁa £ () il dlgfj. Liao0 LU LTV LY,

let f,, Fy, and Fy, be denoted by fi, F; and F;. To be precisc in spe(:lfylng our
model, we should introduce random variables tf, with distributions = pioFio,
and let £y = £, Au,, but we will continue to denote those by 7 and £;. EXpGCtdthIlb
{except in Lemma 5.1 below) will be with respect to the “true” distributions.

The iikelihood of a sample of n of the ; is obtained by factoring in p; times
the density f;{t;) il t; is uncensored, or the sarvival function (2.6), evaluated at
t;, if t; is comsored. Thus we can write the log-likelihood function as

(2.7) L,{8) = Z{Ci(1(')gf)i+g(Ai)M/\’iQ(t'i)+10g(a(ti)))+(1_c’i)log(l -piFi(ti))}

We consider two cases:

The interior case: < pp<1,1<i<n.
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So that the main points are not obscured by technicalities, we will only con-
sider the case when {(p) = /(1 + ¢”) in (2.5). (This is one of the most useful
cases in practise.) Then we have p; = {(p;) = v y‘/(l—i—e* "“) Note that £,(6) is
then finite a.s. for each 8. Assume that ©; = (a;, b;) where a; and b; are constants
such that a; < #;5 < by, so fy is an interior point of ©.

The boundary case: pp=1,1 <1 < n.

For this casc we take ks = 1 and ¢, = 1 for 1 < ¢ < n. The functior ¢ is
irrelevant here, but we shall take {(p) = p since then the interior and boundary
cases can be formulated together. Hence v = p; = p, say, and v = pg = 1. As a
consequence of assumption (F5) below, &, attributes no mass to 74 or to points
larger than it if 74 < oo. Thus the log-likelihood will be finite a.s. in this case too.
For 1 < j < Ky, assume that ©; = (a,,b;) where a; and b; are any constants such
that a; < 60 < b;, and let &y = {ag, 1] where a < 1.

To analyse the maximum likelihood estimates (MLEs), we need the derivatives
of the log-likelihood. From (2.7), the derivative of £,,(6) with respect to 8 is

(2.8) S, (6) = %cn(e} = Z X,5,(0)

where the 2-vector 5,(#) has components

(2.9)  s.(8) = % = e (i) (g () — alt)) — (ll—Cp)};‘TEt(f;) ‘)‘Z)E“

and
oy OLa(8)  el{p) (0 — e (i) Fi{ts)
(210) - 52(0) = . pi L —piFi(ts) 7

X"'[O u}

are k x 2 non-stochastic matrices. The negative of the second derivative of £,{8)
is a k X k symmetric matrix

and the matrices

(2'11) Fn(B) : )9) Ly 9) Z X, f(H

=1

where the 2 x 2 symmetric matrices F,(#) have elements

(2.12) RO = esln () (g(t:) — ' () — (7 (£))2 9" (M)
pin' (k) OF(t;)
H—e ){1——p,F,(1‘.,;) E3%
A (5:))? (BE:(t?:)Y
(- B (6))2 N,
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2:(n' (k0))* O*Fi(t)
1 pF{t) 0N ’
(213) f22(9) {(C (pa))z _ Cu(pi)
' i Pi
oAl W22 AL NTT L VY
WWipp e ity | A\t
l—e
e { (1 — pFi(ti))? 1 — piFi(t:) }
and
iy g = e ) R L)

(1 —pFilt:))? 0N

The k % k expected information matrix D, has the form

(2.15) D, = E(Fp(6o)) = i: XD X

=1

(recall that 6y = (3 v¢ }* denotes the true parameter) where

‘ ;b d}’
(2.16) DF[ 42 dgﬂ]

are 2 x 2 symmetric matrices with elements ]* = E(f[*(60)), r, s = 1,2. Formulae
for d7®, showing in particular that they are finite (provided E(1/ Iyg(ul)) < 00
for the boundary case, sce (F5) below) are given in Lemma 5.1 below. Thus the
expectdtlonb in (2.16) will be finite under our assumptions. General likelihood

theory {Cox and Hinkley (1974), pp. 107- 108) suggests that

(2.17) E(S.(60)) =0 and  E{(S.(60)Sn (60)) = E(Fn(f0)) = D

These hold (sce Lemma 5.1) under assumptions which we now list.
Our assumptions place restrictions on the covariates and on the relation be-

tween the censoring and survival distributions. For A > 0, define

(2.18) No(A) = {0 € ©: (8 —00)T Du(8 - 8y) < A%},

ASSUMPTIONS F1-F4.

(F1) n(x) € A for all & € R, 7 has continuous third derivatives in R, and its
first derivative is non-zero in R.

(F2) Foreach i > 1 and A € A Plu; > T > T_) > 0.

(F3) The matricos Y oy 2! and D770, v yl arc positive definite for some
n >k
For the remainder of this section, conditions {F1)—(¥3} will be in force. Lemma 5.2
shows that I, is then invertible for large n.

(F4) limp oo Sorq (Ui tr{ X D1 X, NH2 =0 where U, = M?/BA.i, i>1, and
M, and A; arc defined as follows.
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Let 6 > 0 be fixed. For each 1 > 1, Aq/ % is the maximum value over any of
the quantities

(2.19) {8 1" (1)) g’ (A1), [ (= L) T2 (A1
! (R[1])[3 2R3 (AL2D), |7 (1)} PRY AN

i [N

i
21}
where A{\) = g (M) +3("”(N)?, kl5], § = 1,2, vary over the intersection between

(rip — 0, kip + 6) and the parameter space of n[ ], and Alf] = n{&[f]).
We define M separately for the interior and boundary cases.

The interior case:  Let A be any fixed constant. Define

_ 1 — pioFio(us)
M;=1VE sup - .
(BeNn(A) (1 — Clp)Falus))?/

More precisely, we should replace U; and M; by Ui, (A} and M, (A} and (F4) is
required to hold for each A > 0. But we continue to denote U, (A) and M,,(A)
as U; and M; for convenicence.

The boundary case:  We assume further:

AssuMPTION 5.

(F5) Lot 76(8) = SUP.g(p, -6 0+ N(%). There is a & > 0 such that for each
=1

I -wi N
M;= sup [ (w) < o0,
Aennl(b) F,\Z (u‘t‘)

Our results will be proved under (F1)-(F4) and in addition under (F5) for
the boundary case. Condition (F1) is very mild and generally satisfied in practice
f‘.m:- the examples In Section 3 hr‘?nw] The condition P(u > Ty > T \) > 0 of
(EQ ensures that uncensored observations will be observed with positive proba-
bility, and represents a minimal requirement that “followup” be sufficient in the
sample. Condition (F3) simply ensures that the covariates do not degencrate to
a lower dimensional subspace for large enough samples. Condition (F4) is a “uni-
form asymptotic negligibility” type of requirement on the covariates which also
incorporates some interptay between censoring and survival distributions. Condi-
tion (F5) implies P{u; < 74} = 1, which is natural in the boundary case since no
w; > T4 can be observed when py = 1. Conditions (F1)~(F5), as is also discussed
in the next scction, reflect the relationships between the failure and censoring
distributions under which consistent estimation is possible.
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3. Main results and examples

We now state the major results of the paper. We say that a sequence of events
{An} occurs with probability approaching 1 (WPA1) if P{A,} — 1 as n — oo.

THEOREM 3.1.  If conditions (F1}~(F4) for the interior case or conditions
{F1) {F5) for the boundary case are satisfied, then an MLE 8, of 8, exists, is
locally unique WPAL, and is consistent in probability for 6y.

From now on, 8,, will denote the estimator obtained in Theorem 3.1. We do
not claim that @, is uniguely defined on ©, even WPAL, though it is uniquely
defined WPA1 on the neighborhood N,{(A) of 8, for cach A > 0.

In the next theorem, we consider the interior case, ie. the 6, are interior
points of ©;, 1 < j < k. Let 1 < j; < jo <+ < Jpu < k. We wish to test the
hypothesis

Hy:60;, =050, J=7Ji 1 <i<m, m<k,

against an unrestricted alternative. Let 1,(4) be the likelihood function and
L, () = log(l,(6)). The likclihood ratio (LR) test statistic for Hy is defined
by L, = l.,?((;n) / ln(én) where @, is a local maxinmm of L,.(0) under Hy. Now
define the “deviance” of the restricted model from the unrestricted model by

(31) dn - *2i0g Ln = 2[£n(én) - ﬁn(gn)]-

Small values of L, or large values of d,, indicate that H; is unlikely to be true.
Denote by x2 a chi-sgquare random variable with ¢ degrees of freedom. Let N{0, Iy)
be a normal random vector with mean 0 and identity covariance matrix Iy, and let
DT]L/ * and D.?:/ % he any left and right square roots of D,,, i.e., any square matrices
such that D,l/g D;{‘/Q = D,.

THEOREM 3.2. (Interior case) If conditions (F1}-(F4) are satisfied. then
for everyy > 0, as n — o<,

and
(3.3) DT/2(6, — 0) > N (0, I).

For the rest of this section, consider the boundary case. Recall that ke =1
and ©4 = (ag,1] in this case. We wish to test the hypothesis Hy : 7 = 1 which
corresponds to p,o = 1, 1 < ¢ < n, against an unrestricted alternative, Thus no
individuals are immune to failure under the null hypothesis Hg. Let 8, = (32 1)7
be a local maximum of £,(0) under Hy. Again define the “deviance” of the
restricted model from the unrestricted model by

(3.4) dn, — 2[5?1(&!;) - Eﬂ(gﬂ)]
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Partition the expected information matrix D,, as

(3.5) D, — {D‘F’ gn.]

gn Cn

where D, is k) x k1 and ¢, is k; x 1. Denote by N a sta_mdard normal random
variable. Also let X ~ N{0,I,), Y ~ N(0,1) and Z = (XT YT ~ N(0, I;}. Our
next, theorem shows that 4, has a non-standard asymptotic distribution.

TueoreM 3.3. (Boundary case) If conditions (F1) (F5) are satisfied, then

for every x < ) and y > 0, as n — 00,

. 1 1 .
(3'6) P{dn < y} - § + gp{le < y}1
(3.7) P{\fcﬂ—g,:{Dnlgn(ﬁn -1 S:C} — Py <z},
and
(3.8) Pp, < 1} — 1/2.

Also if Df 2 is the right Cholesky square root of I, then for any Borel set B C
Rk, asn — 00,

(3.9) P{DI/2(, — 6} € B,p, <1} - P{Z € B,Y <0}.

Theorem 3.3 generalises the results of Zhou and Maller {1893) which deal with
the expounential distribution in the case where there is no covarlate information.
For an example of the use of the “50-50" chi-squared distribution in (3.6), sce
Maller and Zhou ((1996), Chapter 5} and Zhou and Maller (1993). Ghitany et al.
(1994) discuss how to use results like Theorems 3.1 and 3.2 to analyse exponentially
distributed data classified into groups.

To be able to use the distributional results in (3.3}, (3.7) and (3.9} in practice,
we must be able to “Studentise” them: replace Dg‘/ 2 by a sample estimator.
Theorem 2.2 of Vu et al. {1996) together with {6.1) below show that (3.3), (3.7) and
(3.9) remain true under the specified conditions if D}/? is replaced by Fl! *(6,)
and ¢, and g, arc replaced by the corresponding components of Fn(én). Vu et al.
(1996) discuss the usc of the Cholesky square root in this context.

Eramples. Many commonly used survival distributions are special cases of
our model and conditions (F1)-(F5) are easy to interpret in specific cases. We
restrict ourselves here to a discussion of the geometric distribution. In this case

11 — At A -
(3.10) L) =1 =gt = M =9

1,2,..., 0<

Leal

= < 1
< L.

{1
\L

Here A = —log(#) > 0 and g(A\) = log(e* — 1). Clearly (3.10) is of the form (2.1)
with T = 11,2,...), ¢ as counting measurc on 1’, gq(t) =t, l =7 < 7y = o0 and
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A = {0,00). We consider the estimation of 3 via a loglinear link to the parameter
A, Le, A = ¢ 7 Condition (F1) is easily seen to be satisfied with n(k) = e*.
(F2) reduces here to the minimal requirement that not all the mass of the wu; is
placed to the left of 2, which we assume throughout. Assume also (F3); this can
always be satisfied by eliminating redundant {linearly dependent) covariates, if
NECeSSary.

For the interior case, a sufficient condition for (F4) is given in Lemma 5.5
below as

(3.11) lim > (Altr{X"D,'X;})*” =0
TL— X0 py

where A is defined by

(312) A= max AR (R)g' (N T (k)9 (WA - 3N}
KE R 8,850+ 6]
(with A =n{k)).
The Al given by (3.12) are bounded for 8 small enough. Thus, via (3.11}, (F4) is
implied in this case by

—

wwhe!
—_
]

N
=

o
fan gl
=

—

Conscquently, for the interior case, when {3.13) holds, Theorems 3.1-3.2 give the
existence, consistency and asymptotic normality of the MLE, and an asymptotic
chi-square distribution for the deviance. If in addition we assume that the u, are

1id vt dAeoenerate at 3 and
LLG., D10V QERCHLTate 4t |, alli

(3.14) sup(|zi| V [a]) < oo,

then (3.13) and hence (F4) are implied by

-1 1

7T T
(3.15) jmax. x) 5 TJQ‘T i+l E yjy;‘p wl =0 {(n—oo).
== =1 i=1

This follows from Lemmas 5.3-5.4 below. (3.15) is an asymptotic negligibility
condition on the covariates which is possibly minimal in this context: sce the
discussion in Maller (1993). Conditions (3.14) and (3.15) hold if, for example, the
2, arc indicators of a finite number of groups or classes to which individuals may
belong.

Next take the boundary case. Assume conditions (F1)—(I'3), as discussed
above. Since the A; in (F4) are bounded for § small enough, (F4} is implied by

T
(3.16) lim Y M;{tr(X7 D' X)) =0
i=1
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provided M; < oo, 1 < i < n. Thus the conclusions of Theorem 3.3 hold for the
geometric model if not all the mass of the w; is to the left of 2 and (F3} and (3.16)
hold, Now condition M; < oo in (F5) can be written as
Gi{du
(3.17) f —ﬁ(—“{)\ < 0,
VIR IRIE T IINCD

-

where G; is the c.d.f. of the censoring random variable u;. (3.17) tells us that the
tail of G; must not be too heawvy relative to that of £, s (f). In other words, the
censoring must not be too light relative to the failure times.

Suppose for example that for each 4, G;(u) is the (very light-tailed) uniform
distribution on [0,¢]. Condition (F2) simply corresponds to ¢ > 1. We have
Fyt)y =1- e M1 egsentially the discrete exponential distribution with pa-
rameterisation A; = AT Now nold) = o ets bA,o with b = ¢® > 1, and the
integral in (3.17) is no larger than [e20%%0 — 1]/[2bed,g] < e2P¢A0. In other words,
(F5) always holds for these G; and Fy,. If in addition
{3.18) sup |z, | < oo,

izl
then by Lemmas 5.3 5.4 below (F4) is implicd by the uniformn asymptotic negligi-
bility condition

n \
(3.19) 11}\11():3(711' (Z 4T ) z; — 0 {n— o0).

j=1

Thus Theorems 3.1 and 3.2 hold under (3.18)-{3.19) in this case. When (3.18)
holds, (3.19} is equivalent to requiring the minimum Bl“eIchLIUP of 3% o1 T T to

J
+ 1 + |4 o K
tend to 0o as n — oo (and similarly for (3.15)). Very similar conditions to (3.18)-

(3.19) occur in Fahrmeir and Kaufimann’s treatment of glms.

TFor a second illustration, suppose that ¢, is exponential with parameter p;.
Then (3.17) holds if p, > 2bA;o for some b > 1. Since E(u;) = 1/p; and E(tio) =
1/A0, then, this says that censoring times must be on average at most one half
as large as failure times. So again censoring must be not too “light”. It may
scem curious at first that a certain “heaviness™ of censoring is insisted on in the
boundary case. Corndition (3.17} here reflects the fact that the boundary test
only makes sense if there is a positive probability of having survival times larger
than the largest possible censoring time; otherwise, there would be no point in
testing Hy. Nevertheless, (3.17) is not optimal in this regard; the power of 2
may be reduced to 1 for the i.i.d. model without covariates and with exponential
distribution F;, as shown in Zhou and Maller (1995). In practice, the w; will be
bounded, in which case {3.17) holds for any F\ with 7, = co.

To conclude this section we remark that the Poisson and binomial distribu-
tions can also be handled within our framework. For these, also, g(t) = ¢. An
example of (2.1} with g{¢) not the identity function is given by the Pareto distri-
bution, with

g1
f (t) % — c*)\iogt+lr_)g(()\~—l)a>"1)’ + Z a > U, P > 1.
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Here A = 8 and ¢{t) = log(t). Of course, this distribution can be transformed to
the exponential distribution on [log a, 00}, but our results apply to an analysis of
the data carried out on the original scale, as is natural.

4. Discussion

Theorems 3.1-3.3 provide the theoretical foundations for the use of some
kinds of exponential family maodels in the analysis of censored data with immune
individuals, similar to the way in which Fahrmeir and Kaufmann’s (1985) results
justify the use of large-sample normal approximations for the distributions of es-
timators, and the chi-sguared distribution for the digtribution of the deviance, in
glms. Whlle those results carry over precisely for our “interior” models, we note
that modifications are required for the “boundary” models used in testing for the
presence of immunes. Al of our results are dircctly applicable in practice as a
result of our justification of the large-sample “Studentised” results mentioned in
Section 3.

For maximum utility, the results given here could be generalised in a number
of directions. Not all survival models in common usage are in the exponential
family, just as not all nonlinear models of importance in the analysis of “ordinary”
data {with covariates) are glms. For example, the Fahrmeir and Kaufmann theory
does not apply to give the consistency and asymptotic normality of the MLE

for the shape parameter of the Weibull distribution, properties which are much

relied on in practice (see, e.g., Aitkin et al. {1989), Collett {1994), Maller and
Zhou (1996)). The Weibull and similarly the Gamma distributions can be handled
within our framework, if the shape parameter in the Weibull or the scale parameter
in the Gamma is “known”, or takes some hypothesised value. There are realistic
situations in which this is plausible, but an extension of our methods to cover the
general cases would certainly be valuable too.

5. Basic properties of the model and conditions (F2)-(F4

In this section, we state and sketch the proofs of some basic properties con-
cerning the model, and also analyse the imposed conditions. In Lemma 5.1, ¢y is
a rancdom variable with c.d.f. Fy, and expectations are with respect to Fy.

LEMMA 5.1. (i) For each t > 0 and A € A, we have

A /0N = (g"(N) — q(t)) Fa(t);
(QUA))::Q(A)
Var(g(fy) ): - ”()\);

2 B
S

L e N e N S
“ ol }
s b e

o

o}
[y

e

(o3

[
!

65—l < gy g m) <l
OA j[(),t]
D2F,
67 ¢ < 20U im0 =)y < —g" (V)
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(ii) Suppese in addition that (F1) holds. For 1 < i < n, we have

(5.8) it sz(Tf,(’ii{]))g[E(f (¢'(Mo) — a(y))” Fio(dy)
[0.:]

4 Pio
1 — pipFiolu)

(/ (9"(Mo0) — aly)) ln(dy)) )
[0,ae¢]

(5 9) r,az / (C th))z ?l)(”%) \
' \p 1 - Pvao(Uz))) 4
and
12 z[] pvﬂ
(5.10)  di? = [E( - ,{]F,o(uz /0 u‘](g (Xio) — aly}) m(dy))

(iii) Assume in addition that E(1/Fjo(w;)) < oo for the boundary case. Then
(2.17) holds.

Proor. (5.1)—(5.7) are verified by routine calculus which we omit. The
derivatives in (5.8)—(5.10) exist by (F1}. Lemma 5.1 then follows easily from
(2.12)-{2.14) and Lemma 2 in Ghitany et al. (1994). 00

(2.17) shows that the positive definiteness of D,, is essential. This in turn
depends on the positive definiteness of the D; and the lack of linear dependencies
among the covariates, investigated in Lemma 5.2,

LemMmA 5.2. (i) Suppose that condition (F1) holds. For 1 <

i
matriz D; defined by (2.16) is positive definite if and only if (F2) holds.
(i) Suppose Mpin(Dy) > 0,4 > 1. Then (F3} holds of and only if

< n, the

(5.11) Amin (D) >0 for some n >k,
or equivalently, if Amin(Dn) > 0

Proor. (i) For & and p in R, let p, = {(p) and A, = (%), and define

(5.12) Al (u) = p,;(nuf[[ (9'(0) - ()2, (d)
FAETH

Pp
1 - ppF)\n(ui)

' 2
' (/[0 ](9'()\,{) Q(y))FAK(dy)) 1

Q) Pt
p,o(l - ppF)\n (“’i)):

+
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, 7 ()C'(0) , ,
a0 W) = IS [ @00 DB )

Let h75(u) = b8 . (u;) and note from (5.8)-(5.10) that E(h75 (w.)) = d7°.

K03 050

Suppose that (F2) holds, i.e., P(u; > 7_) > 0. Then d?* > 0 by (5. 13) Since
D; = (dI*) is symmetric, it thuq suffices to show that det(Di) > 0. Apply the
inequality F(vUV) < /ENE(V) with U = hll{u,) and V = hZf (u:) to see that
(5.15) det(D;) = E(RE(E) ~ (E(RY))?
2
> (e (Vgtmgw) ) - €@

Therefore, it suffices to show that for x and p in R

(5.16) E (, [RL (w22, (us) h}fp(ue-)) >0
For u > 0, define functions
(5.17) By o) = AL (B () — (B2, (w))?.

After some algebra, we can write, for v > 0,

”h&,p(u)
GA8) G20 ()2

F} (w) ) B (d2)\ Fa.ldy)
T 1 poF (u) /0 ] (q(y) j{o,:ﬂ a(z) FA,,(U)) Fy, (u)

where the integral is the conditional variance of g(fx.), given £y, < u.
For any u > 7_, Fa(u) > 0 and t, is not constant a.s. on [0, u] by the condition
(F2). Therefore, for each pair (k,p) € R? and for any large enough u > 7_,

heplw)  FR{u)
(' (k)2 ()2 1 —ppFa,(u)

Obviously h, (1) = 0 when u < 7. For u = 7_ we have

{(5.19) Var(q(fy, ) | ta, <u} > 0.

o) FLEOE 0O )
(5.20) R CEE T LB ()
R0 )
1-— ppF,\x(T_) '

So we have shown that for cach pair (x, p) € R* and any u > 0

(5.21) B (1) > 0.
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It follows from (5.17), (5.19) and (5.20) that

(5.22) Cpop(t1g) \/h S22 () — B2, () 2 0 as.

Now suppose E(C. ,(u;)) = 0 for some ,p € R. By (5.22), then, C; p{u;) = 0
a.s. Therefore by (5.17), ke ,(u,) = 0 a.s. which contradicts (5.19) by (F2). Thus
E(Cx.p{u;)) > 0. Similarly, we have

(5.23) E (\/hggp(m)hg?p(u,) R (u, )) >0,

Thus (5.16) holds, and det(D,) > 0.

Conversely, suppose that (F2) fails, i.e., P(u; > 75 > 7_) = 0. Since AJj(u;) =
0 for u; < 7 {(see (5.12)~(5.14)}, det(D;) = hio{r-.)P?(u; = 7} = O by (5 20)

(ii) Next suppose that Amim(Di) > 0, ¢ > 1, and that (F3) holds. Define a
matrix C,, by

" T , r[. 0
5.24 CT!. e XZX?T — 21:1 IT:E?’ ;
(5.24) >oxx: [ AL

Then (F3) is obviously equivalent to

AT QM Py
or some Ny

(Y

(£ Qe LT n »
(3.2 Aminl Gy = U k.

Let £ be any k-dimensional unit vector. Suppose Amin(Dr) = 0 for some n > nyg.
Since
€D~ > XD, XT£>ZAM('D e X X[
i=1 =
and since Amin(D;) > 0, for ¢ > 1, this means ETX; X¢ = 0, for some £ = £{n)
and 1 < 4 < n. This contradicts {5.25) as ng < n. Hence (F3) in fact implies that
(5.11) holds for all values of n > nyg, i.e., for all values of n large enough.
Conversely, suppose that for some n 2 k, Awin(Drn) > 0, so that the matrix
[z O - 2, UJ
0 0 ¥npon

is of full rank k. Then 377 | w2l and .7, ysy/ are invertible, proving (F3). O
Now we come to consider (F4).

LEMMA 5.3. Suppose that (F3) holds, that there is a positive constant co
such that inf;,-,zl /\min(Di) > ¢p, and thot

R Y A
(5.26) lxgﬁ(xnu“k kL ) ri + L%%) y} -0

1/2

{n — o0).
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Then {F'4) holds.
Proor. Suppose (F3) holds and Apin (D;) > ¢ for all ¢ > 1. Then each D;

~1/2
1/.2

is invertible and I}, is invertible for n large encugh by Lemma 5.2, Let Iy,

be the symmetric positive definite square root of D, !, and similarly for D,
Then

n n
(521 > (X D;'X) Zr(D;”2Xi’D§/QDfD,}/?X{”D.,‘;l/‘2)

jm=1

" k .
<y e A (DX D, X DT
- ; mm(D} ( ki 3 3 i n )
< pﬁ tr(D V2 XD, X' DY?)

0

=1
2

= lﬁtr(Dn_UQDanl/z) = k;—.

Co o

Suppose in addition that (5.26) is satisfied. Let €, be the matrix defined in
(5.24). By (F3), this is invertible for all n large enough. Thus

(5.28) t{X7D'X;) < 2 X CTVC2D C2CTV2X)

< 0+rrﬂ1/2 n*lﬂl/Qn ."YT(" Ly y
< 2¢r(C Y Amax(X; X:)
,_1 2 -1/2
= 2tr(D; /CnD /2y
-1 -1

7 T
T . T T
E Ty T + Y E Y, Yi
=1 3=1

Now it follows from (5.27) that

i=1

tr(Dgl/z CnDrfl/z) = tr (Z D;l/ZXiX’iTDT:l/'Z)
- Ztr(XzTDEIXi) < k*/ep.
21
So by (5.26)—(5.28), we conclude that as n — 00,

T

D U tr( X Dy X))

il
3/2 Tt K’
< max U tr( X! Dy X —
1<i<n ? (&)

< V2k* max U; 3/

1<i<n

I
&

—1 —1 i/

n n
Sl | ! [ D vy ] w /CU"O. 0
=1 j=1
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Next we show that inf;>1 Amin (D) > 0 for bounded covariates under (F1) and
{F2), when the u; are i.i.d.

LEMMA 5.4. Assume that (F'l), (F2) end (3.14) hold. Also assume for the
boundary case that sup;» E(1/Fy(ui)) < co. Then for some positive constant I

(5.29) sup(d;' + di*) < .

i1
Furthermore, if the u; are i.i.d., then for some positive constant Iy,

(5.30) Iy < II>1{ det(D;), and 1r>1£ AminiD;) > 0

Proor. Let (F1) and (F2) hold and define

= [inf K0, SUD .ﬁ:..p.-ﬂ] , Fa= 'me Pio, St
izt iz Lzl
Assume also (3.14). Then £, and E, are finite intervals containing &, and p;p
for each ¢« > 1. Since ( is continuous on the compact set Fy, there exists p so that
C(p) = max,ep, (p). Let p = {{p) and, as before, p, = ((p) and A, = n(k).
For the interior case, we have sup,cg, pp = P < 1 for v = 0. Thus it follows
from (5.12}, (5.2), (5.3) and (5.6) that

(n' (5))*(=9" (V)
1

sup ML) < sup (())2(—g" (V) (1+ P )z sup =

(k,p)EE {k.p)eE 1 - Pp wE by

which is finite since ¢’ and ¢” are continuous on the finite interval ;. Similarly
it follows from (5.13) that for all « > 0

SUp e g, (C'(p))?
K.p =

(5.31) sup A2 (u) < _
(k.p)EE lnfpeEz pp(l 7p)

Since d7* = (R[S, ,.,(u:)), these imply (5.29).
Now consider the boundary case. Assume further that sup,, E(1/Fq(u:)) <
oo. Then (5.29) holds by (5.12)-(5.13).

Now assume in addition that the u; are i.i.d. We show that

(5.32) inf [E( wplul)) > 0.
(mp)E

Suppose to the contrary that there exist (k;, p;) € E such that E(h., 4, (u1)) — 0.
We can further assume without loss of generality that «; — ko, g5 — po, and
(ko,p0) € F since | and Es are closed. Tet Ay = n{kp). Of course Ay € A
ifA =R If A= {a 00), we have by (F1) that n(x) > a since E| is bounded.
Thus Ao = n(ro) € A. Since the A7 (u) are continuous in (%, p) for each u > 0
(see (5.12)—(5.14)} we have Ay, ,, (u) — hw, po(u) for each w > 0. Then by Fatou’s
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lemma (A, 5o {11)) = 0 (recall that h, () > 0 for all &, p, u = 0) 80 hey g0 {u1) =

0 a.s. By (5.19), then, Var( (fag) | T, < u1) = 0 as. Thus g{fy,) is constant

on {0,u1]. But under (F2), ie, P(u; > 7 > 7_) > 0, this is impossible. Hence

(5.32) holds and then the first inequality in (5.30) follows from the argument used
in (5.15)-(5.16).

Finally, we have inf;>1 Amin(Di) > 2/l > 0, since for i > 1
1 di'+d?2 (D) < h
Amin(D;) AV — (4?2 det(Dy) T Iy

The next lemma gives sufficient and necessary conditions for (F4).

= Aan (D7) < (D7) =

LEMMA 5.5. (i) Let conditions (F1)-(F3) be satisfied. Then for each A >0
and n large enough we have

(5.33) sup | XT(0— 60))° < A?tr(XT D1 X)),
ENL(A)

and for some constant B > 0 not depending on A or n,

(5.34) sup |8 —8y]? < BA® max. tr(XTD X)),
BEN (A)

Furthermore, Apin(Dn) — 00 asn — 00 if in addition (F4) holds.
(ii) If A = (0,00) with n(k) = e® or A = R, then (F4) is implied by (3.11).

Proor. (i) (5.33) is (4.14) of Ghitany et al. (1994}, and (5.34) follows just
as in the working after (4.24) of Ghitany et al. (1994). Furthermore, let v, be a k-
dimensional eigenvector of D,, associated with Ayin(Dy), 1.6. Dy, = Agin{Dn)vn,
and define the k-vector 8,, = 8y + +/A2/vI Dyvpvy. Since 8, € Np(A), it follows
from (5.34) that

A% = Auin (D) | = 60|* < Aumia (D) BA® max tr( X D7 X,).

Thus (F4) implies that Ayin(Dn) — 00 as n — 00.
(i1} Let A = n(x) and p, = ({p). Let A > 0 be fixed. It suffices to show that
(3.11) implies that for all n large encugh

1- pv()F'LU(u‘L)
5.35 max E| sup < oo
(535) 1<i<n (BEN (4) {1 = ppFa(u;))*"

Forn(k) =¢" = 875 it follows from (5.33) that 4Xg —3X = eF0 {4 — 3elr—mm}) >
0 for all n large enough and 8 € N,,{A). Hence, from the Holder inequality,

[( ) expl-Noaw)a(@)

= (u“m)a(y) exp{ (A —)\) qly )}oxp{i)\qw)}ﬂ(dy}

1/4
< (/ a(y) exp(—[4Aio — 3”9(3)))#(‘19))
(Ui,OC)

3/4
(f( )a(y)exp(—)\fl(y))#(dy))
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for 8 in N,(A). Therefore, we have

= 3 1 _.
Fio(w;) < exp (Z[Q(Am) —g(M]+ Z{Q(AiO) ~ g(4Xio0 - 3/\)0 F;M(Uf:)-
By Taylor’s expansion, we have

g A0} — g(N)| = |k — saol |7 (&) |9 (n{R:)),
and

lg(hio) — g(dhio — 3A)| = 3| — raolln' (Ra)lg’ (4hio — 3n(Fa))

where %; and #;; are on the line segment between s and ;5. So by (5.33) and
(3.11), we have for all n large enough and 6 € N,(4)

Finlu) < 2?‘/‘3/4(%) and
{5.36) —p. (p—pic) gpio 70
1—pio 1+e e 1+ 2e -

| = pp 1 4 erio T 1+ efuw

Therefore, {5.35) holds as (5.36) implies that for all n large enough and 8 € Na(A)

1 — pioFio(u} _ 1 — pio + pioFiolus) - (I —pin) Fio(u) <4 0
Cp )~ (0 pBm)A = 1-p, | @)

6. Proofs of Theorems 3.1-3.2 and (3.6) of Theorem 3.3

We apply the general results of Vu and Zhou (1997). In our case the g(Y;, )
of Vu and Zhou (1997) is the log-likelihood of the i-th observation with Y; replaced
by ¢;. Obviously, conditions (A1)-(A3) of that paper are satisfied under (F1}. The
matrix V in (B4) of that paper is simply I in our casc. Since Apin(Pn) — oo as
n — oo by Lemma 5.5, we can apply the results in that paper provided that the

observed information matrix can be approximated by the expected information
matrix in the sense that

(6.1) sup  |DIVRFRO)DIT? — L)y D0 foreach A>0
0% c[Np(A)?

and that the score function is asymptotically normal in the sense that for any unit
vector &,, possibly depending on n, in Rk,

(6.2) T D28, (60) B N(0,1).

In (6.1), |- |1 denotes the sum of the absolute values of the clements of a matrix,

(6.3)  [No (A = {0* = (6'1,672,6%,6%) 1 07 € No(A),r,s = 1,2},

and
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Then Theorem 3.1 and the asymptotic distribution of d,, it Theorems 3.2-3.3
follow from Theorems 2.1 and 2.2 in Vu and Zhou (1997). For the asymptotic
distribution of 8, given in (3.3), let u be a unit vector in R*. Recall that 8,
maximises the log-likelihood on N,{4) WPAL. Thus Sn(én) = 0 WPAI1 as the
log-likelihood is concave on N,{A) for all n large enough by (6.1). Hence there
exists, by Taylor expansion, a @, on the line segment between 8,, and 6 such that

w' D28, (00) = ut D28, (00) — uT DIV2S,(6,)
= u" DY2F(8,) (6 — 85) + 0,(1)
=u{I + D, Y3{F,(8) — DYDY} D6, — ) + 0,(1)
= uT {Tj + 0p(1)} D3/* (0 — f0) + 0,(1)  (by (6.1)).

Thus 6, is asymptotically normal by (6.2). It remains to prove (6.1) (6.2) from a
series of lemmas below. O

LEMMA 6.1.  Assume that (F1)-(F4) hold for the interior case or (F1)-(F5)
hold for the boundary case. Then there exists a constant K such that forr, s = 1,2,

(c1) F ( sup | f7°(6) - f:swu)) < KU\ Jur(XT D' X;)
DeN,(A)
for all n large enough;
(C2) E(L77(00)17%) < KU’
and
(C3) E(fsi (00} < KU/,

ProoF. The details of the proof are fairly standard and are omitted here. O

Note that the constant K in {C1) may depend on A. Let D2 X, = w; =
(w1 wis) where w,,. € RF, r = 1,2. Hence
tI‘(.XZ-TDTZIXi) = |'UJ/,§'[ [2 + |“1‘i212.

For any unit vector w € R* and r,s = 1,2, let aff = wTw;,wlu Then for

s = 1,2,

w2+ i)

(6.5) la72| = |ul wiwhu] < JwJw] < <tr{ XD X;).

LeMMA 6.2. If (F4) and (C1)—(C2) hold, then (6.1} holds.
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Proor. Suppose that (F4) and {C1)-(C2) hold. We first prove that for
(rs) = (1,2)

(6.6) Za ) —d) 50 as noo o

Let € > 0 be given. Define A;, = {laf; f7*(00)]| > ¢} and g = 14 f7*(fy). Then
frb 90) d:S) >

1) ( )
()

1=1
E :am Q:u'n - gm

H:»(
i=1

Since by the Markov incquality

(UAM) <ZP<Am)< 3/2Z\a B2E(| 72 (00) ),

while by the Chebychev inequality
S €
2

4 o
S 6722(&12 2V&r(gzn)

i=1

- Z Q2L L7 (B0)) > ) |

iTL qzn o [E(g:;))

4 n
S E_Z.Z( i Z[E( ggn = ,3/2 Z|a, |3/2[E ‘f?”‘?{g )‘3/2)

i=1

and similarly

7L

1 .
Z ‘a I[E(IA jrs 80 = —/~ Z m, %/2E(|f‘4b( [})|3/2):
(6.6) follows from (6.7), (6.5}, (C2) and (F4).
Now we can prove (6.1). Let 0* € [N,{A)]* and write
D VRF (07D, = L+ M (B0) + EX(07)
where

E5D(B0) = DV Fo(fy) — D.}D' 2

and
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E7(0°) = D VA{F (0% — Fu(60)} D, "7,

T

Let u be any unit vector R*. Observe that

(6.8) WTEMN o)u =" > ai(f*{60) - &)
i=1 1<r,s<2
and that

(6.9) sup  [uTED(O") U\<Z > lafal sup (07 = £ (60)].

0 €[N (A)]* =11<r,s<2 972 E N (A)

Thus (6.8) tends to 0 in probability by (6.6}, and (6.9) tends to 0 in probability
by the Markov inequality, {6.5), (C1) and (F4). Hence (6.1) is proved. O

LEMMA 6.3. If (F4) and (C3) hold, then (6.2) holds.

Proor. Let £, be any unit vector in R* and define Y, = ETD;1/2X- 5,(0y)
for 1 <4 < n. Let o2 = Var(Y,) = 2D 2 X, D XTD“T/QJ;“H. Thus Yin,
1 < i < n, are mutually independent for each n, E(Y;,) =0, and 02 = 67, +--- +
o2, = 1. It follows from (C3) that

Zfﬁ(w )<ZIE< m(5:(00)57 (B0))ET D 2 X X T D, T, P12)

< T[E (00D (X T D X)) < KZ U, tr(XT DY X))

i=1

By (F4), the last expression tends to 0 as » — oo, hence (6.2) holds by the
Lyapounov theorem in Billingsley ((1968), p. 44). O

7. Proof of (3.7)—(3.8) of Theorem 3.3

Recall that vo = po = 1. Also recall the partitioning of the information matrix
D, in (3.5) into components Dy, gn, and ¢,. Note (2.15) and (3.5) imply

T

i=1

Partition a k x k real symmetric matrix ¥, and a k x k real matrix F, as

o 1“.‘—‘-” f’i’?‘1 . ' . ’V-l:;‘n fﬂ‘}
(7.2} F, = [fir' o, | and F, = LFL;{ i |

where F), a_nd i‘n are ky x ki, and f, fn, and i~1n are ki-vectors, ky = k& — 1.
Denote by S, (#g) the ki-vector (Sn1 (o) ... Suk (60))7
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Ny _T/2 P
LEMMA 7.1. Suppose that Dy l/zF,nDn T2 B 1. Then

b;1/2FnD;T/2 f, Ikzl and [le},l;k = (J- + O'p(l))[D;J]kk'

Also if Dy, V28, (60) 2 N0, I), then Dy /25,(80) D N(0, I,).
Proor. This is easily obtained from standard arguments. O

The next lemma is a key result since it specifies when an interior or boundary
maximum of the likelihood occurs. For any fixed A > 0, define a subset of R* by

T

(73) Vo(4) = {8+ (6= 00)" Dl — 80) < A%y = 70},
{

6 (8-
8= (BT )T (B Bo)T DB - Ba) < A°}.

LEMMA 7.2. Suppose conditions (F1)-(F5) hold.
(i) When %, < Yo, O is an interior stationary point of Lo (0) WPAL, ie.,

(7.4) P(Sp{fn) £ 0,%n < 70) = 0 (n — 00).

(ii) Let 8n be the mazimum of the log-likelihood function in Ny (A). We have

(7.5) P(Sp;(Bn,v0) =0 forallje Lk} =1  (n— o0),
and
(7.6) P(Sn; () =0 forallj € [Lki]) =1 (n— o0).

(iii) An = 7o of and only if Snx(Bn,0) = 0 WPAL

Proor. (i) If an MLE (;‘n exists and ¥, < o, 6, is an interior maximum of
L£,(8). Then (7.4) follows from (F1) and Theorem 3.1.

(i1) It is easy to check that Amin( D) 2 Amin(Dy,). Using this and Lemma 7.1,
(A1)-(A3) and (B1)-(B5) in Vu and Zhou (1997) hold for the parameter space
6 =R, D, F,, S,. Then (7.5) follows from (F1) and Theorem 3.1 as B is an
interior maximum of £,,(3,vs). Since %, = -y implies that /3,1 = f,, (7.6) follows
from (7.4)-(7.5).

(iii) Suppose that én exists and 4, = v. Then we have ﬁn = B,,,. Let the
function h, on 8y = (ax, ol be defined by hn(z) = Ly (Bn,z). Then the function
h, has a maximum at 2 = 7. Thus Snk(ﬁn,'yg) > (0. Since 6, exists WPA1 by
I'heorem 3.1, we have P{Snk(_ﬁn,'\m) <0,% =%}t — 0.

Let 6, = ([3,“’)/@). If £ > 0 is given, then there exists A > 0 such that

(7.7} P{d, € N!(A) and 8, € N, (A)} > 1 —e.

Suppose that b, € N {A)and 8, € N,(A). Then there exists 8, € Ny (A) between

~

g, and 6, such that

(78)  La(fn) = Lol0) = (B — 6,)5u(60) — %(én )T o (6) (B — )



650 H. T. V. VU ET AL.

Since Sp;(8n) =0, j =1,...,k, by (F1), it follows from (7.8} and (6.1} that

(7.9) {én - gn)Sn(en) = (fn — 'YO)Snk(ﬁm’}’G) >0
if 4n < vo. Hence P{Snk (8,10} = 0,9n < Yo} < & for all n large enough. O

Let

(7.10) by, = Vén — 95 G Q'n

and
(711} ol =0,[0...0 1D = /e, — gT G lga[0...0 1D T/2,

7L

LEMMA 7.3, v, is a unit vector. Also

- e ;
(7.12)  [F sk = (@~ Ay Fp f)7Y (D ke = (en — gl D gn) ™! = 132,
and
Sm-g(ﬁg)—hTf“ 3 (90
- h’TF'rL f'n

(7.13) [0...01|F;1S,(6) =

DV E. DT E L then

(7.14}) bal0...0 1P S, (80) = vI D Sn(86) + 0,(1).

Proor. It follows from a formula for the inverse of a partitioned matrix
(Press (1982), p. 26) that the k-th row of F7 ! is

- - —1 .= —1
—pL = hl ~-hTF 1
(7'15) _"n(anTi n) ~1:_1~ — { 73 :—1}~ s
@n &n - hz:Fn le Ei?l - hEFTL jﬂ

The equality in (7.15} is obtained by observing that

- —1
= ; T = —1 }
(716) (Fn o fn.h'n,) — Fn fnl F
(Ln nF fn

Similarly, the k-th row of D1 is b, 2[~¢gZ D! 1]. Hence v, is a unit vector and
(7.12}-(7.13) hold.

Now suppose that D;l/zf‘nD{T/z il L. Let F7' =D, '+ D, g, Dy ?
where B, = 0,{1) is a k x k real matrix. Then

(7.17) bal0. . 0 1)F71S,{(00) = oI D7VY25,(00) + vl B, D728, (60).
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Since v} B, Foasn— 00, (7.14) follows from {7.17) and (6.2). O

Now we complete the proof of {3.7)-{3.8). We will work throughout on the
event {¥, < Yo}. By Lemma 7.2, S5,,(6,) = 5,(0n.%n) = 0 WPAL on this event.
By Taylor expansion, we have

(7'18) Sn(eﬂ) - ( 0) -5 (ﬁna"/O) + 5n (GH:WO) - (Bn,:{{n)
ST BB | . [(61%):
; [ FR2(E22T (B, — Bo) ] ) Z [ FR(62%) ]

where 811 and 62! lie between 0y and (3,,70), and §12 and §22 lie between (n, vo)
and 8,,. Define

1

(7.19) F,=> o], n_Zj” (824)z;,
=1

(7.20) ﬁziJW%% @:iﬁ%ﬁ

i i=1 1‘=1~

qay R |Ep Rl oyog[RG) R g
b Gnl o LAY fEE)]

Thus

(7.22) 5,(0y) = Fpn(0, — 0g).

Since Dy 2 F, DT 5 I by (6.1), it follows from (7.22) and {7.14) that
(723) \/ Cn — q;{l—)n_lgn(’?ﬂ - ﬂf(]) = bn[ .0 ]-]F_IS (90)
- ‘UI D 1/28 (8() + Op(l)

on {¥, < Yo}, with v, doﬁncd by (7 11).
Therefore, P{4, < vo,vL D 5 {60} > 0} — 0 as n — oo. Suppose that

(7.24) P{4n = 70,0l D7Y28,(00) < 0} -0  as n — oo

Then it follows from (6.2) that for z < 0

lim P {
Fe— X0

Thus (3.7)-(3.8) follow from (7.24). Now we prove {7.24). Since S, (9,,) =0 WPAL
by (7.5). there exist by Taylor’s expansion 0, and ¢,2 betwecen 6, and 6y such

—%Dn&xnn<z}=WN5wy
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that

(7.25)  S,.(80) = Sa(B0) ~ Sn(0y) = Z%‘{Sﬂ(é’o) ~ 5:1(6)]

= Z 'i ( nl)ﬂ? -7' (JBn ﬁO) = ipn(Bn - ﬁ())

i=1
and
(7.26)  Sukl(fn) = Snkl00) = D fP2 (B2}l (B — Bo) = Suk(80) = g (B — Bo)
=1
where

z ll(ﬁnl)l 3;' hn — Z 32(5752)_@1’ and Fn _ |:Fn hnil .

T
pa—t = hy, ¢n

Then (6 1) 1mphes that D, 1L/2F D—T/Q 5 I,. By substituting F,, Fn, h,, and
en for Fry, Fp, by, fo and @, into (7.13)-(7.14), it follows from (7.25)—(7.26) that

s . . T - —1_
(7.27) bnsnk(aﬂ) e b"’(S”k(GU) b, F{l Sn(al)))

- - —1. . —1.
en — hiF_ by en —hLF, Ay
— o7 D7Y28,(00)

By Lemma 7.2, the event {%, = Yo} occurs if and only if {Snk(én) > 0} occurs
WPA1L. Thus (7.24) follows from (7.27}. This completes the proof of (3.7) -(3.8). 0

8. Proof of (3.9) of Theorem 3.3

_ Suppose that Df;,/  and D}L/ % arc the left Cholesky square roots of Dy, and
D, and define

rplr poiz,
(8.1) e e
T

where b, is given by (7.10). It is easy to check that @, Q} = I. Since the inverses
and products of lower {upper) triangular matrices are also lower {upper) triangular
matrices, ), ! is a lower triangular matrix while QT is an upper triangular matrix.
Thus Qn must be diagonal because QY = @, '. Moreover, the diagonal clements
of @, can only be 1 since they arc obviously positive and since @, is orthogonal.
Consequently, @, = I.

Assume from now on that (Fl) -(F'5) are satisfied.

Consider the distribution of ,377 when 5, = Yo Let D LSa(0a) =

- T
(XI ¥,)" where X, is a ky-vector and Y, is real- valued.

. Sf (90) |:Xn] Dan + Yn@n:‘
Snith) = " =D, = . Ny .
( 0) {Sﬂ»k(go)jl l Y‘n q;{ X, + CnYn
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Recall that b, and v, are defined by (7.10)-(7.11). Since it is shown in the proof
of Lemma 7.3 that the last row of D! is b ?[—g? D' 1], we have

(8.2)  vID;'?8,(8y) = bul0... 01D Sn(80) = b, (—gl D' v0)Snlb0)
= b (-9 Xy gI D g Yn + gf X 4 ca Vo) = bp Yo

Let Z, = (DI X, + YuDi 2007 0,Y,)T = QI D.?[XT YT where @, is
defined by (8.1). But then QI = I, if DI"* and DY /2 are the right Cholesky
square roots of D,, and D,,, as we showed above. It follows from (6.2} that

(8.3) Z, = DI7(XT v,)T = D7V%S,(00) 2 N(0, I).

Recall that Z = (X7 ¥)T ~ N(0,1;). Let B be a Borel sct in R*. Since the
event {¥n < 7o} occurs if and only if the event {Y;, < 0} occurs WPA1 by (8.2),
as shown in the proof of (3.7) and {3.8), (3.9) follows from {8.1)—(8.2) and (6.2)
via

lim P(DY/*(6, — 6o) € B,4n < 70)

= lim P(D;Y%8,(8,) € B, Y, < 0)
= lim P(D V285, (8) € B, D, V?8,{80)]s < 0) = P(Z € B,Y <0).
L — DO
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