Ann, Inst. Statist. Math.
Val. 30, No. 4, 603-626 (1998}

PARAMETRIC STATISTICAL UNCERTAINTY RELATIONS AND
PARAMETRIC STATISTICAL FUNDAMENTAL EQUATIONS

T. MATSUNAWA

The Institule of Statistical Mathematics, 4-6-7 Minami- Azabu,
Minato-ku, Tokyo 106-8569, Japan

{Received Novernber 21, 1996; revised October 15, 1997)

Abstract. Multivariate parametric statistical uncertainty relations are
proved to specify multivariate basic paramectric statistical models. The re-
lations are expressed by inequalities. They generally show that we cannot
exactly determine simultaneously both a function of observation objects and a
parametric statistical model in a compound parametric statistical system com-
posed of observations and a model. As special cases of the relations, statistical
fundamental equations are presented which are obtained as the conditions of
attainment of the equality sign in the relations. Making use of the result, a
generalized multivariate exponential family is derived as a family of minimum
uncertainty distributions. In the final section, several multivariate distributions
are derived as basic multivariate parametric statistical models.
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1. Introduction

One of the most important things in statistics is to build a suitable statistical
basic model by making effective use of relevant observations based on adequate,
real or imaginable experiments. The basic model means an intellectual statistical
structure constructed from: data with respect to our observational object. It does
not mean an approximation to something imagined to be true. Farther, it does not
mean a population distribution nor a true one, too. These thinkings apparently
differ from the usual concepts for statistical models. Nevertheless, this author
considers that we should make efforts to construct sound statistical theories of
model buildings without assuming true distributions or population distributions,
since we cannot consider and verify the objective existence of such distributions.
If we succeed in developing such theories, we will be able to get greater recognition
among many scientists who challenge the construction of suitable scientific models
based on data for new phenomena in various fields.
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604 T. MATSUNAWA

Incidentally, contemporary statistical fundamental theory which mainly
stemmed from R. A. Fisher has not given satisfactory implements for us to han-
dle this important subject. Fisher {1922} stated the problems of specification
among the main points of statistical analysis. In his case, this meant a choice of a
mathematical form of population distribution with parameters. He regarded this
problems as being entirely a matter for the practical statistician. Such a nega-
tive understanding towards the problems disappoints us. No idea of resolving the
problems was given by him, except for instancing the systems of frequency curves
by Karl Pearson {1895, 1916). However, I should remark that Fisher (1936) ex-
pected to the possibility that an even wider type of inductive argument may some
day be developed, which shall discuss methods of assigning from the data the func-
tional form of the population, although he insisted on the existence of population
distribution.

Concerning the above subject, Matsunawa {1997) considered specifications of
several model distributions for observations by resorting to a modified maximum
likelihood method with a specification equation and an estimating equation. In
this article, another systematic method to specify parametric statistical model
distributions in the multivariate case is presented. Namely, a parametric stalisti-
cal uncertainty relation and parametric statistical fundamental equations are pre-
sented. With the help of the equations, many standard multivariate distributions
can be specified as relevant statistical model distributions. The statistical uncer-
tainty relation in this paper formally resembles the so-called Cramér-Rao variance
inequality of an estimator for the unknown parameters of underlying population
distribution which is assumed to exist. The inequality for a single parameter
was essentially given, among other important things, in the paper by Aitken and
Silverstone (1942) as a minimal problem in the calculus of variation. However, the
formulation and wnderstanding of our uncertainty relation are essentially different
from the background of the existing variance inequalities, although both of them
are mathematically nothing but examples of Cauchy-Schwarz inequalities.

As mentioned above, the existence of population distributions or true distri-
butions for observations is not assumed in this paper. Instead, observation devices
are considered, as mentioned later. It should be remarked that the main concern
of this paper is not to estimate the unknown parameters as in the usual estimation
theory, but to specily the functional forms of the parametric statistical fundamen-
tal models. Thus, the aspect of the statistical models in this paper is very different
from the usual statistical fundamental theory. As a result, the relation is under-
stood to describe the uncertainties of our observational objects and observation
devices (= our models). In other words, it is shown that we cannot determine cor-
rectly and simultaneously both of a function of observation objects depending on
system parameters and a parametric statistical model within a compound paramet-
ric statistical system. Besides, there is another remarkable structural difference
between the Cramér-Rao inequality and our uncertainty inequality (relation} in
respect to the number of random elements related to each inequality. The former
inequality is generally composed of a random sample having plural units of random
elements, because it is used for the evaluation of the variance of estimator of a
unknown parameter. On the other hand, the latter inequality is in principle made
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up of only one unit random element as in the uncertainty relation of quantum
mechanics, which seems to reflect the sole basic model behind the so-called i.i.d.
random observations. These facts also show that the parameter estimation and
the model specification are basically different problems from the one Fisher (1922)
stated. Tt should be also noted in advance that the equation obtained when the
equality sign holds in the Cramér-Rao inequality shows the relation between an
unbiased and sufficient estimator for an unknown parameter of pre-assigned dis-
tribution and the marginal distribution of the estimator. On the other hand, the
object of the parametric statistical fundamental equation in this paper is the equa-
tion to obtain the functional form of an unknown statistical basic model. Namely,
we know that the roles of the two equation are completely different.

Needless to say, the uncertainty relation was first presented by Heisenberg
(1927) in quantum mechanics between a coordinate and its conjugate momentum
in a completely different concept from our statistical one discussed later. His un-
certainty relation is chiefly concerned with the microscopic physical world (cf. also,
Bohr (1928)). On the contrary, ours describes the relation between measurement
observation and its statistical measurement device { = model) in the macroscopic
world. Moreover, the notions of physical quantity are completely different and the
basic probability concepts are quite different between the two field. Nevertheless,
the two uncertainty relations are closely conneected in many respects. So, in the
future, it is expected that the rclations between the two worlds will become clear,
if they exists.

In the following section some notations for treating random matrices and nec-
essary assumptions for models are introduced. In Section 3, parametric statistical
uncertainty rclations in the multivariate case are presented. New definitions are
presented for some statistical terminologies such as likelihood and Fisher’s informa-
tion to make clear the concept of statistical uncertainty. A statistical fundamental
equation are also given. Making use of the result, a generalized multivariate ex-
ponential family is derived as a family of minimum uncertainty distributions. In
the final scction many standard multivariate distributions are derived.

2. Notations and assumptions

In this paper, we chiefly consider multivariate parametric statistical models.
To this end, we introduce some definitions and notations. Further, we neced to
prepare a few assumptions on the distributions of the models.

Let G = (g1,92,...,9,) be an m x n matrix with column vectors g; =
(g1, G2is - - > gma)t {8 = 1,2,...,n). Pick up m; elements from the vector g; and
make a sub-vector g = (g}, 9%, 0m:)", for each i, Let us now define the
vectorization of the matrix G by stacking the elements of the sub-vectors:

_ * * * *® & * * * * i
|G> - (9’]11921: v !gmllrngJg‘Z'li vt ’gmgm' -1 91n:92n, "1gmnn) ’

where 3, m; = k is the dimension of this column vector. We denote its transpose
row vector by {G| [= (|G})]. In multivariate statistical analysis, the following
threc types of vectorizations of matrices are of importance: (i) Vectorization by
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picking up the & = mn full elements of an m x n matrix X and then stacking
them. We denote this vectorization as

_ . 4
iﬂSX) = (2711,3?21,---,Cﬂmhﬂflz,ﬂ?zg,---:$m2,---,$1n,$2m---,$mn)

= (s X ).

(ii) Vectorization by picking up the & = m{m + 1)/2 triangular elements of an
m x m symmetric matrix ¥ and stacking them as

. . t
|tl’fb Y) - (y119 Y2ls ey Ymi1s Y22,y ¥m2y - Ym—1,m—1, Ym—1,m, yﬂL,Tn)

= ({trs Y],

(iii) Vectorization by picking up the £ = m(m — 1)/2 sub-diagonal elements of an
m x m skew-symmetric matrix Z and then stacking them as follows:

|sds Z) = (321, Z3ly---32mls 232+ -1 8m2;y - - -1 Bm—1,m—2, Tm,m—2; zm,-mfl)t
= (sds Z})!).

Corresponding to the above notations, we will use the expressions X € G,
Y € S and Z € K in Section 4, where G, 8 and K denote the family of gen-
eral rectangle matrices, the family of symmetric matrices, and the family of skew
syminetric matrices, respectively.

Now, let |A) be a k-dimensional random vector by vectorizing an m x n
random matrix A. Assume that |A) is defined on the measure space (RF, B*, 1),
where R* denotes the k-dimensional real space (or, respectively, the set of all k-
dimensional nonnegative integer points), B* stands for the o-field of subsets of R¥
and y is the Lebesgue (or, respectively, counting) measure on the measurable space
(R*,B¥). Here it should be noted that if there is no confusion, we will sometimes
use the matrix notation A instead of |A) in the following discussion. We will also
use the notation A to express the realization of the random matrix A, as usual in
multivariate analysis.

Let us consider a family of parametric model distributions consisting of the
probability measures defined on the measure space. Supposc that the family is
parametrized as

P={Piie®cSa AcSa},

where O is a w » v primarily interested parameter matrix and belongs to a pa-
rameter space Sg {C RF). A is a sccondary concerned parameter matrix which is
a member of another parameter space Sp. We shall call @ a primary parameter
matrix and A a secondary {or a hidden) parameter matrix (if it exists). Assume
that the family P is dominated by the measure 4 so that

P4 A(dA) = p(A; 0, A)u(dA) (O € Se, A € Sa),

where p{A; @, A) is an imaginary a Radon-Nikodym derivative of Péi’ A Wwith re-
spect 10 the measure . The reason why I said imaginary is that we may not find
a suitable solution for the parametric statistical fundamental equation proposed



STATISTICAL UNCERTAINTY RELATIONS 607

iater for p(A4; ©, A). In such a case, our operation ends in failure and eventually
we are not able to construct a parametric basic statistical model. Such unfortunate
situations may happen when we are not able to give an adequate expression of the
observation error A, an appropriate measurement scale & and/or a normalized
constant ¢ to the candidate function for p(A;®, A). Such being the case, we may
compare p(A; @, A} to an imaginary observation device when we want to measure
observation objects. (The device is understood as a scaffolding distribution in
Matsunawa (1997), where univariate parametric basic statistical model buildings
are discussed by a sort of modified maximum likelihood method.) Well, even if we
prepare an observation device in advance, it may happen that we cannot suitably
measure the observation objects, in spite of our initial expectation. If, however, we
accomplish our task with the help of the device, as we expected, i.e., p{A; ®, A)
iz found as a proper pdf, we say that we succeed in constructing the parametric
basic statistical model and we represent it by the same notation as that of the
observation device p( A; @, A).

We now make the following assumptions:

(A1) ® and A are functionally independent, and A is not dependent on these
parameters,

(A.2) Sg is either k-dimensional Euclidian space or a rectangle in it,

(A.3) Op(A4; 0, A)/00 exists with all finite elements P-a.s. for all @ € Sg.

Lot @{A; @, A) be a v x v matrix-valued function of A, ® and A (if it exists),
which is our ebservation object function. We further assume that the function is
partially differentiable with respect to @. Corresponding to the function, let us
consider a matrix-valued approzimate function P(A;®, A) which has the same
order as that of ®&{A; @, A). The approximate function is also assumed to be
differentiable with respect to ®. There is a special case such that #(A4; O, A} = A
and W(A;0, A) = &, which is an important typical case. Now, put

A=A(AB AN =P(A,60.A) P (A;0A),

which means the measurement error function when the observation object function
P is approximated by the approximate function .

Let us consider the ability of the parametric model ( = our observation device)
to measure A. In order to do that, we regard the so-called likelihood p(-; @, ) as
a performance of data deseription by the model. It should be remarked that,
according to the above interpretation, the usual log likelihood function

Inp(4;0,A)  [=1n(P5 A(dA)/u(dA))]

can be considered as the information specific intensity, because it yields gencral-
ized Kullback-Leibler information per an observation matrix by taking cxpectation
with respect to the model distribution. This aspect naturally leads to the statisti-
cal concept of entropy, but we will not enter the topic in this article (cf, Matsunawa,
(1993)).

We further need to grasp the variation of the performance of data description
p(-;®,-) when the primary pararmeter matrix © has small changes. In order to
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this we consider a performance specific intensity per an observation matrix with
respect to ©:

P = P(A;0,A) =3Inp(A4;0,A)/00 [= (dlnp/dO,;)|.

Of course, this is well known as the score function introduced by R. A. Fisher,
but our newly introduced terminologies are useful to relate statistical fundamental
theories to other closely related sciences such as physics and thermodynamics (cf.
Kapur (1989)).

Throughout the paper, we assume that there exist some nonsingular matri-
ces defined by the following expectations by the Radon-Nikodym derivative of
p(A; ©, A) with respect to measure p:

¥ := E[|AY{A|] : (the mean fluctuation of the cbservation object

—: the uncertainty on the measurement of the object),

I := E[[P){P|] : (the mean fluctuation of specific intensity of the model-
performance = a standard scale unit for measuring the error
by the model =: the uncertainty on the model-performance),

Jt:= E[JA}{P| : {the mean fluctuation by interaction from the object

to the model),

J := E[|P){A|] : (the mean fluctuation by interaction from the model

to the object),

K = I{J")™!: (an adjusted scale unit for measuring the error by the model).

The meanings explained in the parentheses are there to help in our later statisti-
cal discussion. For example, our understanding of the quantity I becomes more
suitable than the usual one of Fisher’s information matrix.

3. Statistical uncertainty relations

Under the set-up described in the preceding section, we have the following
statistical uncertainty relation:

THEOREM 3.1. For any ©® € Se, A ¢ Sa and'y ¢ RF the following
quadratic form inequalities hold:

B1) (@Y = Tyl Ty, resp (T I T ) 2 B -
We symbolically denote these as
(3.2) STV T >0, [resp. JTRHITH X7 0]

The equality signs hold if and only if there exzists some measurement precision
matrir K = K(©,A) = I{J)™ 1 #0 [resp. L = L{O,A) = JE 1 £ 0] such that
the following parametric statistical fundamental equation holds:

dlnp(A;0,A)

(3.3) o

)= KO NAAKOA) o)
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Proor. Let us consider a k-dimensional random vectors
(3.4) d=|A)—JUYP), [resp. 6= |P) — JE A}

Since |d){d| > O (p-ae), for any nonzero vector ¥y € RN, we get
{y|E[|d){d|]ly) > 0, where the cquality sign holds if and only if d = O« 1. There-
fore, we may only evaluate E[{d)(d|] > Ogxx:

E[|d){d| = E[{|A) - J'IT7P)}{{(A] - (PII1)!J}]
= E[|AYA[] - E[ANP{I™)'T — I E[PYHA]
+ JHLEPYPII DT
=N -JHIWT - T+ T =2 - TN s O
It is clear that |d){d| = Opxy if and only if d = {A) — JUT7HP) = 0y (p-

ae.). Thus, [P) = I(J})"HA) = K|A) [resp. |P) = JZ }A)], (p-a.e.). Namely,
we get the desired Equation (3.2). O

Related to the above, we have the following corollary:

CoRrROLLARY 3.1. Under the same conditions as those in the above theorem,
we have an uncertainty relation in terms of a formal matriz quadratic form: for
any k X k real symmetric matriz Y, it holds that

YHE - JHIIVY > Opk.

PrOOF. Since, from Theorem 3.1, y* Xy > ¢yt J*I~1Jy for any y € RF, pre-
and post-multiplying a scaler value y'y to the both sides of the inequality and
putting y'y = Y = Y*' we get ' Y!E Yy > ¢y Y J'I-'JYy, from which we
have the matrix quadratic form expression of an uncertainty relation. O

Now, by integrating the parametric statistical fundamental Equation (3.3),
we have the following minémum uncertainty distribution:

THEOREM 3.2.  Under the same conditions as those of the preceding theorem,
we get

P(A:©, A — o{A; A)oxp {/(d@|K(G),A)|A(A;®,A))}
=¢(A; A) exp{[(A(A; O, A)1Kt(6,A)d(-)>},

where {d©)] [resp. |dO)] stands for an l-dimensional differential row [resp. column]
vector based on © = (0;;)ux. given by

(dO| = {|d@)) = (db}y, ..., d05 4, db],, ... db,,, ..., d0Y,,...,d8, ),

uyly w21
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where 0 u; = L. c{A;A) > 0 denotes a scaler-valued function of A and A, if
it exists, satisfying the condition

| play@. Autdian =1,

where pf{-} designates the o-finite measure on the measurable space (R, B*), and
(d|A)) stands for a volume element of the k-fold integral given by

_ * *® * *® * *
(d|A)) = dafy -~ - dag,, 1 daly, day, 5 -+ dag, -~ dag,
where A = (@ )mxn and ¥ . m; = k.

Remark 3.1. It should be noted that the integrand in the expanential part
means a total differential of some scaler-valued function. In next section, we devise
ways of integratings from some aspects of matrix calculation.

4. Specifications of multivariate distributions

Tn this section we construct basic multivariate distributions by making use
of the previous theorem. First, we give some matrix-valued parametric statistical
fundamental equations corresponding to the vector-valued Equation (3.3). To do
this, let us consider the following matrix differential operators with respect to
underlying parameter matrices:

(i) For a general real rectangular matrix X = (Zi5)mxn € G,

J a 7}
8:[:11 f):mg 83:1n
a 3 ‘ : 0
'S ; g
(4.1) — = ( > = | fxm Oz Gon
BX (3.’,!’3%'_.)' mxn . : .. .
& b d
Omi  OTmo O%mn
(i1) For a real symmetric matrix ¥ = (4i;)mxm € S, (915 = ¥5:),
é] 1 ¢ 1 8
Y11 2 dyio 2 0yim
. ) 1 9 G, 1
sy X (N | 2n m 20w
( ) ay a (’}y«,gj AT - - : . : "
L8 19 9
2 51}'1 s 2 8y2m, 59‘mm

Finally, (iii) for a real skew-symmetric matrix Z = (2zij}mxm € K, {z;; =

—2ji),

0 1 4 _1_ a8
2 ({)312 2 83§m
1 & 1 ¢
(4.3) o ( % ) 208 0 58;
" e = 12 2m
oz azij X : : :
1 1 0

20z lrn 2 8221&
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Next, we need to introduce the folowing matrix differentials corresponding
to the above cases. For X = (2;j)mxn € G,

dx11  driys - dr,
dxm dzos -+ drg,

(4.4) dX = . : = (dzi;)mxn
dﬂ’}ml de'mQ s dﬂ:m.n

and {(dX) = AL} Al dai; is the exterior product of the mn clements of dX .

g

For Y = (yij)mxm €8, (45 = ¥5i),

dynn dyiz - dyim

dyar  dyan - dyy,
(4.5) dY = . . ) ) "

dylm dme s QY

and (dY) = N\ <i<j<m dyij 1 the exterior product of the sm{m + 1) elements of
dY. -
For Z — (Z-L‘j)-me - (_Zji)mJXm S K:

0 dz12 cdzm

. —dzio 0 - dagy,

(4.6} dZ = . '
—dz1m  —dzan, - 0

and (dZ) := A ;<. dzi; is the exterior product of the im(m — 1) elements of
dZ.

Under the above sct-up, let us consider matrix representations of the para-
metric statistical fundamental equations. From Theorem 3.1, we expect to have a,
corresponding matrix-valued equation of the form

Olnp(A; B, A) t
e _=ENO,A)AT(4;0,A

= (©,M)A(4;0. A),
where AT(A;0,A) and EY(O, A) are a modified measurement error function
and a modified precision matrix, respectively, corresponding to A{A;©, A) and
K (©,A) appearing in (3.3). We have the following result.

TUEOREM 4.1. The following matriz-valued statistical fundamental equa-
tions hold:
(i} For a real primary parameter matriz ©1{m x n) and a secondary param-
eter matriz A1, we have a parametric statistical fundamental equation

Alnp(A; 0, Ay)

(4.7) 5@,

I

Ei(@, A} {|A(A5; 8, M) B L) (p-ael),

where @I, 1s the Kronecker product by the unit matriz of order n; |Aq)(mnx1) is a
measurement error vector. The matriz 21 = 2, (K (@1, A7) = (1&,;)(m x mn?)
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denotes the precision matriz depending on K1(©1,A) = (1Kq5)(mn x mn) in
(3.3) and satisfies the relations

(4.8) (& rn(-1) = 1KitmG-ny (1 <i<m, 1<j<n; I=1,...,mn).

(ii) For a symmeiric real parameier matriz So(m X m) and a secondary pa-
rameler motriz Aq, we have a parametric stafistical fundamental equation

0% Inp(As; @3, Ag)

004
= B(K2(O2, A2))(| trs Az(A2;02,A2)) & In)  (p-a.e),

(4.9)

where Aqx(m X m) is o symmetrz’c measurement error matric, B =
E:(Ka(©)2,A0)) = (25”)(771 x +m%(m Jr 1)) is the precision matric depending
on K3(®2,A2) = (sKap (Qm(m + 1} x gm(m + 1}) in (3.3) and satisfies the
relations

(4-10) 2£i,j+m{iﬂ~1) = 2£j,i+m(lf1) and 2§i,j+m(H) = 2B pm(f-1 -5 -1)/2,0

forl<i<m,1<j gm;lzl,...,%m(m+1).
(iii) For a skew-symmetric real parameter matriz ©3(m xm} and a secondary
parameter Az, we have a parametric statistical fundamental equations

6% Inp(As; O3, Ag)
IOy
= E3(O3, A3)(|5ds Az(A5; 093, A3)) @ L,)  (p-a.e.),

(4.11)

where As(m x m) is a skew symmetm’c measurement error oend Ez =
Ea(K3(O3, As)) = (3&;{m x 5m (m — 1)) 1s the precision matriz depending on
K4(©3,A3) = (360a)(zm{m - 1) sm(m—1)) in (3.3) and satisfies the relations
forl<i<m,1<j<myl=1,...,4m(m—-1)

siitmi-1 =0, 3fijrm-1) = —3&itmu-1y (@ F )

and
(4.12) 3&i jrmil—1) = 8Kitm(i—1)—5(G+1)/2,0
forl>j2<i<m,1<j<m-1;1=1,...,5m(m—1).

ProoF. (i) From (3.3), for a real rectangular parameter matrix &, (m x n),
we have a vector-represented parametric statistical fundamental equation

Olnp(A; 0y, Aq)

(4.13)  |fis 76,

> :Kl(@)i,Ai”ﬂSA[(Al;@l,A)) (,u—a.e.),

where K:(81,A,) = (1kag) i an mn x mn nonsingular matrix. Further, denote
the mn X 1 measurement error vector as

IA1> - (A1]1A21J ce 7A771,11Ai23 v 'aA'm,QuAlSa ey Al‘n: .. aAm'n,)t



STATISTICAL UNCERTAINTY RELATIONS 613
and renumber the suffices of the components as

(4.14) ALY =: (AL AL, AL AL

2mt Zm—H! T ?n—l)m: tets A:nn)t'
Then, we can represent the RHS vector of Equation (4.13) as

(4.15) Kl(@)l,Al)‘ﬂSAl(Al;@l,A))
mn mn mn t
= (Z lﬁllAra Z 1K20!A2‘J SRR Z lﬁmn,[A?) .
=1 =1 I=1

Let us construct matrix expressions of the above vector-represented equation. To
this end, we introduce an operator which may be called the matrizization operator:

(4-16) M(|’>) = (Im ® (Inl)(Kmn & In)(l') @ In)a

where o) denotes the full stacking vector of a matrix and where K., (mn x mn)
stands for a commutation matriz such that K| fls X} = |fls X*) foran m x n
matrix X. Applying this operator to the above equation, we have

dlnp(A1; 01, A1) ~ Olnp(A;©,,A,)
M (‘ﬁ 50, >) - 50;

(4.17)

and

M(K] (@1,A1)5ﬂ8 Al(Al;(:)l,Al)))
=2 (Ki(81, A ))([ls A (A1 (81, M)y @ 1) (say),

where Z; (K1 (01, A1) = (1&;)(m x mn?) with K1 (0, A1) = (1kap){mn x mn).
Thus, the above matrix has a representation as

(418) El(Kl(@],Al))ﬂﬂSA]_(A]_,@'l,Al)) ®In)
= (EA1 + Einti Aot + & ansi A o+ i fmn 1yn i Bmn )i

=: (Z £»;,(t_1)n+jAT)
=1

if
It should be noted that the second suffices of £'s compose an arithmetic progression
with a common difference n and an initial term j which coincide with the column
number of the above matrix. Vectorizing the matrix by fully stacking the columns,
we find that the {{j — 1)m + i}-th column of the resultant vector is

T

Zgi,(l-—l}n-{-j/—\zc (1 <ism, 1<j5< n}
=1
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Namely, considering (4.15), this must coincides with

mn

Zlﬁi+m(jfl),tAz‘ (1 Szgm: 1 S.?Sn)v
=1

and, thus, comparing the coefficients of A}, we have the following relation between
the components of the matrix E) and K;:

1£i,j+'n(141) = 1Ei4mii-1), (l < % < m, 1 < j < g I = 1, . ,mn).
Therefore, there exists a precision matrix Z)(0), A1) satisfying the desired result
(4.7), which completes the proof of (i).

(ii) For a symmetric real parameter matrix @,(m x m), we have from (3.3)

83 lnp(Ag; @Q, Ag)
4.19) |trs
(4.19) |trs 50,

> - KQ(@Q,AQ)'trS AQ(AQ;@Q,AQ)) {,u—a,.e.),

where K3(®3, As) = (akqp) is some %m(m +1) x %m(m + 1} nonsingular matrix.

Let us consider the fm(m + 1) x 1 vector |A3), corresponding to (4.14), given by
DA A A AR
[Ag) =1 (A7, ..., A0, A,

# # # # t
ABm—S? ASrn—2? R A4'm,—67 A Am,(m+].)/2) '

ki

A H a
o Bom 1 B - -

Then, we can represent the RHS vector of equation (4.19) as

m{m+1}/2 m{m+1)/2
(4.20) Kztl‘SAg)-—( >0 aeudf, 0 akadlL,
=1 i=1
mim+1)/2

i
Z Q’i'm(m+'l)/2,!A;#) .

=1

On the other hand, making use of matrixization operation {4.16) with n = m, we
have

trs

(4.21) M ([F; % Inp(Asz; O3, As) >> _ 0% Inp(As; O, Ag)

70, 504 ’

and carrying out the same operation to the RHS of (4.19} we have

(4.22) M(F? (K2(@3, Ay)| trs Aa{ Ag; ©a, Ag))))

o= ey AN
= ST, Hg |

where F (m? x Lm(m + 1)) is the full stacking operator such that FSltrs Y =

e 2

fls Y') for an mxm symmetric matrix ¥, and Zy = Zp(K2{02, Ag)) = (2&;){mx
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$m?(m+1)). Vectorizing the matrix (4.22) by triangularly stacking the columns,

we find that the {i +m(j — 1) ~ 25(j — 1)}-th row of the vector is

mi{m+1}/n

3 algsu-nmAf, (1 <i<m 1< <m).
=1

Namely, considering (4.20), this must coincide with

mi{m+1}/n

Z 2"5i+m(j—l)—j(jﬁl)/Q,lAfé: (1<i<m,1<j<m)
=1

and, hence, comparing the resultant coefficients of Afé, we have the relation (4.10)
betweon the components of the matrix E; and Kp. Thus, there exists a precision
matrix o (@, Az} satisfying the desired result (4.9), which completes the proof
of {it).

(iii) For a skew-symmetric real parameter matrix @3(m x m), we have from
(3.3)

G Inp(As; O, A
(4.23) ods 2 p(As; .;,A3)>

065
= K3(O3, A3)|sds Az(A3;O3,A3))  (p-ae),

where K3(83, Az) = (3kng) is some %m(m —1)x %m(m — 1) nonsingular matrix.

Let us denote |Ag}, corresponding to (4.14), as

— (AL Al i f t i :
Ay = (AL AL AL AL A e A 2y D1y /2)

mo1
(im(m —1) % 1) .

Then, we can represent the RHS vector of Equation {4.23) as

m{m—1)/2 m(m—1)/2
(424) K3| sds A;.;) = ( Z 31{,1;.&?, Z 3!&;2¢A}, Caey
=1 =1
m{m—1)/2

t
SHm(Tn—l)/E,fAJT) .
=1

On the other hand, making use of matrixization operation (4.14), with n = m. we

have i
\ [Ff_f; Esds o8 Inp(Asz; O3, Ag) _ d lnp(lAB; GS’AR)j
) 86‘)3 ()G‘)g
and
(4.25) M(FZ (K3(©3, As)| sds As(As; O3, A3))))

E3(83, Az){

sds As(As; s, An)) ® I,)  (say),
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where F¥ o (m? x Em(m — 1Y) is the full stacking operator such that FX|sds Z) =
s Z} for an m x m skew- -symmetric matrix Z, and Z3 = {3£;;)(m x tm?(m —
1)). Vectorizing (4.25) by sub-diagonal stacking the columns, we find that the
{i+m(j 1)~ 15(j — 1)}-th row of the vector is

mi{m—1)/2

> sijra-ymA]  (1<i<m, 1<j<m).
=1

Namely, by {4.24), this must coincides with

m{m—1)/2

Y skimGon-sgined] (1<i<m, 1< <m),
=1

and comparing the resultant coefficients of AI with those of {4.24), wc have the
relation {4.12) between the components of the matrix =3 and K. Thus, there
exists a precision matrix E3(Os, Az) satislying the desired result (4.11}, which
completes the proof. O

Remark 4.1. The commuiation operator ¥,,, (mn x mn) for general matri-

ces, the full stacking operators 5, (m? x 2m{m + 1)) for symmetric matrices and

K . . . .
F,,(m? x gm{m — 1)) for skew-symmetric matrices can be, respectively, given by

=573 b iln) ® (3)n (ilen)s

i=1 j—1

with (il = (ji}m) =1 0,...,0,1,0,...,0},
UL N T

i—1 m--i

15 = Y Gl + )l <<3—1m+@-m Lo

i>g

+Z||z b vm i jii- )|

and
P = 3 (1 - ) (- i 3G+ )]
where |1} = (i), and (i} = (ilsn-

Now we are in a position to represent parametric minimum unecertainty distri-
butions based on the corresponding parametric statistical fundamental equations
siven in Theorem 4.1, Their resultaut distributions belong to some modified ex-
ponential type families whose densities have different expressions from the usual
oncs (c¢f. Brown {1986)}).
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THEOREM 4.2. Under the conditions of Theorem 3.1 and the same notations
as those of Theorem 4.1, the probability density functions with respect to the o-
finite measure pu of the minimum uncertainty distributions of m x n real random
matrices A; (i = 1,2,3), are given by

p(Ai 05, Ay) = (0, A) expj tr{Z:(@i, A)(|A:(4:; 04, Ay)) ® 1,)dO]}

(i = 1,2,3), where A; and E; arc the corresponding quantities A; and B, con-
sidered in the previous theorem, and where I, is the unit matriz such that v = n
ifi =1 and that v = m if i = 2 and 3. Further, ¢;(A;; Ay) (i = 1,2,3) are the
scaler-valued normalizing functions of A;, A, which are independent of ©; and
satisfy the conditions

/p(Az-;@z-,Ai)(dAl) =1 (i=1,2,3)

where integration is done over the domain of A; and the notation (dA;) (i = 1,2, 3)
is the measure of the differential matrices dA; (i = 1,2,3) ezpressed by the exterior
products defined as before.

ProoF. It suffices to prove the case where the gencral real parameter
©,(m x n) is the underlying parameter matrix, hecause we can prove the cases of
i = 2 and 3 in the same manner. From the matrix-valued parametric statistical
fundamental equation in Theorem 4.1, we have

dinp(A1;©1, A1)

=20, A H|A (A0, A)) @1, (pae).

70,
Hence,
a1 AO A —
r{ npl alc-) ! l)deg} — tr{Z1 (01, AD{(1AL(A1; 01, A1) ® I,)dO} }.
{

Tntegrating with respect to ©,(m x n), we have
Inp(A;01,A) x /tr{Ei(elaAl)(A}.(A'U@l:Al)) ® I,)dO1}.

- the desired expression:

The following result is immediately obtained:
ConroLLArY 4.1.  Under the same conditions as in Theorem 4.2, if we take

2,00, A) — B0, A) (L, 9 (L){Kp, 9 L),
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where Z;(0y, A;) is an m x m matrix, then we have

8111}) A.z,('Dz,]\1 —_ -
(3@, ) = E(0:, M)A (A; 04, A)

and then
p(A; O, A;) = Ci(Az';Am)EXD/‘CF{Ei(E‘)mAi)Ai(Azs@z,Al)dGE},
fori=1,2,3.

Proor. Applying the relation (I, @ (L){Kn, @ LA} ® 1) = A; (cf.
Matsunawa and Zhao (1994)} to Theorem 4.1, we immediately obtain the desired
result. O

5. Examples of multivariate parametric statistical models

In this section we construct multivariate distributions as basic parametric
statistical models based on the fundamental statistical equations and the ma-
trixization operation M(|e}), considered in the previous section. In the following
examples, when u is the Lebesgue measure, we use f{A4;0,-) as the functional
notation of probability density funcsions instead of p(4;0, ).

5.1  Multivariate normal distribution
L
f{A;©,%) = (27) 2% etr {E(A -9z 4 - @)} ;
where A is an m ¥ n real random matrix, © is an m x n real primarily interested

parameter matrix, 3{n x n) is a positive definite secondary parameter matrices.

Derivation. Set the functions in Theorem 4.1 (i} without suffices as follows:

A(A;8) = —(A-0) (mxn)
and
E(E) = E_l (Ifn ® <IHD(KWUL & In) (’ITF X ng)

Then, from Theorem 4.2, we get
F(4:0,%) xoxp [ ()5 A(4:0) & 1,)d0'}
:exp/tr{z'lmﬂ(A(A;@)})d@ﬂ} exp/tr{z—IA(A;e)def}
— exp / - {_1 (i tr{(A—©)% (A4 e)}) d@i}

2\ 00
= etr{ (A-@)="'(a- @)}.

b=
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Therefare, we can represent
1
F{A;0.2) =cun(A; B)etr {—§(A - @) 1A - @))} .

To determine eayn(A; 2, I) we can use the well-known integral formula (cf.
Muirhead (1982)):

f etr{é(A ~O) A~ @))} (dA) = (2m)™n/2|x|"/?

and, consequently,
eun(A;E) = (QW)_m"/2|E|_”/2.

5.2  Multivariate symmetric normal distribulion

1

. _ 1 -1 2
/{4;0,%) = /227 el DA B (mA 1)/2 etr {_1{2 (4 -©)} } ;

where A is an m x m symmetric real random matrix, & is an m x m real sym-
nietric primary parameter matrix, and 3(m x m) is a positive definite sccondary
parameter matrix.

Derivation. Set the functions in Theorem 4.1 {ii) as follows:

A4©) - —(4-©) and  E(E) = 3(E7 V(U ® ) S T,

then from Theorem 4.2

fl4,©,%) ocexp/tr{;EI(Im® {(Im|) (W © 1)

{FS trs(A — @)} @ Im}E“ld(-)*}

= expf —% tr{Z7 (4 - @140’}

= exp] 1 tr ﬁ[tr{(A -0)E A -0)x7'})jde’

4 e
= etr {i—(A —eysT'(A - @)El}
L1 2
= etr ﬁZ{E (A— )} >.
Therefore, we can represent

FA:0, %) = con(A; X)) etr {-}l{zl (4 - 9)}2} .
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It remains to determine the normalized constant put csy(A4;3). Since X1 is
positive definite and A —@ belongs to the family S™*™ of all yn xm real symmetric
matrices, the following transformation ¥ := 271/2%71(4 — @)X~} ¢ §mxm,
Hence, the Jacobian is given by J(A — Y) = 2m{m+0L/45|(m+1)/2 3n4

. (1 .
] etr {—Z{E"l(A - @))}2} (dA)
g xXom
= / etr{—% Y2} (dY)Qm(m+1)/4‘El(m+l)/2
gmxm
= 2m/2wm(m+1)/42m(m+l)/4IE](m+1)/2 _ 2m/2(2ﬂ)m(m+1)/4|2‘(m+1)/2.

Consequently,
con(Z) =1/{2m/? (2m)mm=D/A g (m+1) /2y,

Remark 5.1. If m = 1 and taking the correspondence A « z, & « 6,
¥ o o/v/2, we get a univariate normal distribution N {8, o).

5.3  Mullivariate symmetric log-normal distribution

(n ].Ila',i — IH(IJ\
(m+11/2 o

“~ - u._a
i<y ' 7 /

where

A,0,Xc8™™ AO X0, A=TA T, TT'=1,
Aa = diag(ay, a2,...,0m), {1 >az> - > o, >0),
InA:= T(in Apx) T

Derivation. Set the functions in Theorem 4.1 (ii} as follows:
A(4;8)= —(InA-0) and E()=(Z"")Un & (In]) Knm @ Ln),

then, from Theorem 4.2,

FE Jtrs(ln A — @)} @ I, | E71dO")
= expf— tr{x(In 4 - @)= 140"}
= [ t 1831;“111/—'1—@‘52”"111147“\2
——BXPJ— fb@ il ) { )

= etr {M%(OIIA - (nA - @)2_1)} .
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Therefore,
f(A, ("), E) = CSLN(A; E) etr {—%{Z_I(IHA — @)}2} .

To determine the normalizing constant ¢cgrn{A4; %), let ¥ =1n A{e 8™*™), then
the Jacobian of the transformation is

dvec(Y)?

H In ey — in &y 1
dvec(A)

K J

+ i<y

Suppose that Y is distributed according to a multivariate symmetric log-normal
distribution, then

1 Ina; — Inoy 1
/énxnetr{—"é{ﬂ 1(111A(-))}2}- H———-—-——:’ m(dA)

oy —
i< ¢ 4

s

= / etr {—é—{Z*l(Y — @))}2} (dY) = gm/QWm(mH)/fllE‘(erl)/z_
Jgnxna

Hence, we have

1 Ino; — Ina; i
CSLN(A; 2) = 2nl/2.n-m(m+1)/4i2|(1n+])/2 H @ o *rj —iA‘ .
1< F

Remark 5.2. If mn = 1 and taking the correspondence A « z, ® « 6,
Yoo/ V2, we get a univariate log-normal distribution:

) 1 1 {Inz-8\>
fla;0,0°) = ——=—exp{ —= (x>0,0 >0,0>0).
2rox 2 c

5.4 Multivariate symmetric logarithmic gamma distribution

8 b—{n+1)/2
: by = 1 —In MPPT\
f(A,©, M. b) Fn(b)| nA—InM|
x HM L etr{-©(In A — tn M)}
* ey — Oy ‘A1 ’ '
<y
where

AOMES™ AOM>0 mA-InM>0, b>(n—1)/2
A=TAAT", Ax=diag(o,aq,...,an), (o0 >a> - >a, >0},

and
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Trn(b) fboetr(—X)ij—f”“)/?(dX) (X > 0).

Derivation. Set the functions in Theorem 4.1 {ii) as follows:
A(A; O, M0 = —(InA-InM)+b0"!  and E=(I, 2 {L|}{KwmelL)

then, from Theorem 4.2,

f(A;©, M ,b) x exp jf tr{ {ln4 M) +07'}d0
35 tr(—O(InA -l M) 85 @
=¢ t de.
oxp/ r{ 56 + 50 }
Since for @, Y € §»>7
2% tr(@Y) #nep .
T Y md T 0O

then we have

flA,©O. M. b) x exp/tr{—(lnA ~In M)+ 6071140
=csra(A; M, b) -exp(tr(—O{ln A —InM)) +1n e
= cspc(A; M)b) - |©Petr(—O(In 4 — In M)).

To determine the normalizing constant csra(A; M, b}, we modify the multivariate
gamina distribution as

C(b) = /D|c-)|betr(—e(1nA —InM)).|InA — In pMP-(nrD/2

{da),

i
Nz A —In M)
JA +

where D= {4 >0,M > 0,0 > 0,In A — In M > 0}. Then, we get

1 Cmanyse |0°InA
CSLC(A;M,b):——mF (b)llnAw In M|P-(mHD/2. 54

+

1 o e Incy; - lnex; 1
_ ‘InA _ In M|P-mt)/2 b A I
oL 11 ;| [A]

1<
<

4
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5.5 Multivariate skew-symmetric normal distribution

. B 1
f(A’ 0’ E) o Wm(nL—l]/de_("rn—l)/égzl(m—l)/2 etr{ {2 A @)} }

where A is an m x m skew-symmetric real random matrix, ® is an m x m real
skew-symimetric primary parameter matrix, and 3(m x m) is a positive definite
secondary parameter matrix.

Derivation. Set the functions in Theorem 4.1 {ii) as follows:

(B2 I & (L) (Kom @ L),

gl =

A(A:0,3)=-(A-0) and EZ(X)=
then from Theorem 4.2 for skew-symmetric &
f(A;©, ) x exp / —-% (B I & (L[} (nm © L)
{FE |sds(A - @)} ® L, ]%7 a0
= exp[—1 tr{Z"(A -0} 'de'}

—exp/~—11{ tr{(A )Yz l{A-e)x" ’}]d@}

= etr { —2(4 - e)yx A - @)2—1} = etr {Z{z-i(A - e)}?} .

Therefore, we can represent as

FiA I — poanl jl —ira _
JUAID, 2a) = CEENY : etr l [

3
@

4t

nel.
!

It remains to determine the normalized constant put cggy(A;X). Since 71 is
positive definite and A —© belongs to the family K7™ of all m xm real symmetric
matrices, then the following transformation Z := 271/2871/2(4 - @)x-V2 ¢
K™*™_ Hence, the Jacobian is given by J(A — Z) = 2mim-1/4530m=11/2 4nd

‘ 1
/ eff{~{2”‘(A - 6)}2} (dA)
Kmxm 4 .
— / otr {lzz} (dz)Qm(mvl)/:LIz‘(m,l)/g
JEomxm

— / PXp{ <dZ >} Zm(rnfl)/4|21(mf'l)/‘2
| SR

ki3

_ H 1: exp{ }_ \/‘""13 } ] . 27n(1n71}/4|2‘('m71)/2
K 2

i<y

Ikxk

m T

- 4 .9 N\
e i‘ exp ( . ) dt&JJ 2771.(77:,71)/’1‘2](7}1,71)/2
'i(j K xm

— ﬂ.'m.(mf l)/42m(m—1)/4|E‘(Tn71)/2.
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Consequently,

essn(S) = 1/ {xmon-D/Agmim=1)/4|5;(m=1)/2}

5.6 Multivariate generalized power series distribution

q(A; ©) HB“‘/w(A ®), with w(4,0)=>" C(A) Haaz >0,

AeT
where C(A) > 0; © = (#),...,0), 0; > 0; A = (a1,...,ax)" € T, a countable
subset without any limit point of a k-fold Cartesian product of the set R of real
numbers. Namely,
T = {(al,...,ak}} C R1 x By X --- x Ry, with R; =R, i=12,... k.
Derivation. Set the functions in Corollary 4.1 as

(a9 vk G 9 L @N Lk
A(4;0) = (31 26, In(w(A; @)) % 6 In(w(A4;8)) and

=1(9) =1.

Then, we have

q(A; ) eprtr[E*(a)A(A;@)d(a*]

= expfz {7 - Wln(w(A @))Wf} db;

= exp li{almﬂiglnw(z&;@}:l (He‘*)/ (A;0).

Thus, we can take the functional form of the probability density function as

9(A; ®) = cxps(4) (Hﬁ,?i) /w(A;G))

i=1
k

= ckps(4) (H 95*) > C(4) He
=1 AcT

hence we get exps(A4) = C(A).

Remark 5.1. 'This distribution contains important multivariate discrete dis-
tributions. If we replace B with I, we get the set of nonnegative integers so that
Yoacr C(A) H& 1 07 is the power series expansion of w(By,...,0,)inb, ..., 0.
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Under this situation, (i) if we set w(A4,0) = (1 +60; + --- + 6;)", we have the
multinomial distribution:

Q(ah“ FELT Ty 4 P apk)
\ ”_Z§=1‘IJ

4 )
n! =
Z ) =1

al!---ak!(n— =1 aj

where p; = 6;/{1 + Ele 8;), i = 1,...,k, with 0 < Z?:ij < land 0 £

Kk e an
ij:l g > 7,

(i) if weset w(A,80) = (1—6—---—8¢)™", we have the negative multinomial
distribution:

G- dpfi— 1

k k "
(n+ 30— 1) o
Q(ala--':ak;pla"'}pk): ? ey _ 131 pTlpkk \1_ij/ ’
=1

wherep; = 6;,i=1,...,k, With0<2f=1pj <land (ar,...,a5) € IxIx.--x1.
6. Conclusion

In this paper, the theory of parametric statistical model building without
assuming the existence of true distributions has been discussed. The understand-
ing of the models and the theory developed here are new and are expected to
be strengthened in future fundamental statistical theory. As was mentioned in
Section 1, the specification of a parametric statistical basic model and the sta-
tistical parameter estimation are fundamentally different concepts. The problems
of model specification scrutinized in this paper are not those of model selection,
because the latter are generally considered under the assumption of the existence
of true distribution and its candidate distributions are given in advance.

As far as the author knows, we have not so far obtained systematic statistical
theories for providing the candidate distributions. This fact annoys the intellectual
users of statistical theory or its methods when they arc faced with new phenomena
and are urged to build suitable statistical basic models based on available obser-
vations. In overcoming such difficulties, the parametric statistical fundamental
equations in this paper may be useful. As a future research subject, however, we
have to procecd with the practical statistical model building. In order to do that,
we need to develop the investigation of the observation error A and the measure-
ment scale =, which is required to connect directly to the practical or imaginable
data. At that stage, some suitable statistical estimation theory will be helpful to
adjust the parameters of the distribution obtained as a basic parametric model.
In respect to this, as is shown in Theorem 4.2, we have a modified multivariate
exponential family as the form of a parametric statistical basic model. So it is ex-
pected that the existing estimation theories, for example, sufficient estimation and
the properties of exponential families (cf. Barndorff-Nielsen (1978), Brown (1986)),
may strengthen our model specification theory. Currently, it may be helpful to
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make use of new aspects in the developments of statistical models (cf. Matsunawa
(1995}).

In addition, the aim of this paper is to give a new introduction to multivariate
statistical distribution. Compared with most textbooks on multivariate analysis,
the model specification based on the fundamental statistical equations given here
seems to be very helpful in introducing multivariate distributions systematically.
An extension from univariate distributions to multivariate ones is systematically
realized by resorting to some new implementations with vectorization and matrix-
ization. Related nonparametric investigations to this paper can be also discussed
{cf. Matsunawa (1994)).
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