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Abstract. The main goal of this paper is to introduce new exponential fami-
lies, that come from the concept of weighted distribution, that include and gen-
eralize the Poisson distribution. In these families there are distributions with
index of dispersion greater than, equal to or smaller than one. This property
makes them suitable to fit discrete data in overdispersion or underdispersion
situations. We study the statistical properties of the families and we provide a
useful interpretation of the parameters. Two classical examples are considered
in order to compare the fits with some other distributions. To obtain the fits
with the new family, the study of the profile log-likelihood is required.

Key words and phrascs: Weighted version, dispersion index, stochastic order
relations, exponential family, scoring method.

1. Introduction

Because the Poisson distribution is the limit of Binomial distributions, it has
been widely used in life and social sciences, specially in fitting the distributions
of the number of events that only occur with low probability. Nevertheless, the
mean and the variance arc equal in Poisson distribution. Equivalently, the index
of dispersion, a measure of aggregation or repulsion, is always equal to one. This is
sometimes too restrictive to fit practical data, which usually present indexes of dis-
persion greater (aggregation) or smaller {(repulsion) than one. Many distributions
have been introduced in order to weaken this assumption. The Negative Binomial
distribution appears naturally as a mixture of Poisson distribution when the pa-
rameter follows a Gamma distribution and this has been used since Greenwood
and Yule (1920) to fit data with aggregation. Other important generalizations are
the double Poisson, which is also a mixture, and the generalized Poisson distribu-
tion proposed by Consul. More information on this subject can be found in Haight
(1967), Johnson et al. (1992}, Kendall and Stuart (1979) and Consul (1989).

In this paper we provide a new approach to the previous problem using the
concept of weighted distribution introduced by C. R. Rao in 1963 (see Rao {1965)).
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This concept has been used for the last thirty years in the selection of the appro-
priate model for observed data, especially when samples are recorded without a
sampling frame that enables random samples to be drawn. The weight function
that usually appears in the scientific and statistical literature is w(k)} = k, which
provides the size-biased version of the random variable. The size-biased version of
order 7, which corresponds to the weight w(k) = k", for v any real positive number,
has also been widely used. The weight proposed in this paper is w(k) = (k + a)",
where @ is a positive displacement parameter. The weighted Poisson distribution
(WPD) that results from the modification of the Poisson distribution with this
weight can also be considered as a mixture of the size-biased versions of the Pois-
son distribution, as we show in Subsection 3.3. This new family of probability
distributions can be studied from the theorctical and the numecrical points of view.
Moreover, they can be seen as stochastic models to describe and analyse empirical
data of the type refered to above.

First, it is important to remark that given e > 0, the Poisson distribution is
nested in the corresponding sub-family, which we denote by WPD,, (it corresponds
to r = 0). Thus, WPD, is a two-parameter family of probability distributions
containing the Poisson. Let us observe that this property is not verified for the
Negative Binomial family of distributions. WPD, includes overdispersion (r < 0)
and underdispersion (r > 0) distributions (see Theorem 2.1 to interpret parameter
r as a repulsion parameter). Figure 2.1 shows that positive values of r concentrate
the probabilities around the mean, and negative values increase the dispersion,
with respect to the Poisson distribution.

Given a > 0, the sub-families WPD, are regular exponential families, which
are the distributions of maxiinum entropy given a sufficient statistic. In this case,
the sufficient statistic is defined by the arithmetic and the geometric means of
the data shifted by a. Hence, the classical theory of likelihood works perfectly in
these families and the scoring method provides useful solutions to the likelihood
equations. We refer to Barndorff-Nialsen (1978) for a general theory of exponential
families. See also Efron (1978), Letac (1992), Brown (1986) and Castillo (1994).

With respect to the three-parameter model, the stochastic order relations
between two probabilities of the family are established. I'rom the inference point
of view, we propose to find the maximum likelihood estimator associated to the
family WPD, and to study the profile log-likelihood with respect to parameter ¢
(see Sectivn 4).

Finally, we give two examples of fitting practical data by a distribution of the
tamily WPD. The first comes from a paper in which Greenwood and Yule {1920)
introduced the Negative Binomial as an alternative to the Poisson distribution,
in overdispersion situations. The second is an example of underdispersion. This
is one of the examples used by Consul (1989) to show the good properties of his
Poisson generalization. In both cases, WPD gives better fittings (see Tables 1
and 2).

Moreover, the weighted Poisson distribution can also be used in generalized
linear models with covariates (see McCullagh and Nelder (1989)), in particular, in
log-linear models where the variance function is assumed to be linear. Obviously,
the linearity of the variance function ig verified for the Poisson distribution, but
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for a WI’D the variance function is “ahmost” linear in a large range of the mean
parameters. In Fig. 2.2, we compare the variance function for the Negative Bino-
mial distribution and the WPD for the Greenwood and Yule example. It is also
possible to appreciate this quasi linearity in Fig. 4.1, since the behaviour of the
dispersion index is almost constant when the repulsion parameter r is fixed.

2. Weighted poisson distributions

In this section we introduce new familica of probability distributions related
to the Poisson distribution. We give an interpretation of the parameters, we
study the stochatic order relations between the different families and we show that
those families are applicable in overdispersion {agregation} and underdispersion
{repulsion) situations.

2.1  Point probability functions

Following the concept of weighted distribution introduced by Rao in 1963
(see Rao (1965)), and given a random variable X with Poisson distribution with
parameter A, we consider for @ > 0, r € R, the weight w(k) = (k + )" and the
weighted Poisson distribution (WPD), with point probability functions given by:

(k + a)r Ake=?
2.1 PlkiAra) = ————
21) kAT = FIx T o e
where we denote by Fj[-] the mean value with respect to the Poisson distribution
with parameter A.

Let us remark that, when a > 0, it is possible to express {2.1) in the following
way:

exp(klog A + rlog(k + a))

(2.2) Pk;A,r,a) = KGO T, 0) ’

WhCI‘C:

(2.3) CAra)=eEy(X +a)] =) ﬂﬁgﬁ°
k=0 !

From the quotient criterion, it follows that series (2.3) converges for all A > 0,
a>0and r € Rand A > 0, a = 0 and r € RT (more details on the convergence
of this series will be considered in Section 5). From (2.2} we see that, given a > 0,
the corresponding sub-familv of probabilities, which we denote by WPD,,, is a full
exponential family on Z¥. The reference measure is p = 377, 8 /k!, where &
means the evalnation at & and T,(k) = (k,log(k + a)) is the sufficient statistic.
Moreover, it is a regular exponential family with natural parameters (8,7) € R2,
where 6 = log(A) (see Barndorff-Nielsen (1978)),

Note that if in (2.1) we take r = 0, we obtain the point probability function

of a Poigsson distribution with paramecter A. Therefore, the Poisson family of
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Fig. 2.1.  Graphs of probability distributions for the WPD model, when o = 1, the
mean ¢ =5 and the repulsion parameter r = 5,0, -2, —3,

distributions is nested in all the sub-families WPD, and it corresponds to a linear
subspace in the natural parameter space.

In order to understand the behaviour of the point probability function WPD
varying the values of the parameters, we advance some ideas that will be developed
later. First, parameter ) is closely related to the mean value. When r = 0, Ais
Just the mean value and Fig. 4.1 shows that given X, the mean value increases
with r (see also Corollary 2.2). The interpretation of parameter r as a repulsion
parameter is given in Theorem 2.1. Moreover, Fig. 2.1 shows that positive values
of r concentrate the probabilities around the mean, and negative values increase
the dispercion around the mecan, with respect to the Poisson distribution (r =10).
Finally, parameter a is a mesure of the proximity to the Poisson distribution {see
Section 3). Moreover, small perturbations of this parameter give an ogcillatory
behaviour of the probabilities P(k; A,r,a). This property will be appreciated in
Section 5.

2.2 Stochastic order relations

In this subsection we are going to study the stochastic order relations between
two random variables which have a WPD with different parameters. In particular
we are going to compare the Poisson distribution with a general WPD.

First, it is important to notice that given two random variables with a WPD
with different parameters it is always possible to consider one a weighted version
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of the other. From now on, we will denote by WPD(A,r, a) the weighted Pois-
son distribution with parameter (A,r,a). In particular, WPD, is equivalent to
WPD(-,-,a). If X is a random variable with a WPD{Ay,r,a), then the weighted
version X%, where wi(k) = (A2/A1)¥, is a WPD(Az,7,a). Similary, the weights
wa(k) = (k4 a)™7™) and ws(k) = (k+ a2/k + a1)" transform a WPD{X,ry,a)
into a WPD{A, 72, a), and a WPD(A,r,a1) into a WPD(A, 7, as) respectively.
Patil et al. (1986) have proved that given a random variable X, the weighted
version X% is stocastically greater or smaller than the original random variable
X according as the weight function «:(2) is monotone increasing or decreasing in
z. Now, if 0 < A; < Ay and 71 < 73 the weights w; w2 are increasing functions of
k. On the other hand, if r < 0(> 0} and 0 < a1 < ag, the weight wy is also an
increasing (decreasing} function of k. So, this gives the following proposition:

PROPOSITION 2.1. Assume that X; has a WPD(\;,r;,a,) for i = 1,2. If
a, = ay and {(M,r1) < (XA2,72) then X, is stochastically greater than X,. If
a1 < as and (Ay,7m1) = (Ae,ra), if r < 0{> 0) then X is stochastically greater
(smaller) than X;.

COROLLARY 2.1. Ifr > 0{< 0) a random variable with @ WPD{A,r,a) is
stochastically greater (smaller) than o random variable with e Poisson distribution
with parameter .

2.3  Mean, variance and moments

Let X be a random variate with a WPD(A,r,a), r TR, A > 0, a > 0. Denote
the mean values with respect to this distribution by E[|. We now give some
properties of monotony related to the mean values of any monotonous function of
X.

From Ross (1983}, a random variable X is stochastically greater than a ran-
dom variable Y if and only if for every nondecreasing function g, E[g(X)] >
E{g(Y)]. Consequently:

COROLLARY 2.2. Let g(z) be a real-valued nondecreasing (nonincreasing)
function. Given any value of the displacement parumeler o, the mewn values
E[g(X)] are nondecreasing (nonincreasing) functions of the parameters (A7),
A> 0, r e R. Moreover, E[g(X)] is also a nondecreasing (nonincreasing) function
of the parameter a if r < U.

In particular, the moments about the origin are nondecreasing functions of
{A\,7), A>0, 7 € R and also a nondecreasing functions of a if r = 0.

We can write the mean and the variance of a WPD in terms of the normalizing
function C(), r,a). Given s € R,

C(A\r+s,a)

(2.4) BI(X + 0] = =5H=

(seR).

Clearly, from (2.3), the function C(X,r,a) verifies the recurrent property

(2.5) C(Ar+1a) = X0 (A r,a+ 1)+ aC(A v, a),
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that permits us to reduce r in a numerical approach to C(A,r,a} (see Section 5).
Also, taking s = 1 and s = 2 into (2.4}, we have the following expressions for the
mean and the variance:

(26) B(X) = )\_C%{_f%
and
(2.7) V(X) = C(’\v’"”i"?,a)c()\a?",a)—Cz(f\,’rﬁ—l,a).

C%(\, r.a)

2.4 Index of dispersion

Given a random variable X, the index of dispersion I{X) = V(X)/E(X) is
a measure of aggregation or repulsion. Usually, the events cluster in time or in
space because of the environment. When this happens, I{X) is greater than one.
Alternatively, the absence of aggregation gives values for I(X) less than one. If X
has a Poisson distribution then I{X) = 1. For this reason, I(X) has been used as
an indicator of the degree of departure from the Poisson distribntinn.

When the empirical index of dispersion is greater than one {and only in this
case), it is often better to use the Negative Binomial distribution rather than
the Poisson distribution in order to fit empirical data (see Johnson ef al. (1992)).
As we will see, the WPD admits indexes of dispersion greater than, equal to,
or smaller than one. This fact makes the WPD suitable to fit empirical data in
different fields, even in repulsion situations.

From (2.6) and (2.7), the index of dispersion for the WPD is expressed as:

ClAr+2,a}C(Ar.a)— C3HAr+1,0)

(2.8) X = o maC0ur +1,a) — ac?(ir, a)

Moreover, from (2.5) we deduce that the denominator of (2.8) is positive. Thus,
saying that I{X) > 1 is equivalent to saying that

C*(A,r +1,a) — aC?(A\,1,0) < (C(A, 7 +2,a) — C(Ar+ 1,a))C{N 7. a)
and applying (2.5) several times, we obtain:
(2.9) I(X)>1 it C%(Ara+1)<CAna}C(Arat2).

This inequality allows us to characterize the aggregation or repulsion of the WPD
in the following result and, in consequence, to interpret the parameter r as a
repulsion parameter.

THEOREM 2.1.  Suppose that the random wvariable X is distributed with a
WPD(X,r,a), 1 € R, A >0, a > 0. Therefore, the index of dispersion is I(X) =1
if and only if r = 0 or, equivalently, X has a Poisson distribution. Moreover,
I(X) > 1 (J(X) < 1) tfand only if r < 0 (r > 0).

ProoF. See the Appendix.
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Fig. 2.2. Graphs of the variance function of the Neg. Bin. and the WFPD, for the
Greenwood and Yule data {Example 1).

3. Properties related to the Poisson distribution

In this section, the Poisson distribution will be used to obtain a new expresion
for the normalization constant. An alternative estimation method will be analyzed.
Further, the concepts of weighted version and mixture will be related for a general
distribution. Finally, an example will be used to compare the variance function
for the WPD and the Negative Binomial distribution.

3.1 Closed form for the normalization constant

The Poisson distribution is closely related to the WPD. As we saw in Subsec-
tion 2.1, the Poisson distribution belongs to the sub-family WPD,,, for all values of
a. In fact, it corresponds to the subspace v = 0 of the natural parameter space. So,
the Poisson distribution is a linear subfamily of WPD,. Further, as a consequence
of the last theorem, we find that a WPD has index of dispersion equal to one if
and only if it is a Poisson distribution. Moreover, we can use the normalization
constant C{X, r, a} to compute moments for a translation of a Poissen variable and
we can compute C{A,r, a), for » € ZT, from the moment generating function of
a Poisson distribution. More precisely, let X be a random variable with Poisson
distribution of parameter A, and denote by E,[-] the mean value with respect to
this distribution. Therefore, given a > 0 and r € R we can compute

X 2k T
EJiX +a)} = oA Z /\(%Ci = e*’\()()\,r,a).
k=0 '

Moreover, if » € Z71, nging the moment. generating function of X + a, it follows
the next closed form for the normalization constant:

(3.1) C(A,ra) = %exp{at + Ae'] |i=o (r=0,1,2,..).

This result can be used as an alternative way to compute C'(A,r, a) for positive
integer values of 7. In this case, the normalization constant is equal to the product
of e* by a polynomial of degree 7 in A.
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3.2 Alternative method of estimation

Denote by P(k;A), (k=0,1,2,...) the point probability function of a Poisson
distribution with parameter A, Then we have Pk + 1; N)/P(k; X) — A/(k + 1).
Amnalogously, by (2.1), the ratio of two successive probabilities of a WPD verifies:

Dy 1 A 1y
3.2 Y ,
(32) P, k-l—l( +k+a)

where P, = P(k; A, r,a). Note that the second factor in the right hand of (3.2)
tends to one, for every a > 0, r € R, when £ tends to infinity. Then, the tails of
a WPD with parameter A are similar to the tails of the Poisson distribution with
parameter A.

We now deduce an estimation method for the parameters of the model using
(3.2). Fixing an integer non-negative value for k and applying (3.2) for &, k + 1,
and k + 2, we find that the theoretic probabhilities given by the model verify:

33) PPy k+1 ((k+a)(k+a+2))r’

P2, E+2 (k+a+1)7

for every integer positive value of £. Applying (3.3) for & and & + 1 and taking
logarithms we can avoid parameters A, r and concentrate in the following equation
in a:

log (iﬂpkpk+2) Iog((k+a)(k+a+2))
(3.4) \k+1 P2 _ (k+a+1)? 7
log (k_j'_il')k+lyk+3> log({k+&+1)(k+&+ 3))
k+2 PZ, (k+a+2)2

Instead of putting the theoretical probabilities P; in (3.4), we can put the
observed ones and find a possible value for parameter o numerically. We can use
this value ta nbtain values for parameters A and » from {3.2) and (3.3) vsing,
again, the observed probabilities instead of the theoretical ones.

The main advantage of this estimation method is its simplicity. It does not
depend on C(X, 7, a) and it only requires the solution of one uwniparametric equa-
tion. As a disadvantage, it does not always work. Let us denote the right hand
side of (3.4} by fi{a). In order to apply this method it is necessary that the left
hand side of {3.4) evaluated with the observed probabilities lies between values 1
and fr(0) for at least one integer non-negative value of k, and this is not always
verified. Nevertheless, if parameter « is fixed, the solutions of (3.3} and (3.2) are
good starting points in order to find the maximum likelihood estimations using
the scoring method (see, Section 4}, specially when k is close to the mode of the
empirical digtribution.
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3.3 Weighted versions and mirtures

Patil and Rao (1978) pointed out the importance of the size-biased version,
X*, of a random variable X. That is the weighted version with weight w(k) =
k. In particular, it is interesting to remark that the next property is verified
E{X*)~ E{X) = I(X). They show that many classical discrete distributions have
a size-biased version of the same form with the variable reduced by unity. For
instance, this is true for the Poisson, Binomial, Negative Binomial, Hypergeometric
and Binomial Beta distributions. The same result is also true for the WPD. More
sperifically, if X has a WPD(A, r, a) then, X* has a WPD{A,7,a + 1) and it takes
values K =1,2,....

It is important to notice that the weighted version with weight wo(k) =k +a
of a random wvariable X with a Poisson distributicn is a mixture of X and X*.
More exactly,

o —_ o A 3 N ’\ *
Pr{X _k}_(l #—A+Q)Pr{X~k}+—A+aPr{X =k}

It is easy to observe that the greater the value of parameter a, the nearer we
are to the Poisson distribution. Consequently, we can interpret parameter ¢ as an
indicator of the proximity to the Poisson distribution.

Morc gencrally, given any discrete random variable X, its weighted version
X¥ with w(k) = (k+ a)7, r € ZT, is a mixture of the successive size-biased
versions of order s of X for s = 0,1,2,...,r, which we denote by X**. More
exactly,

r r—s
Prix® — k} =3 (D ¢ b“‘s Pr{X* =k},

8=0

where p, is the s-th moment about the origin of X and b = >_, (T}a™ " ps.
Notice that if r € Z1, the WPD is a mixture of the successive size-biased versions
of a Poisson distribution.

3.4 Weighted Poisson distribution and the generalized linear models

'I'he generalized linear models, introduced by Nelder and Wedderburn (1972},
are determined by the variance function of the error distributions (see McCullagh
and Nelder {1989)), and the link between means and covariates. The log-linear
models assume linear variance function and a logarithmic relation between means
and covariates. The Poisson distribution is, of course, the most characteristic error
distribution with these properties. In many practical situations the overdispersion
problem appears, ie., I{X) is significatively greater than one. In these situations
the Negative Binomial distribution is generally used instead of the Poisson dis-
tribution to model the data. Neverthcless, the variance function of the negative
Binomial distribution is a quadratic function, which is far from the assumption of
linearity.

In Fig. 2.2 we show the variance function for the Negative Binomial distribu-
tion and the WPD related to the data of the Example 1 in Section 5. We can see
that for the WPD the variance function is almost linear which shows its usefulness
in log-linear models. This property is not only verified for the Example 1 data.
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Figure 4.1 also shows that /(X) is almost constant when parameter r is fixed and
then, V(X) is almost linear in terms of E(X).

In fact, using (2.7} and the recurrent formula (2.5), the variance of the WPD
with parameters (A, r, a) may be written as:

Virra) (X)) = (B (X)) + o) (B ri1,09{X) — Egaray (X)),
In the particular case that r =n € Z%, (3.1) allows us to write:

C(\n,a) = e (A” + (na + ﬂﬁ’lg—l)) ATy O(AH)) .

Using this expression and (2.6), it is possible to prove that Ere1,0)(X) —
E)ra)(X) tends to one when A tends to +oo. Consequently, the variance of
the WD) is approximatly equal to the linear function of the mean E) . o (X)+a
when parameter A is big enough and r is a non negative integer. Numerically, it is
possible to see that this property is verified for any real value of r. Unfortunatly,
we do not have a general proof for it.

4. Statistical inference

In Section 3, an alternative estimation method has been introduced. However,
it is not always applicable. In this section we deal with the maximum likelihood
estimator which, of course, ‘s the best way to do inference. If parameter a is
suposed to be known, the problem is simpler to study because the distribution is a
two-paramecter exponential family, as we have said in Section 2. So, if parameler ¢
is unknown, what we suggest is to study the profile log-likelihood varing parameter
a in order to find the best parameter estimation for the three parameter-model.

4.1 Likelihood equations

The concept of weighted distribution arises from sampling with unequal
chances to observations to be recorded (see Rao {1965)}). In such a situation,
it is necessary to modify the original distribution with a certain weight so that the
sample comes {rom the new probability distribution. Thus, the weight is closely
related to the way in which the sample is obtained and, sometimes it is possible
for the researcher who collects the sample to give advice about a possible value for
parameter a. Note that the positive displacement ¢ is required in order to avoid
the evaluation of the logarithm of zero.

If we are not in the last situation, a good way to fnd a maximom of the
log-likelihood function of the three-parameter model is to find for several valies
of a the maximum likelihood estimations of the two-parameter model and to plot
the profile log-likelihood varying a. In particular, it is interesting to study the
neighhourhood of 2 = 1/2 (see Figs. 5.1 and 5.2 in Section 5). The reason ie as
follows, let us suppose that X is a random variable with a Poisson()) distribution,
the equation in ¢ E,[log(X + a)] = log()) has only one solution that is smaller
than and asymptotically equal to 1/2. From now on, we arc going to suppose that
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the value of parameter o is fixed and we are going to work with the two-parameter
model.
Let z = (z1, z3,. .. ,:vn)Jr be a random sample of a WPD, (XA, r). Let us define

1o 1 —
t1 = ;Z:Ei, and s = —T;Zlog(xi—ka).
i=1 i=1

Note that, t1, ¢t are respectively the sample mean, and the log-geometric
mean of the sample shifted by a.
The log-likelihood function for the WPD, model and the sample x is

(4.1) (A 2} = nllog(AY + 7t — K(A, 1, a)],

where K (A, r,a) = log C'{\,r a).

The likelihood equations may be written as:
(42) ALK (N ra) = E[X] =1
' O K(\ra)=Elog(X +a)] =t [’

where we denote 8y = /A and &, = 8/dr.

If sample x is drawn from a WPD, (A, 7), solving the likelihood equations is
equivalent to finding (A, r) such that, for the random variable X +a, the arithmetic
and the log-geometric means for the population and the sample are equal.

As we have observed, given a > 0 the corresponding sub-family of proba-
bilities WPD, is a full exponential family on Z+ with respeet to the measurc
p= > peobr/kl. The natural parameters are (#,r), where 6 = log(}), and the
natural parameter space is R?. Because R? is an open set, WPD, is a regular
exponentiszl family (see Barndor(I-Nielsen (1978)). Let T, be the statistic defined
in Section 2 by T, (k) = (k,log(k + a)). Because S, = T,(Z%) is not included in
an affine subspace of R?, T, = (¢{,t2) is a minimal and sufficient statistic for the
family WPD,.

Let 7, be the interior of the convex hull of $;. There is a one-to-one trans-
formation between R? and the domain of means 7,, because WPD,, is a regular
exponential family. This transformation may be expressed in terms of 7(¢,r} =
Ewn(Ta) = (Tl(B,T‘),TQ(g,T‘))T (see Barndorff-Nielsen (1978)).

So, if (t1.t2) belongs to 7., there is a solution for system (4.2} that is unique.
To verify this assumption it is sufficient that sample z has more than two different
values, or, if it has only two values, it is sufficient if those values are not consecutive.

To sum np, if the valie a4 is known and nonzero, we can find the maximum
likelihood estimations for parameters (A, 7) solving (4.2}, Then, it is necessary to
study the profile log-likelihood Iy(a) = [(Ag, 74, ) where (A4, 7,) are the solutions
of {4.2). Usually {p(a) is unimodal, and somctimes its maximum will be obtained
as a limit when a tends to zero (see Example 2 in Section 5.
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4.2 The method of scoring

Equation (4.2) is highly nonlinear and must be solved using numerical me-
thods. A general procedure to deal with this equations is to use the scoring
method.

Let F,(0,r) be the Fisher matrix information at point (f,7) € 2. Because
WPD, is an exponential family we have:

Fa(g,?‘) = (8533;}(@(9,’!'))1',];:1,2 = COV(B’T-)(TG,T&).
Now, let us define:

. . ARkt a) log®(k +a
(43) pr(nra =y At alor L)

k=0

the elements F; ; (4,7 = 1,2) expressed in function of A, are given by:

N X(C(Ara+2)C(A\ra) — CP(A\,ra+ 1)+ AC(A ra+1)C(A 1)
11 =~ 4

C2 (a7 a)
MCA,rma)DY A ra+ 1)~ C(Ara+ 1)DYA ra))
12 21 i a) , and
C(A, r,a) D2\, r,a) — (DY(A,r,a))?
Fyy = -

C2(A, 1, a)
Also, using this notation, 71 (6, 7) and T2{#,r) are expressed as:

C’(/\,'r,a, t 1)
C(nra)

Dl(),r,a)

(4.4) (8,7} = A SO

‘Tg(@,?") =

Given a trial estimate of the parameters (&, r,), we can updatc to (fnyi,
rn+1) by

On+1 On 1t Ti{fn, )
(45) (TH-H) (Tn) + Falln ) (t? — 72(0n, Tn)) .

We propose two ways to obtain a starting point. The first one, which is very
simple, is to use equations (3.2) and (3.3) with the observed probabilities instead of
the theoretical ones and % close to the empirical mode, as suggested in Subsection
3.2. The other way, which is more precise, tonsists in drawing the parametric plot
(E[X],I[X]), for a fixed value of a, where the mean and the dispersion index are
associated with the parameters (A r,a), for different values of parameters A and
r. If we design all those parametric patterns simultaneously, the result is a reticle
(see Fig. 4.1). To use this reticle, we estimate the mean and the dispersion index
from the sample. That is, we calculate the point (%, s?/Z) where:

ki3

F=t;, and &= Z:(xt —Z2)?%/{n—1).

i=1
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[(X)

r=—1

r=-3

15t r=-7%

A=0.5

Fig. 4.1. Parametric plots ot (#(X }, /(X}) for ¢ = | and different values for parameters
Aand r.

Locating this point in the reticle, two values for parameter # and two values
for parameter r are determined. Those values define the zone where the point
(z,5%/%) is situated. The middle points of those values constitute a very good
starting point, not only for the scoring method but also for any numerical method
applicable to this situation. If parameter o is lightly modified, it is not necessary
to recalculate the starting point. The same point is useful for different values of
parameter a which do not differ greatly.

The equation (4.2), using the formulag (4.4), can alsao bhe snlved by stan-
dard numerical methods such as the function FindRoot in MATHEMATICA {see
Wolfram (1991)). Finally, note that the method of scoring in exponential families
is cquivalent to the Newton Raphson algorithm.

4.3 Statistical testing

It is important to test whether a samplc comes from a Poisson distribution or
not. Therefore, in this subsection we describe a test in large samples using the fact
that the theoretical mean and the variance are equal for the Poisson distribution.

Assume ¥ = (&, Ta,..., :r:,,,)?L is a sample of size n from a population with a
Poisson distribution, with estimated mean and variance = #;, and s%.

A general test, which can be used to detect overdispersion or heterogeneity
in the population sampled, is based on the statistic

Sr=+vn—1(z - 5*)/(V23),

which, if n is large, can be used as a standard normal deviate, (see Rao (1973},
p. 439).

5. Fitting empirical data
In this section we give some examples of fitting practical data by a distribution

of family WPD. We use two classical examples in order to compare the results
with the fits given by some other distributions. The fivst was nsed to introduce
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the Negative Binomial distribution, as an alternative to the Poisson distribution,
by Greenwood and Yule (1920). The second is one of the examples considered by
Consul {1989) to introduce his Poisson generalization. The differences between
observed and expected values are computed by the A test of Pearson.

First, we shall solve some numerical aspects in the computation of series
C{\.r,a) and D*(\,r,a) given in (2.3) and (4.3) respectively. Applying (2.5)
several times, we can reduce the computation of C(A,r,a) to the case r < 0. The
ratio of two successive terms in series (2.3) is:

A - 1 ’"< A
E+1 E+aj ~ k+1

Taking k > 2A, the ratio of two successive terms is less than 1/2, then the rest of
the series is smaller than the k-term; that is, if &y > 2A, then:

20 k r ko r ko
k—hot 1 . 0! 0-

Using the Stirling formula, the right hand in the last expression can be dominated,
if kg > 3, by

AFo A3A 1 ey 3> (0.9)32
—_— | = =2 (.23 .
k! — (3N VB (3) VA

Consequently, in computing C(A,r, o) we use atb least & = 34 terms,
The series D¥(A,r, a) also verifies the recurrent formula

Di(ar+1,a) = A0 ra+ 1) +aD*(Ar,a).

This fact allows us to compute D*{A,r,a) in a similar way as we have explained
above, to compute C(A,r,a). In fact, if ¥ > 0, which is the important case, il is
encugh to apply the recurrence until v < 0 and —r > ¢ and to use at least k£ > 3A
terms.

The Negative Binomial distribution with parameters p and r is defined by
Pkip,ry = ()" (-1Y*(1 — p)*, for k = 0,1,.... The values of p and r that
appear in the Negative Binomial columns of Table 1 are the estimations by the
moments method, given in the original references. Because we do not know the
value of parameter a, we have studied the profile log-likelihood varying this pa-
rameter. For a given value of a, the solution of (4.2) has been computed using
the methods of Subsection 4.2. In both cases, good starting points can be found
solving equations (3.2} and (3.3) with & = 0 and the empirical probabilities instead
of the theoretical oncs. Finally, the parameter A of the Poisson distribution has
been estimated by the sample mean.

Erxample 1. Table 1 contains data given by Greenwood and Yule (1920).
The data show the distribution of the number of accidents among 647 machine
operators in a fixed period of time. The ratio of the sample variance to the sample
mean is greater than one. This is an example with ahsence of repulsion, which is
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Table 1. Number of accidents for machine operators. Greenwood and Yule {1920).

No.of Obs. WPDa=08 WPDa=1I Neg Rin. POISSON
accidents A =2.16572 A=246942 p= 0673427 A= 0.465224
r=—-2,47353 r=-3.07412 r = 0.959349
6] A47 147,158 416.874 442,765 406.312
1 132 130.084 131.032 138.717 189.026
2 42 47.182 46,517 44.380 43.969
3 21 15.993 15.813 14.296 6.818
4 3 4.856 4.916 4.621 0.793
5 2 1.725 1.848 2,218 0.082

647 %2 =2017 x? = 2.906 x2 =427 % =101.871

translated in a negative value for parameter r when we fit the data using a WPD,
The data were proposed as an example of data following a Negative Binomial
distribution rather than a Poisson distribution. Notwithstanding, the first and
second columns of Table 1 indicate that the WPD fits better than the Negative
Binomial. Not only is the value of A2 smaller but also most of the expected values
are close to the observed ones.

The estimated parameters that appear in Table 1 were computed from the
statistics:

t; = 046522, and 5% = 0.6919

defined in Subsections 4.1 and 4.2 and, the corresponding value of ¢ty depending
on the value of . Moreover, in order to test if the data came from a Poisson
distribution, we have computed the statistic Sg defined in Subsection 4.3. This,
for the Greenwood and Yule data, and for ¢ = | is Sp = —8.75™",

Figure 5.1 shows the behaviour of the log-likelihood function for the
Greenwood and Yule data. In the z-coordinate we represent the value of param-
eter @ and in the y-coordinate we represent the value of the profile log-likelihood
la(Aas7a, @), according with (4.1), where (A,,#,) is the solution of (4.2}, i.e., the
maximum likelihood estimators of the two-parameter model. In this case the
maximum is attached at @ = 0.8 approximatively. It is possible to appreciate, in
the first two columns of Table 1, that there are not big differences between two
approximations corresponding to close values of paramecter a.

Erample 2. P. C. Consul (1989) proposed a generalized Poisson distribution
defining a bi-parametrical model which is not an exponential family. The data. in
‘Table 2 were obtained from Consul but, as is mentioned in Consul (1989), they
come from a well-known paper on natural laws in the social sciences written by
Kendall (1961). The data correspond to the ohserved data on the number of
outbreaks of strikes in 4-week periods, in a coal mining industry in the United
Kingdom during 1948-1959. This is a repulsion case because the ratio of the
sample variance to the sample mean is less than one. Conscquently, » > 0 when
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§91.5

592t la(3a,Fa,a)
-592.5
-593
-593.5
-594
-5EQ4 .5

2 4 6 B 10

Fig. 5.1. Graph of the profile log-likelihood associated with the data of Table 1. In the

z-coordinate we represent the value of parameter a, in the y-coordinate we represent
the value of the log-likelihood in Lhe point (Aa, Fa,a).

-187
-187.2
-187.41
-187.6 .
-187 .8

-188 -
-188.2 2 4 B [ 8 10
-188.4

. ia(:\u: fa,a)

Fig. 5.2. Craph of the Profile-loglikelihood associated with the data of Table 2. In the

z-coordinate we represent the value of parameter a, in the y-coordinate we represent
the value of the log-likelihood in the point (Aa, o, a).

Table 2. Number of outhbreaks of strikes Kendall, M. (3. (1061).

Outbr. Obs. GPD WPD a =05 WPD e =0.00001 POISSON
f=1.14 A = 0.454975 A =0.70107 A = 0.99359

A=—015 r=1.12 r = 0.07268
0 46 50.01 46.607 46.030 57.758
1 76 66.77 72.572 74.514 57.388
2 24 31.23 29.252 27.469 28.510
3 a 793 £ 46R f.6T11 9.442
>4 1 0.76 1.103 1.374 2.902
156 x2 =4.520 x%=2.115 x? = 1.432 x? = 5.057

we fit the data with a WDPD. In this case, the generalized Poisson distribution of
Consul fits better than the Poisson distribution. As in Example 1, the WPD not

only gives the smallest value for X? but also gives expected values very close to
those observed.

The estimated parameters of Table 2 were computed from the statistics

t; — 0.003590 and &% — 0.741804

defined in Subsections 4.1 and 4.2, and the corresponding value of t3 depending
on the value of parameter . In order to test if the data come from a Poisson
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distribution we have computed the Sp statistic from Kendall’s data and a —
0.00001 and it is Sg = 2.23"".

The main difference between this example and the previous one is that the
smaller the value of parameter a, the larger the value of the log-likelihood function.
Nevertheless, the maximum is not going to lie in the boundary, that is ¢ = 0,
because p(0; A,r,0) = 0 and, from the data it is possible to see that £k = 0 has a
probability different from zero. In fact, it seems that 7, tends to zero when a tends
to zero and in this case, it is not easy to specify the limit distribution, because it
depends on the rates of convergence to zero.
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Appendix. Proof of the theorems

PROOF OF THEOREM 2.1. We prove the theorem by distinguishing the sign
of the repulsion parameter r.

Case (i) r = 0. For this case X has a Poisson distribution. In consequence,
the mean and the variance are equal and therefare 71(X) = 1.

Case (ii) r < 0. For this case we prove that for A> 0 and a > 0

(A1) A r e+ 1) < Cra)Chra+2),

which is equivalent to I(X) > 1, as we saw at (2.9). Applying Fubini’s theorem,
(A.1) is the same as:

i /\k(}c1+a+1)’"(k2+a+1)’"< i Ne(ky + a) (k2 +a+ 2)7

ki lka! kilks! !
Ky kz2=0 17ha k1 ka=0 1:h2

where k = ky + ky. By symmetry, the last inequality is equivalent to:

Z Nea(ky +a+ 1) (ks +a+1)"

(A.2) kylka!

k1,kz
Mellky +a) (k2 +a+2)" + (k2 + @) (k1 + a+2)7]
<2 DT '

ki,k2
Moreover, it is easy to see that:

(ky 4+ a){ks 4+ a +2) + (ko + a)(ky + a 4+ 2) -

1
2(ky +a+ Vlkys+a+1)

and since » «< 0, ¢, (x) = 2" is a decreasing function, then:

(k1 + a)(kz + a + 2} + (k2 + a) (K +a+2))r
5 )

(ki +a+1) (ks +a+ 1) < (
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Taking into account that ¢,(z) is also a convex function in &' for any negative
value of r, we have;

2(kita+ 1) (ko+a+ 1) <(ki+a){ka+a+2) + (ke +al (b +a-+ 2),

and consequently, (A.1) is proved.

Case (iil) 7 > 0. We distinguish if r is larger or smaller than one, in order
to prove the opposite of (A.1). If 0 < r < 1, the proof is similar to case (ii). It
is only necessary to observe that now the function ¢.(z) = 2" is increasing and
concave in R7, and to change the inequalities. To prove the opposite to (A.1) for
values or r larger than one, it is enough to see that if for any @ > 0, A > 0 and
given a fixed value of r:

(A.3) C\ra}C(A ra+2) < CYAra+ 1),

then {A.3) is also verified by r + 1, which is

(A.4) Chr+1,a)CAxr+1a+2) <C*(A\r+1,a+1).
Writing hypothesis (A.3) for a + 1 we have:

(A.5) CAra+ 1)CAra+3) < C*(A\ra+2).

Multiplying {A.3) and (A.5) we obtain:

(A.6) CAra)C(Mra+3) <CArae+1)C(\ra+2).

Applying {2.5), (A.4) becomes:

MO\ ra+ 1O\ ra+3)
+Al{a +2)C(A,ra+2)C(A,ra+ 1) + aC(A,r,a + 3)C(A, 7,a))
+ ala + 2)C(A,r,a)C(A, 1,0 + 2)
< NC?* (A, rya+2) + A2(a+ DO rya+ 2)C(\, e + 1)]
+ (a+ D2C* (N, ra + 1),

By (A.5) and {A.6) the coefficients of A* and A on the left hand side are smaller
than the respective coeflicients on the right hand side. By (A.3), the independent
term on the left hand side is also smaller than the independent term on the right
hand side. Consequently, the proof is complete. (1
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