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Abstract. Let X_py1, Xomy2,..., Xo, X1, X2,. .., X5 be a time-homogene-
ong {0, 1}-valned m-th order Markov chain. The probability distributions of
numbers of runs of “17 of length k (k > m) and of “1” of length k£ (k < 'm) in
the sequence of a {0, 1}-valued m-th order Markov chain are studied. There are
some ways of counting numbers of runs with length k. This paper studies the
distributions based on four ways of counting numbers of runs, i.e., the number
of non-overlapping runs of length k, the number of runs with length greater
than or equal to k, the number of overlapping runs of length & and the number
of runs of length exactly k.

Key words and phrases:  Probability generating function, discrete distribution,
binomial distribution, binomial distribution of order k, higher order Markov
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1. Introduction

Let X;, X5, ..., X, be asequence of {0, 1}-valued random variables. We often
call X,, the n-th trial and we say S (success) and F' (failure} for the outcomes “1”
and “0", respectively. Let n > & > 1 be two fixed positive integer. For a given
sequence of n letters S and F, there are many ways of counting the number of
runs of S of length k. Four of the best-known type are:
I. arun of S of length & means a string ol exact leugth &, where recounting
starts immediately after a run occurs;
II. a run of S of length k& means a string of S of length k& or more;
Iil. a run of S of length k means a string of § of exact length k, allowing
overlapping runs;
IV. arun of S of length k£ means a string of S of exact length £ followed by
an F.

For example, consider a realization of a sequence of § and F' such as

S5555FSSSFFFSS8SSSSFFFFSS,
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In this sequence n = 23. If we take k& = 3, then there is only one run of three S of
Type IV; there are four runs of three S of Type I, three runs of three S of Type
IT and seven runs of three S of Type III (see Uchida (19965)).

The above distributions are called the binomial distributions of order k£ which
are the distributions of the number of occurrences of consecutive k successes until
the n-th trial. The system called a consecutive-k-out-of-n:F system is an interest-
ing example of succession events in a sequence of {0, 1}-valued random variables
(cf. Aki and Hirano (1996), Chao et al. (1995), Fu (1996), Fu and Koutras (1994),
Hirano (1991}, Koutras and Alexandrou (1095) and references therein).

Hirano (1986) and Philippou and Makri (1986) obtained the distribution of the
number of success-runs of Type I until the n-th trial, i.e., the binomial distribution
of order k. Goldstein (1990) studied the Poisson approximation for the distribution
of the number of success-runs of Type II until the n-th trial. Ling (1988, 1989)
derived the distribution related to number of success-runs in independent trials in
the way of counting ol Type IIL

Aki and Hirano (1993) studied the exact distribution of the number of the
success-runs of Type I until the n-th trial in a {0, 1}-valued Markov chain. Hirano
and Aki (1993) obtained the exact distributions of numbers of success-runs of Type
I and IIT until the n-th trial in a {0, 1}-valued Markov chain. Uchida (1996a)
obtained the exact distribution of the number of success-runs of Type IV in the
sense of Mood’s (1940) counting, i.e., success-runs of exact length & until the n-th
trial in a {0, 1}-valued Markov chain.

In this paper, we investigate the distributions of number of outcomes such
as successes and numbers of success-runs with length & of Type I, I1, IIl and IV
among X1, Xs,..., X, in the following higher order two-state Markov chain.

Let Xomet, X my2,---,X0,X1,X2,...,X, be a time-homogeneous {0,1}-
valued m-th order Markov chain with

T2y @ — P(X#'m+l = l'laX—'m-l—2 =T2,... ,XU = wm)a
p:L‘l,...,:l:m - P(X'L =1 1 Xz'—m = 'Il}X‘ifﬂ‘H»l = m2;"~1X?)—1 = :E'm:)r
=1 7Q.’E1,,..,:Em7
for 21,...,%m = 0,1 and = 1,2,...,n. For 21,...,2Z,m = 0,1, we assume that

0 <Py, oz < 1.

In Section 2, we study the distribution of the number of sucecsses until the
n-th trial. In Section 3, we consider the distributions of the numbers of success-
runs of length & (m < k) of Type I, II, III and IV until the n-th trial, i.e., the
number of non-overlapping success-runs with length &, the number of success-runs
with length greater than or equal to k, the number of overlapping success-runs
with length & and the number of success-runs with length exactly k. We also
investigate the distributions of the numbers of success-runs with length & (k < )
until the n-th trial.

Throughout the paper, we define that for o >

8
H g{iy=1 and D g(i) =0,
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where g{7) is a function.

The results in this paper are not only general and new but also available
to numerical and symbolic calculations by using a computer algebra system, for
example, the REDUCE system ver. 3.5 {Hearn (1993)). In particular, when &, n
and m are given, we can obtain the generating functions {g.f.’s) of the probability
generating functions (p.g.f.’s) of the distributions of the numbers of successes and
the numbers of success-runs until the n-th trial, expectations and variances of the
corresponding distributions by using the computer algebra system (cf. Hirano et
al. (1997), Uchida (1994, 19965h) and Uchida and Aki {1995)).

2. Numbers of successes in a higher-order Markov chain

In this section, we consider the distribution of the number of successes until
the n-th trial in the m-th order Markov chain. We give a method for deriving the
g.f. of the p.g.f. of the conditional distribution of the number of successes until the
n-th trial in the m-th order Markov chain.

A sequence which follows the m-th order Markov chain depends on the past
occurrences of length m. A set of {0, 1}-sequence of length m consists of 2™
elements, and can be uniquely regarded as a binary number. Further we translate
it into a decimal number. For example, when m = 3, p1go = p3 and when m = 4,
Prool = Po (see Hirano et al. {1997) and Uchida (19965)).

Let N, = {0,1,2,...,2™ — 1} and let f; (4 = 0,1) be the mapping from N,
to N, such that

filz) =2x+4 (mod2™), for i=0,1.

Let m < k < n. Let £1 be the number of occurrences of “1” among X, Xo, ...,
Xp. We denote by ¢(T)(s} (for each z € N,,) the p.g.f. of the conditional distri-
bution of £ given that X_,,411 = 21, Xy = 22,..., Xo = .

For i = 0,1,...,k — 1, let A; be the event that we start with a “1"-run of
length ¢ and “0” occurs just atter the “17-run. Let ' be the event that we start
with a “1”-run of length k. For x € Ny, let 657 (s | A;) and ¢4 (s | C) be the
p.g.f.’s of the conditional distributions of 1 given that the event 4; N{X_,,. 41 =
z1, X a2 = T2,...,Xp = Zp} occurs and given that the event CN{X_ 11 =
21, X mio = Za,..., X = zp} occurs, respectively. Since A;, ¢ = 0,1,..., k-1
and C construct a partition of the sample space, we have the following system of
2™ equations of conditional p.g.f.’s.

For each z € N,

o5 (s) =1
00 = et )<s)

+Pa~SZ pra s) Qfl(£)¢wf01f11 )(5)

G==1

n-1

+ P8 H(pf” $) if 1<n<k.

7—1
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For each x € Np,,
k-1

-2 P4

- qx(ﬁ(f“(z)}(s)

+pmsz

e=1

¢ (s)

-2

t Pe$
_:’.:1

_mﬁl
H e )
..J:l

+ pPas

3
— L

+pas | | ] 0py ()

.
Il
—_

where we define that H?:1 (pf{' @) =

o2 (s5,2) = Z T (s)z
n=0

Define

For each x € N,,,

#(o | A) 4 PO

H Py @9 | Ui
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k—1

Z (pam 18)*7

i=m

(s 1C)

¢(f00f1 €3]] ( )

(2m-2
H(pfﬂ(m) s) qpm— 1(;13}‘?5 )(5)

m02m71¢5

(pam—18)F 8l (8)

L

m—2

i=1

()

n—i—1

if n>=k,

§)®Ueli @) (g, 2)

+m@ww“m&@+%@wm“w&@+@@,

where for each z,y € N, and ¢ € Ly,

i—1

Oy g (3) =Pz
I=1

m—2

=1{1,2,...,m

s | [L0z@9) | 4™

H #re®)| 410

J=1

m—1
T Pss {H Pri()®) Z(PT"—lS

=1
-1

H Psi(xy®

J=1

k—-m k
p2m*13) Tz y

— 2}’

+1

Gam — 12"
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bals) = Zé(’*’)(s ~ zZqﬂfﬂ@

m—2 Tie k—i—2
—Pes ) [H Pty | Gim 2™ D P ()2
i=1 =1 n=>0
m—2 k—m-—1
= Pas H Pi(n)S) qf;”-i(z)zm > TP
=1 ] n—0
m—1 i k—i—2
— Pss ﬂ (P110y9) Z(pzm—ls" Mggm 12! Z P D (s)z"

iy

j: i=m

For each 2,y € Ny,

ar,y(s) = szl{fo(m) = y} + Z am,i(‘s)

+ B{s){y =2™ —_2;:- ve(8)1{y = 2™ — 1},
bﬂ?,y(s) = 1{3" = y} - am,y(‘g)a

where ) it
; 1 =1,
1 — —
te v} {0, if z#y,
I:n,y = {E € Ly, E foo flz(:r) = y}
Define

B = (bm,y(s)}x,yENm:
Bl= (Cm,y)m,yeNma
, _ Ayz
B

where A, is the (=, y)-cofactor of the matrix B.
Then, we have

am_ IA 2m -1
i=0

Here, we set that for each z € Ny,

\Il(s? ’z) = ‘B‘v
Ay |

i) (s,2) Z AVAL:
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We note that

T (s, z)
boo(s) e bogp—1(s) 6o (s) bopy1(s} -+ boam-1(s)

bz‘m—1,0(5) b2'“—1,1:—1(3) 52’"—1(5) me—l,m—l(S) b2m—1,2m—1(8)

and
bw,mel(S) - Ew - F:ﬂ(s)(p2m—1sz)k_m1

where
m—1
s | T Prws)| 2
i=1
o=z =2" -1} —q2l{fo(z) =27 - 1} = > a.ls)
’iEIzlgm_l
= 1{x =2"-1}.
When x = 2™ — 1, we have
bg()(s) T bogm_g(s) bg,gm_g(.g) (50(8)
W52 = : : :
bom _10{8) -+ bam_13m_3(8) bam_jom_3(s) bom_1(8)

On the other hand, when z # 2™ — 1,
U@ (s, 2) = Al (s, 2) + A (s, 2),

where
boo(s) I o(s) e bp,2m _2(8) =t
A (s =) : : St
bre_10(e) - Sam_i(s) o bam_ggea(s) Ege
A (s, 2) = —(pam_182)P~™
boo (s} e bols) s boamon(s) Tols)
bam_10(s) -+ bam_1{8) -+ bym_q12m 2{8) T[am.i(s)

Then, we obtain

ProrosiTioN 2.1.

AP (s, 2+ A (s, 2
2(s.5) = HLILL D o e nRn -1,

w1 (g, 2)
U(s, z)

32" U(g 2) =
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3. Numbers of success-runs in a higher-order Markov chain

In this section, we investigate the distributions of the numbers of success-runs
with length & of Type I, II, TIT and TV until the n-th trial in the m-th order Markov

chain.

31 Casem <k

In this subsection, we consider the distributions of the numbers of success-
runs with length k& (m < k) of Type [, I1, III and IV until the n-th trial. Let y,
v, £ and n be the numbers of “17-runs of length k£ of Type I IL, TII and IV until

the n-th trial, respectively. For & € N,,, we denote by (;bm (1), qb(“t)( t), énq (2) (t)
and qbgl) (¢) the p.g.f.’s of the conditional distributions of i, v, £ and % given that
X _ i1 =21, Xpia = 2o,...,Xg = T, respectively. Define

It 2) = qu“”( t)2"

n=0
311 Case Type 1

Let A;, C' and Iy be as in the proof of Proposition 2.1. For each z € N,,, we

denote by @55”) {t,z | As), @sm}(t, z | C) the respective g f’s of conditional p.g.f’s.
Since A;, ¢ = 0,1,...,k — 1 and C construct a partition of the sample space, we

have the following system of 2™ equations of the g.f.’s of conditional p.g.f.’s.
For each x & N,

e

7 (¢, 2) = Y‘P(A e,z | A+ POYSEN (2 O)

i=0
m—2
— GmZ‘I’EfO(‘I))(t,z) " Z: am,,;(l)(bgf”‘)fl(m))(t %)
=1
+ 8.1 P8, 2) + (Mt V(1 2) + 8,01).

For each z,y € N,

@y () = qel{fo(z) =y} + > (1)

iE1,.,
+ ﬁx(l)l{y =2 2} + Vz(l}tl{y =2" - 1}:
b, (0 = Yz =y} — ), (1)

Define

(b y(t) TyENms
(B) - (C:n,y)itnyNmu
c .= Az
v =B
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where Al Is the (z,y)-cofactor of the matrix B’.

From the above system of equations, we have
2™ 1

Y09 3 T~ 7 2

Here, we set that
L:[Jl(ts'?") = lB’|’

2™ —1

lll(z)tz ZA

for each € N,,.
We note that
by am_1(t) = E5 ~ Tp(1)(pam_12)*~™t

and when y # 2™ — 1,
by, (2) = by (1),
When x = 2™ — 1, we have
~ boo(t) -+ boam_3(1) bo,2m —2(1) o6(1)
W ; ' :
Bym 1 0{1) bpm 12 —5(1)  bam 120 _z(1) Sz (1)
= w711, 2).
On the other hand, when 2 #£ 2™ — 1,
boo(1) oo(l) - boam_2{l) Zo
B{(t,2) = : ; : =
bam —1,0(1) bomo1(1) oo bamopam_g(l) Epmoy
—{pam_12)" ™
boo(1}  --- &1} -+ bgom_o(1) To{1)
bam _1.0(1) bom (1) -+ bam_y2m_g(1} Tam_, (1)

= A1, 2y + AP (1, 20,
Then, we have

THEOREM 3.1.
¢($)(t 2) = Agz)(l,z) + A%’?)(l,z)t
! ’ ]Ill(t: Z)
m__ lP(Qm_l){]_ z)
@(2 1) " _ X LA
1 ( 12) \I)'](t,Z)

for € N,\{2™ — 1},

H
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3.1.2 Case Type 11, 111, IV
Fori=20,1,...,n— 1, let A; be the event that we start with a “1”-run of

length ¢ and “0” occurs just after the “1”-run. Let C be the event that we start
with a “1"-run of length n. For each z € N, and j = 2,3,4, we denote by
@;w)(t, z | A}, @gw)(t,z [ C'} the respective g.f.’s of conditional p.g.f.’s. Since A;,
t=0,1,...,n—1 and C construct a partition of the sample space, we have the
following system of 2™ equations of the g.f.’s of conditional p.g.f’s.

For each z € N,

n—1

87 (t,2) = ZP D8tz 4) + P(C)2P(, 2| C)

x4 g

_ qmsz fo(x) Z o (I)(fﬂofl ))(t 2)

+ 8125 T (8, 2) + 4,
where for each x € N, and i € L,,,

. i1
pr"(x) EEHCO R

m—
H Pra) | 4r-t)?
j=1

-1

+ P (P2 () Z(sz 1) Mgam 12T
=1 i=m

3

3

+ pa (Pfl ;1::}} Z(pz"“—l)i_szm—lel#?ij
i ;

Tme— o0
H pfl (z 2™ Z(p2m_1)nfwaznfmtpnj
=1 n=k

T
—

— k—2
+ Z 2" - gpz Z z"
n=0 n=0
wm—2 | 2—1 =
- Px 2; q(pff(m) Ui@? T Z
i= i= n=0
(-2 ] k—m-—1
— Px H Prim) | Uprt(my? Z;J 2"
j=1 n=

k—i—2

m—1 k—1
— DPa H Pfl(m Z(p%—l)z_m@m—lziﬂ Z 2",
_j-—l i—rrr n—0
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t, if =2
ikt if j=3,
a{i=k}+1{i £k}, il j=4.

Yij =

For each z,y € N,
ay () = quzl{fo(x) =y} + > ol +Bi1{y=2" -2},

'EEIm y
bey(t) = e =y} — ag ,(2)-
Define

B" = (by ,,(tDe ye N
(BH) ! (C )z,yENma

o
I . Y,

T,y T \B”J 4

where A7, is the (z,y)-cofactor of the matrix B”.
From the above system of equations, we have

2™ —1 A 2

{x) — -
(I’ (t Z }: 'B” ” B,,| Z 1, .E’Yl, .

Here, we set that

Uit z) = |B"|,
2
lI'gx)(t, z) = Z Agtwfy;-’,
i=0
for each 2 € N,,.
Then, we have
THEOREM 3.2.
(¢, 2)
(x) N -1 ’ I
@j (ﬂ,i) = W’ f()l & € Npy.

Remark 1. By the above result, we can easily oblain the g.l. of the p.g.[ of
the distribution of the number of success-runs of length k until the n-th trial by
means of computer algebra. Here we use a computer algebra, REDUCE ver. 3.5 for
generating the system of equations of g.i.’s of conditional p.g.f.’s. As a matter of
fact, we can also compute the expectation and the variance of the distribution, i.e.,
the binomial distribution of order £ in a higher order Markov chain. Moreover, we
can obtain the probability mass function {(p.m.f.) of the distribution by using the

. fact which the p.g.f. of the distribution is a rational function (cf. Stanley (1986),
Uchida and Aki {1995) and Uchida (19960)).
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3.2 Casek <m

In this subsection, we consider the g.f.’s of the p.g.f.’s of the distributions of
the numbers of success-runs with length & {k < m) until the n-th trial.
3.2.1 Case Type 1

Let @gm)(t,z | Ay), @gz)(t,z | C) be as in the proof of Theorem 3.1. Then,
we have the following system of 2™ equations of the g.f.’s of conditional p.g.L’s by
considering all possibilities of the first occurrence of 0.

For each z € Ny,

k
7t 2) = 3" PR (1,21 A+ PO (2,2 )
=0

: k-1 ,
= g 2@ g 2y Z a;ﬁﬁf"‘:fl D, 2)
=1

k

where for each x € N,,, and i € L.,

i—1
agr'r =Py H(pfl(;r)) Qf‘,"(:c)zi+1:
7=1
k—1
B;:p:c H(pff(ic)) Zkt;
j=1
k—1 k—1 {4i~1 k—i—2
=2 L%ZZZ P g | grwst D0
n=0 i=1 | =1 n=0

For each =,y € N,,,,

@y (t) = qeal{y = 22} + Z s+ 3y = fi(x)},

FY= I
by (t) = Ha =y} —ay (1)
Define

= (b y (1)) yeNoms
(B) 1 — (e oy )T e N s
o = é‘;_m
v B
where A} is the {z, y)-cofactor of the matrix B'.

From the above system of linear equations, we have

2’”—1

() —
(I) tz Z !Br/i Y= BH| Z A:cl‘%{f'
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Here, we set that for each © € Ny,

Ui (t,2) = | B,

27 -1

\Il(x) t, z) Z Al i

Then, we have
THEOREM 3.3.

@, o V(E2)
(bl (f’az) ‘Dl(t,Z) s
3.2.2 Case Type 11, 111, IV

Let @;Z) (t,z | A;), @;m}(t,z | C) be as in the proof of Theorem 3.2. Then,
we have the following system of 2™ equations of the g.f.’s of conditional p.g.f.’s by
considering all possibilities of the first occurrence of 0.

For each x € Ny,

n—1
81, 2) = 3 P(A)EI (1,2 | Ai) + PO (1,2 | ©)

i=0
m—1
= 2@ (1, 2) = 7 o @I (¢ )
i=1
+ ﬁ;"l)?miz)(t, Z) + Yo
where for each x € N,, and i € L.,
f
pe [ [1®si) | 4ri0 2™ if 1<i<k-1,
ag,i = 4 - -
i—1
o | [T )| 951@# 0y i kSi<m—2,
\ _'7:1 o

H Py | U1y Pm-1

1

(pff(x) Z(pzm 1) QQm-lel(Pij,
j=1 i=m

n—1
=Y | T | 0
n=>k 71

7
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k1 kL 2
LI
n=0

n=>0
k—1 {é=-1 k—i—2
—2: ) g | 2™ 3 2"
i=1 |j=1 n-0
t, if =2,
iy = § 7F, if 5 =3,

t{i=k}+1{i £k}, if j=4.

For each =,y € N,

al () = geel{y =2z} + > of ;4 B1{y =27 -2},

i€ie.y

by (8) =z =y} ~ag ,(t).
Define

( )x.yGNms
(BH) ! (C ’,y):ﬂ,yGNm:
noo_ A;;,I
C$1ly - ’BHE H

where A”  is the (z,y)-cofactor of the matrix B”.

From the above system of linear equations, we have

( ) 2m—1 Al 2m—1
= i,T H N A
t Z) E |B” BH| 'L.’B"Y’L -

Here, we set that for each z € Ny,,

¥,(t,2) = |B"|,
) 2™ -1
xI
Wit 2) = _En Al

Then, we have

THEOREM 3.4.

lII(m) (¢, )

SR o

for & Np,.

599
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Remark 2. TIn general, when k < m, the corresponding distributions depend
on the initial condition of the m-th order Markov chain and are not necessarily as
simple as the case m < k.

Remark 3. By using these results, we can easily obtain the g.f. of the p.g.f.
of the distribution of the number of success-runs of length & until the n-th trial
by means of a computer algebra. In the same way as Remark 1, we use a com-
puter algebra, REDUCE ver, 3.5 for generating the system of equations of g.f.’s
of conditional p.g.f.'s (sce Uchida (1996¢)).
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