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Abstract. Behaviour of a sequence of independent identically distributed
random variables with respect to a random threshold is investigated. Three
statistics connected with exceeding the threshold are introduced, their exact
and asymptotic distributions are derived. Also distribution-free properties,
leading to some common and some new discrete distributions, are considered.
Identification of equidistribution of obscrvations and the threshold arc dis-
cussed. In this context relations between the exponential and gamma distribu-
tions are studied and a new derivation of the celebrated Laplace expansion for
the standard normal distribution funection is given.
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1. Introduction

For a random level we are interested in properties of a sequence of observations
connected with exceedance of that level. A special kind of such problems for the
level being an order statistic from the original sample and for the sequence being
a new sample from the same distribution, closely related to the theory of tolerance
limits, were widely investigated in fifties, see for instance: Gumbel and Schelling
(1950), Epstein (1954), Sarkadi (1957) or Wilks (1959), aud even carlier in Wilks
(1941, 1942). The chapter “The distribution of exceedance” in the Gumbel (1958)
monograph is the basic source in this area. Another aspect of exceedance in the
same model, connected with order statistics from extended samples was considered
in Siddiqui (1970). For more recent surveys on that approach see David (1981)
and Johnson et al. (1992}.

Here we are concerned with a general model assuming only independence of
the random threshold and the sequence of observations, which are independent
and have the same distribution. Three basic exceedance statistics are investi-
gated: number of observations in a finite sample not exceeding the level, number
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ol observations not exceeding the level counted to moments of consecutive ex-
ceedances and number of records of the sequence of observations not exceeding
the threshold. Exact distributions are derived in Section 2. They have forms of
generalized binomial, negative binomial and Poisson mixtures. Asymptotic results
given in Section 3, due to their generality, allow to obtain approximations for a
wide family of discrete distributions. Section 4 is devoted to the distribution-free
properties. Except of some common discrete distributions appearing here, also
three new discrete laws, named record exceedance distribution of the first and scc-
ond kind and record-order exceedance distribution, are derived in a very natural
way. Also asymptotic properties follow easily from the results of Section 3. On the
basis of considerations of Section 4 it is shown in Section 5 that some special forms
of the distribution of some exceedance statistics imply equidistribution, while oth-
ers do not. This can give hints for possible applications of the exceedance statistics
in hypothesis testing. Also some remarks on general identifiabiliy properties arc
given in the final part of that scetion. The cxponential model investigated in
Section 6 comes as an example of potential developments of our approach. Here
new characterizations of the gamma and exponential laws are given and also a new
derivation ol the celebratled Laplace expansion of the standard normal distribution
function is presented.

Many special cases of exceedance properties are discussed at numerous places
scattered throughout the literature. However no such general approach is known
to the authors. Hence a simplicity of the model and a considerable level of univer-
sality of the results {especially Sections 2 and 3) seem to promise wide applicability
in many different fields as mixture models, approximation of distributions, simula-
tions, discrete distributions, characterizations as well as estimation or hypothesis
testing. Also, it is obvious that many natural complements and extensions, are
to be considered, including also new exceedance statistics, for example along the
lines of Aki and Hirano (1994) or Mohanty (1994) (waiting time for consequtive k
exceedances, Markov dependent observations).

2. Definitions and exact distributions

Consider a random variable (rv) X with a distribution function {df) F' and
a sequence Y = (¥j);»1 of independent identical distributed (iid) rv’s with a
common df ¢, independent of X, and denote & =1 . We arc interested in
different characteristics describing behaviour of the sequence Y with respect to
crossing the random threshold X.

First consider nummber of observations S, in the sample {17, ...,Y,) which do
not exceed the level X. More precisely

DeFINITION 1. For any integer n > 1
Se=#{j <n:Y; <X}

denotes the number of ¥’s falling below the threshold X among the first n ¥Y’s in

the sequence.
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Observe that S, can be deflined using order statistics by
Sp=max{j <n:Y;, <X}
The exact distribution of S,,, its mean and variance are given in the following

'1T'HEOREM 1. For any integern > 1
P(S, =j) = (?)E(Gj(X)é"_j(X)), J=0,1,....n,

and E(S,) = nE{(G(X))},
Var(S,) = nE(G(X)G (X)) + n* Var{G(X)).

ProoF. Denote

{Y X} lf EJ' = ].J
Aj!EJ - {

. i=1...,n
{Y >X} if Ej:(),

Consequently for any n > 1 and 7 = 0,1,.

P(S,—4§)—P U N Ah,tk> D (ﬂ Aw) :
k:].

YiRoy k=g k=1 Eiogen=i

Since each memher of the sum given above has the same value then for any vector

(€1,-..,€n) such that >_p_; ex = j we have
P(ﬂAk,Ck): ﬂAklm m Ago
k=1 k=j+1

Then the total probability rule together with independence of ¥ and X implies
(S — ) — ( )/P(K\J),..., <z Ve > @y, Yy > z)dF(x).
Now, since Y's are iid it follows finally that
P(S, = j) = (?) /B i ()G ()dF (z)

which proves the first part.
Since

ZJ() (X)&" (X)) =B ia‘(’})cf(xxl—a(x»“—j
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then by the well known formula for the binomial distribution we have E(S,) =
nE(G(X)). Similarly for the second moment one has

Z; ( ) X)L~ G | = nn-1)E(GHX)) +nE(G(X)).

Consequently the formula for the variance follows. O

Second, we are interested in the number R, of Y'’s not exceeding the level X
and counted to the moment of the n-th exceedance. More precisely

DerFINITION 2. For any integer n > 1
R, = mln{j >0: Sn+j_1 = j,Yﬂ+j > X}

denotes the number of Y’s below the level X in a sample of the size R, + n with
the last observation exceeding the level X.

Observe that the equivalent definition in terms of order statistics has the form
R, =min{j > 0: Yj41.:n45 > X}

The exact distribution of R, and its two first conditional moments are given
in

THEOREM 2. Assume that P(C{X) < 1) > 0. For any integer n > 1

n+J
n“

P(R, =3j) = ( I 1) E(GH(X)GYX)), j=0,1,...,

and E(R.) = nE(GE3 0.1, (G(X))),

G(X)
G (X)

Ion, (C(X))) + n? Var (C_;_(X_) Tion) (G‘(X))) .

Var{R,) —nE ( arx)

Observe that if G(X) = 1 a.s. then the right end of the support of Y''s is less
than the left end of the support of X and then with probability 1 no exceedance
is possible. The indicator I;s1,(G(X)) appearing in the expressions for moments
is necessary due to the fact that, in general, it may happen that & {X) = 0 with
a positive probability. Instead al:ao conditional distribution of R, given the event
{G(X) « 1}, and its moments can he ronsidered—see Section 3.
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Proor oF THEOREM 2. Similarly as in the proof of Theorem I we have

P(Rﬂ = J)
ntji-1

=P U n A’tE mAﬂ+JO

SSatd- D=3

:(n+3_1)_/PY1<x Yy <2, Y >z, Yjgn > 2)dF(z)

z(”zizl)/@ )1 - G(z))"dF(x).

To compute the moments it is convenient first to establish that one can change the
order of summation and taking expectations. To this end observe that 3¢ € (0,1)
such that Vj > 1 E(G(X)) < ¢/. To show this assume the converse. Then
Ye € (0,1) 35 > 1 such that E{G7(X)) > ¢/. Denote such j by jo. Hence
E(G(X)) = 1 yielding G(X} = 1 a.s., which is impossible. Consequently it is
allowed to write the expected value of R,, in the form

Bk = B | Ton@) >o5(" 7T e a - ceor
=0

and the final formula follows from the respective expression for the negative bino-
mial distribution. Similarly for the second moment one has

B(R) = B | 101G X))_Z (127 eron- ey

2
=n(n+ 1)E ((%) I(O,l}(G(X)))

| nk (1 gi?)()I(U’l)(G(X)))

and hence the formula for the variance follows immediately. O

Third, we are concerned with number of records K of the sequence Y falling
_below the threshold X. More precisely

DEFINITION 3. Let U(j) denotes the j-th record time for the sequence Y,
= 1,2,..., ie. U(1) = 1 and U(§) = min{s > U(j - 1) : Y; > Yyg_nyh
=2,3,.... Then

K= mlll{”] =10: Y—U(j+1) > X}

denotes the number of records of the sequence ¥ not exceeding the level X

Again, as in the latter case, it is reasonable to exclude the case G(X) = 1
a.s., hence then all Y'’s remain below the threshold with probahility one.
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THEOREM 3. Assume that P(G{X} < 1) > 0. Then
1 = ; .
P(K =j) = il F(G(X)(—log(GIX )Y Ton(G(X)),  5=01,

and E(K) = —E(log(G (X)) (0,1)(G (X)),

Var(K) = —E(log(G(X) 0,1y (G(X))) + Var(log(G(X) o,y (G(X))).

Similarly as in Theorem 2 instead of indicators one can consider the condi-
tional distribution of K given the ovent {Q(X) < 1}, i.c.

PK = 31 G(X) < 1) = 3B (GOO(- lg(GLO)Y | G(X) < 1),
ji=0,1,...,
E{(K | G(X)<1)=—-E(log(G(X)) | G(X) < 1) and

Var(K | G(X) < 1) = —E(log(G(X)) | G(X) < 1)
+ Var(log(G(X)) | G(X) < 1).

Observe also that it follows from Theorem 3, in the case G(X) = 0 a.s., i.e. all the
Y’s exceed X with probability one, that P(K =0) = 1.

PrOOF oF THREOREM 2 Tet Yy = —oo. Then for any 7 = 0,1

3 - - -

P(K = j) = P(YU{j) <X < YU(j+1)) = [R P(YU(j) << YU(j+1))dF($).
Since the joint df of (Yy(;y, Yi(j41)) has the form
] — .
P(Yyi € u, Yy <v) = ﬁ(—10g(G(U)))JG(U)I(0,oo)(U — u)

(see for instance Ahsanullah {1995)), then

/ f / —log(G()})’)dG(v)dF ()

=Lﬁmew»< Cl@) 0,1, (G (2))aF (@)

for any j = 0,1,.... Now, similatly as in the proof of Theorem 2 it follows that
Je € {0,00) such that ¥j > 1 E(—log(G(X))) < ¢,

Observe that the converse of that statement leads to G(X) = 1 a.s. which
is contradictory. Consequently the order of summation and taking expectations
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in the formulas for the moments of K can be reversed. Hence, via respective
expressions for the Poisson distribution, one easily gets

B(K) = E [ Lo (G(X)G X)ZJ Xy

= —E(log(G(X)) (0,1)(G(X))):

B(K?) = B | Loa (L0603 2SR
i=0 -

= — Elog(G(X)) 01y (GX))] + E[(log(C(X)))* 10,1y (C(X))]
and the final variance formula follows immediately. O

Remark 2.1. Observe that the exceedance model, we discuss, gives a natural
mechanism for producing various types of generalized binomial, negative binomial
amd Poisson mixtures willt respect to the continuous paratieters, since i follows
from the proofs of theorems of this section that:

Bs, | x = b(n, G(X)),
trax = nb(n, G{X)),
rrix = P(=log{G(X)}),

where &, nb and P denote binomial, negative binomial and Poisson distribution, re-
spectively, and p’s with subscripts denote conditional distributions. Consequently,
for the degenerate X, say P(X = ¢) = 1 it follows that S, is binomial with pa-
rameters n, p = G{c}, R, is negative binomial with parameters n, p = G{c) and
K is Poisson with the paramater A — — log(G{e)).

3. General limit results

In this section we derive asymptotic properties of distributions of properly
normalized exceedance statistics connected with tending to infinity with their pa-
rameter 1. It is included in the first two statistics and it will be mtroduced m a
natural way to the third one later on in this section. It should be emphasized that
the asymptotic results obtained here give immediately numerous approximations
for a variety of discrete distributions of respective statistics, obtained for special
choices of F and G. '

We start with the limiting behaviour of S5, /n as n tends to infinity.

THEOREM 4. Forn — oo

Lo, 4 .
n
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PROOF.  Consider the chf of Sy, /n:

E(e"5/My — | Z (?)(e“/”(}’(X))j(l -G

=0
= E[(1 - G(X) + G(X) exp(it/n))"].

Observe that for any real @ and complex b

(3.1) lim (1 — a + aexp(b/z))* = exp(ab).

L0

It follows easily from

zlog(l —a+ aexp(b/z)} = zlog(l + ab/x + o(1/z))
= z(ab/z + o{1/1)) =5 ab.

Applying (3.1) with a = G(X) and b — it to the formuda for the chf of Sn/n it
follows that
E(eitSn/n) . E(eitG(X))

as . — oo. (Taking the limit under the integral sign is permitted since [1-G(X)+
G(X)exp(it/n)] <1 as. for any n > 1.) Therefore the theorem follows. O

Remark 3.1. Due to the fact that the variance of Sy is of the arder n? for a
nondegenerate X and of the order n for a degenerate X it follows that for n — oo

) N(0,1) if X is degenerate,
2B 4 o) - Box)
v/ Var(5,) Var (G (X)) if X is nondegenerate.

The first assertation is just the de Moivre-Laplace theorem while the second follows
from Theorem 4 and the following observations (see Theorem 1):

B(Sh) nme _ B(G(X))

Var(S,) Var{G(X))’
I n—00 1

-
Var(5,,) v/ Var(G{ X))
Now we turn to the asymptotic behaviour of R,, /n.

THEOREM 5. Assume that G(X) <1 a.s. Then for n — oo

0

(X)

d
Rn_)_—"_n

(X)

i

S
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Remark 3.2. It the condition G{X) < 1 a.s. does not held then the right
hand side of the above formula is not a proper rv. In that case, it is preferable to
use a more general limit property for the conditional distribution as n — oc:

IR, IM)|G(X) <1 = BG(xX)/GEXNIex) <y

where ™ denotes the weak convergence of probability measurcs. This asymptotic-
ity follows along the lines of the proof of Theorem 5, given beneath, since as in
Thecrem 2 one can easily get that

PR, 51600 <= ("1 ) E@0e oo 6t <)
F—0,1,....

ProoF OoF THEOREM 5. For the chf of the rv R, /n we have for any real ¢

Ee etRn/n =E( n+‘7 )(e“/nG(X))jGn(X))

o\ ol
. cx) Y
B 1 — G(X)exp(it/n)
GX) i)
- F it/n
l(l T1oex)” )
Now (3.1) with a = —G(X)/G(X) and b = #t {see the proof of Theorem 4) yields
E( ﬂRn/n) n-+ 00 [( 7zt("‘(X)/G(X)) ]? te R.

Therefore the theorem follows. O

Remaork 3.3. Similarly as for S, (see Remark 3.1), under an additional as-
sumption G(X) < 1 a.s. {or using conditioning), we have

Ry — E(RW) N{(0,1) if X is degenerate,
——— 5 { G(X)/C(X) ~ BGX)/G(X)) .y
v Var{R,) Nar (G X)) if X is nondegenerate.

Now the first limit property follows from (g =1 —p = G(c), where P(X =¢) =1)

ex iw—d = oxp{—it. /n [ex (itpRn)]
E -p(t Var(Rn)) = exp(—it\/ng)E |exp

Van

_ [ _pexp(—ity/q/n) )
1 — gexp(itp//qn)
1[1 + it/ g/ — qtz/(2n) +o(1/n)
—q(1 +at//gn — £2/(2qn) + o(1/n)}) 7"
1 nsoo £2
T2/ +oln)r 2

tc R,
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while the second is an immediate consequence of Theorems 2 and 5.

To study asymptotic properties of the number of records below the level X,
first we introduce, in a very natural way, the asymtoticity parameter n. Consider
the following extension of our scheme.

Lot (Y14,...,Y0,),{ —1,2,..., be independent random vectors with iid com
ponents with a common df G, where n > 1 is an integer. Consider the sequence
of their minima: Yy., = (Y1.n1)i=1..... Observe that ¥7., is again a sequence of
tid rv's with a common df 1 — (1 — G)™, n > 1. Now define K, as the number of
records of the sequence Y;., falling below the threshold X:

DEFINITION 4. For any integer n > 1
Kn=min{j > 0:Yi.uii1) > X},

where U(j), 7 = 1,2,..., are record times for the sequence Y).,, is the number of
records of minima not exceeding the random level X,

It follows immediately from Theorem 3 that in the case G(X) < 1 a.s.

P(Ry =) = S BEXO(-log(G)P), 5=0,1,...,

HE, X — P(—nlog((:?(X))),

E(K;) = —-nE(log(G(X))),
Var(K,) = —nE(log(G(X))) + n? Var(log(G(X))).

If the assumption G(X) < 1 a.s. is not satisficd again onc has to usc in
the above formulas the indicator I(o1)(G(X)) or conditioning with respect to the
event {G(X) < 1}. Of course K| = K introduced in Section 2. Observe that the
distribution of the sequence Y71. coincides with the distribution of the sequence
of, so called, n-th records introduced in Dziubdziela and Kopocinski (1976) (see
also Ch. 9 in Arnold et al. (1992) for a more convenient reference). Recall that
7-th records are delined as the -t largest value in (he sequence, Since we are
interested here only in distributional properties of K, alternatively anyone of these
two specific models: records of minima of n observations or n-th records can be
kept in mind. An extension of this scheme will be given in Remark 3.6 below.

Now we study asymptotic properties of K,:

THEOREM 6. Assume that G(X) < 1 a.s. Then forn —

%Kn 2 _log(G{X).
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PROOF. Again, as in the previous two proofs, we consider the chf of the rv
K,

Be/7) = B | G7(X) Y <i(—ne' " 0g(G(X)))’
i=0""

= E{exp[-nlog(G(X))(e"/™ - 1)]).

Since
=00

n(e®™ — 1) = n(it/n + o(1/n)} "=% i,

then Vi c R .
E(eitKn/n) n—+oo E(e—itlog(G(X))). O

Remark 3.4. Similarly as in the casc of R, the condition G(X) < 1 a.s. can

not be simply removed since log(G(X)) is not a proper rv if it does not hold.
Again then one can turn to the conditional distribution:

Pl = [ 6(X) < 1) = BEIG(X)(- o GUOW | G(X) < 1

J=0,1,.... Hence repeating the argument from the above proof one gets for the
conditional distributions

MK, /n)G(X)<1 t B log(G(X NG (X)<1>

Remark 3.5. Analogously as for S, and R,,, under an additional condition
G(X) < 1 as. (or upon conditioning), it follows easily that

N{(0, 1) if X is degenerate,
Kﬂ, - E(Kn) d = S
——" ¢ —log(G(X)) + E(log(G(X))) ... ..
Var(K,,) = if X is nondegenerate.
v/ Var(log(G({X)))

Remark 3.6. For a sequence of random vectors (Yi.,..., Yo, I=1,2,.. .,
consider now the sequence of k-th order statistics Y., = (Yiin,1)iw=1,..., for some
fixed k € {1,...,n}. It follows that Y}., is a sequence of iid rv’s with a common
af ",

- rr(] — n—r
Gen=d (7)o~

Analogously to the definition of K, we consider the number of records of the
sequence of k-th order statistics not exceeding the level X:

K(k:n) - mll’l{j >0: Yk::n,U(j+l) > X}?

where U7(j}, j = 1,2, ... are the record times of the sequence ¥g.p.
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Obviously Theorem 3 implies

5 (Jeromoo)

r=0

(e (S (7)o (X)))j |

=0
i=0,1,....

. 1
P(K(k:n) - J) = FE

Similarly to the asymptotic behaviour of K, = K.,y given in Theorem 6 it
can be proved that under the assumption G{X) < 1 a.s. for n — oo and fixed but

arbitrary k

1 =
=K (o) < — Log(G(X).

To establish this convergence result we follow the argument from the proof of
Theorem 6. Hence

E(eF@mY = Elexp(— log(Gr. (X)) (™ — 1))
Consequently, the form of Gy.,, implies that it suffices to prove that
k=1
i (1 —p)" " | (P — 1) = blog(l —
Jim log (Z (H)ra-» ) (eb/7 — 1) = blog(1 - )

for any G(X)(w) = p € (0,1) and any b = it. And the last convergence follows
from the double inequality

k-1
1preY (’:’)pr(l ST < (1 R
r={(}

Hence npon taking logarithms

k—1 n
nlog(l —p) < log (z (T)pr(l — p)n_r)

=0
< (n—k+1)log(l — p) + klog(n) + log(k).

Then multiplying the above inequalities by exp(b/n) — 1 and passing to the limit
as n tends to infinity we easily get: nlog(l — p)(exp(b/n) — 1) — blog(1 - p},
klog(n)(exp{b/n) — 1) — 0 and (log(k) — (k — 1} log(l — p))(exp(b/n} — 1) — 0.
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4. Distribution-free properties

Here we are concerned with distributions of exceedance statistics in a special,
but very important case when the distribution of the rv X and that of the sequence
of observations coincide. Such a model leads to an interesting family of discrete
distrihntiong contaming some widely known laws and some completely new ones
appearing in a quite natural way. The considerations contained in this section can
also be used as a starting point for deriving tests for equidistribution.

Since we arc going to consider different random thresholds, instead of symbols
Sn, By and K, we will use S,,(Z), Rn(Z) and K,(Z), where Z denotes the random
threshold. The following versions of Z will be used: X, Xp.., {1 < k <m), Xuk)
(k = 1). Obvivusly, to have Xg.pm or Xy we have to assume that a sequence
X1, Xo,...of iid X's with a df F' is given such that the sequences of X’s and Y's
are independent.

Observe that in the model we consider throughout this section we have

G{X) ~ U(0,1),
where /{0, 1) denotes the uniform distribution in the interval (0,1);
G(Xygom) ~ betar(k,m — k + 1),

where betar(k,m — k —li— 1} is the beta distribution of the first kind defined by the
density f(x) = -@:T)%mm’“_l(l — )™ * Loy (2);

C(Xywy) ~ U@ (0,1)

where Uy g) (0, 1) denotes the distribution of the k-th record from U(0, 1) distribu-
tion defined by the density f(x) — [(—log(1 — x))*/k!|L(0,1){x). This density de-
fines a special case of log-gamma (or unit-gamma) distribution studied by Grassia
(1977), and considered as an alternative to the beta distribution by, for example,
Ratnaparkhi (1981) and more recently in the damage model set-up by Fosam and
Sapatinas (1995).

From Theorem 1, upon integrating, one easily gets the following special cases:

CoROLLARY 1. If FF =G then
(a) Sn{X) has the uniform distribution over the set {0,1,...,n}, U, i.e.

1

P(Sa(X)=1) = —

F=0,1,...,m

(b} Sn(Xk.m) has the negative hypergeometric distribution of the first kind,
nhr(k,m,n), ie.
(k+j—l) (n+m—j—k)

P(Sn(ka) = J) — k-1 (n+m317k , J — 0,1,. AP
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(¢} Sn(Xyy) hes the record exceedance distribution of the first kind,
rer(k,n), i.e.

P(S.(Xymy) =) = (?) i G)% j=0,1,. .. n.

=0

Remark 4.1. Properties of S, (Xy.,,) were widely investigated in fifties as
was pointed out in Section 1-—see Gumbel ({1958), pp. 58-60).

Remark 4.2. While the discrete distributions appearing in (a) and (b) are
well known, the one appearing in (c) seems to be quite new. It has been derived
in the integral form

. 1 ) o i e B
P(Su(Xpy) = 4) = W(J‘) /0 (1— ety (n=d+igh—1g

i=01...,n

in a recent paper by Bairamov (1997).

Remark 4.3. Observe that the case (a} is included in (b) or (¢} since U, =
nhr(1,1,n} = rer(1,n).

Remark 4.4. By the asymptotic properties of S,, given in Theorem 4 it fol-
lows easily that for n — oo

Yo d
i

for the following choices of distributions of V, and V:
(1°) Uy and U(0, 1);
(2°) nhi(k,m,n) and betar(k,m + k — 1);
(3°) rer(k,n) and Uyy.
Observe that 1° follows from 2° or 3 since U(0, 1) = betay(1,1) = U1y-

Similarly Theorem 2 implies the following results for R,,.

COROLLARY 2. If F =@ then
(a) Rn{X) has the Waring distribution, W(n,n + 1), i.e.

i

j=0,1,...;

1

(b) Rp(Xi.m) has the negative hypergeometric distribution of the second kind,
nhu(k, m, n), 1.6,

' L n+£—1 m ‘
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(¢) Bn{Xyk)) hes the record exceedance distribution of the second kind,
rerr(k,n), i.e.

P(Rﬁ(Xu(k)):j):(THJ_I)i()ﬁ i=0,1,....

=0

Remark 4.5. 'The result of part (b) was derived in Wilks (1959). The
nhir{k,m,n) is also called the beta-Pascal distribution—see Johnson et al. ((1992),
pp. 242-243). Here we prefer to keep the name of negative hypergeometric of the
second kind because of some analogy between both kinds of negative hypergeo-
metric and beta distributions—see Remark 4.8 below.

Remark 4.6. The integral representation of rerr(k,n) is the following

. 1 n+j—1 0 —ivi —(m -
P(Rn(Xu(k))=3)=m( "o 1 )/U (1—e e (n+1itpk—1 g
i=0,1,....

Remark 4.7. Observe that W(n,n + 1) = nh;(1,1,n) = res;(1,n) and
consequently (b} or (¢} imply (a).

Remark 4.8. Via Theorem 5 it is easily obtained that for n — oo

U oy
T
for the following choices of distributions for V,, and V| respectively:

(1°) W(n,n + 1) and Pareto(2), where Pareto(r), v > 1, is defined by the
density function f(z) = (v — 1}{1 + 2) ™" g 0y (z);

(29} nhyp{k,m,n) and betar(k,m — k + 1), where the sccond kind beta
d1btr1but10n betan(a b), a > 0, b > 0, is defined by the density f(z) =

B1(a, bla® (1 +2)- @) Iy (o),

(8°) reg4(k,n) and the distribution of log(Z, + 1), where Z lhas Lhe
gamma(1l,k) distribution, where the gamma distribution gamma(e,p), a > 0,
p > 0, is defined by the density f(z) = o’ (p)z" ! exp(—az}i(p o) (x), i.e.
the density of the limit distribution has the form f(z) = [log(l + z)]* (1 +
2) 2 (k1) ™ (0,00) (%)

Observe that Pareto(2) = beta;;{1,1) = L(log(Z, + 1)) (L(£) denotes the
distribution of the rv £), hence 1° follows immediately from 2° or 3°.

Finally let us consider the distribution-free properties of K,.’s. This time the
following results follow immediately from Theorem 3.

COROLLARY 3. If F = then:



558 JACEK WESOLOWSKI AND MOHAMMAD AHSANULLAH
{a) K,(X) has the geometric distribution, ge(l1/(n + 1)), i.e.

nd

P(Kn(X) :j) — W’

3=0,1,...;

(b)Y Kn(Xgom) has the record-order exceedance distribution, roe(k,m,n), i.e.

k

' m yk=i-1
P(Kp(Xim) = J) anj(k) ZJ—E)— i=0,1,...;

& (n+m—1)i+]
(¢) Kn(Xp) has the negative binomial distribution, nb(k,1/(n + 1)), i.e.

k:+j—1) n’
(

k=1 J(n+1)+8 =01

by

P(Kn(Xuyw)) = i) = (

Remark 4.9. Observe that roe(l,m,n} = ge(l/(n + m)) hence it follows
from (a) and (b) of Corollary 3 that the number of (n + m — 1)-th records not
exceeding the level X has the same distribution as the number of n-th records not
exceeding the minimum of the sample of size m from the distribution of X, i.e.

Koim-1{X) = Kn(Xim) = ge(1/{n + m)).

Remark 4.10. The integral representation of the pmf of the roe(k, m,n) dis-
tribution is of the following form:

J oo )
P(Kp{Xkm) — ) = kjﬂ, (7:) f (1 — c )k Lo (ntm—kiityi—1 gy
! 0
Remark 4.11. Observe that again {a} is covered by (b) or {¢) due to the
identities ge(1/(n + 1)) = roe(l,1,n) = nb{1,1/(n + 1}).

Remark 4.12. From the asymptotic properties of K, statistics, see Theo-
rem 6, it follows easily that for n — oo
Vo 4y,

n

for the following choices of distributions of V;, and V, respectively:

(1°) ge(1/(rn+ 1)) and exponential Eap(l), where Ezp(A) = gamma(A, 1);

(22} roe(k,m,n) and £(—log(Zxm)), where Zj , has the beta;(m — k +1,k)
distribution, i.e. the pdf of the limit distribution has the form f(z) = B~!(m —
k+ Lk — Dexp(—(m —k+ 1)z}l — exp(—2)})* " {(0,00) () and as a special case
we have roe(1,m,n) = ge(1/(m + n)) and Exp(m) for the distributions of V;, and
V, respectively;

(3°) nb(k,1/(n + 1)) and gamma(l, k).

Observe that 1° is covered by anyone of 2° or 3° since Exp{l} =
£(-1og(Z11)) = gurnma(l,1).
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5. Characterization of equidistribution

In this section we return to the general model, i.e. we do not assume F = G.
Conversely to what was done in Section 4, we would like to use exact distributions
of exceedance statistics derived there, to conclude that F = G. It appears that
for some of them such characterizations of equidistribution really holds, and they
can be preferred for developing tests of identity of distributions, while for others
counterexamples can be constructed.

We start with a negative result involving the distributions of §,,.

Assume that S,{X} has the discrete uniform distribution over the set {0,1,
...yn}, Uy, as it is in the case of equidistribution—see Corollary 1. Then it follows

that .
(M)peon -6y - g i=0L..n

Take X ~ U(0,1). Then the above identity yields

fl C‘j( )(l C(a:))” Idr = L 1 =0,1 n
R — i = = - .
j o 1) j 777 H

Obviously G(z) = =z, x € {0,1), satifies the above requirement, see Corollary 1
(a). 'T'he question is wheteher other df’s (& can fit this scheme. Observe that the
above system of equations can be rewritten as

—1
E(Z%)_(n> 3 er,l,...,n,
J
where 7, = T,,/(1 — T,), and T}, is a rv with the df H defined by
dH(z) = (n+ 1){(1 — 2)"dG Yz}, z€(0,1),

where G1 is the unique inverse defined by G~1(z) = sup{y : G(y) < z}. Now
we have restrictions on the values of the first n moments of Z,, imposed, which
obviously is not sufficient to determine uniquely its distribution. Hence H and,
consequently, G are not unique.

Similarly in the remaining two cases of the S, statistics the assumption

(") E@ @0 -6y = ey 5=01m

where «;’s are given in Corollary 1 (b) or (c), can be reduced to the restrictions
on the first n moments of the rv Z,, and the argument repeats.

This observation is very close (but not the same) to nonidentifiability of bi-
nomial mixtures announced in Teicher (1961).

On the other hand, for both the remaining statistics R, and K,, their exact
distributions as for F' = G, imply equidistribution. Since, as was mentioned at the
end of Section 2, these distributions are mixtures of the modified power series form,
the result given heneath is closely related to the main result of Sapatinas (1905)
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(see Remark 5.2). That result gives a Carleman like condition for identifiabiliy
of a wide class of modified power series mixtures, while not covering exactly the
situation we consider here. Nevertheless the method, referring explicitly to the
Carleman criterion, used in the present proof, is quite close to that from Sapatinas
(1995) and also similar to one used in Wesolowski (1995).

‘THEOREM 7. Let n be an arbitrary (fived) positive ineteger. If
(a) Rn(X) has the Waring distribution, W(n,n + 1), or
(b} K,.(X} has the geometric distribution, ge(1/(n + 1)),

then F = (.

Proor. (a) By Thearem 2 for any 5 =0,1,.._,

n _fnt+ji—1 . _ .
CEICHIFENY “( no1 )E(G’(X)(l G(X)™)
. .
= (nzi ; 1)‘/0 mj'(l "LE)ndF(G_l(m)),

Define now a new df H by the formula
dH(z) = (n+ 1)(1 - 2)"dF(G7 (2)), =z (0,1).
Let Z, be a rv with a df H. Then the above system of equations vields

{n+ 1)1

E(Z}) = m,

=0,1,....

Hence all the moments of Z, are uniquely determined and since supp(Z,) = 0,1]
we conclude that its distribution is uniquely determined by the moment sequence.
By Corollary 2 (a) it follows that dH(z) = (n + 1}{1 — z)"dz. Consequently
F(G~Y(z)) = z, implying F = G.

{b) Similarly as for (a) we have

1

(1 —2)"(—log(l — 2)YdF(G z)) = CESVES i=0,1,....

1 1
i Jo

Now defining H and Z, as in (a) consider a new rv 7}, = —log{1— Z,,). The above
system of equation leads to

- 3! .

Since E(T?) < j7,j=1,2,..., then

>1
E - = 00.
.?=1J

N BV >
i1
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Hence the Carleman criterion implies that the distribution of 7,, is uniquely de-
termined by the moment sequence (E(TJ)} =12, ... It means that the distribution
of Z, = 1 —exp(-T},) is also unique and the final result follows as for (), but this
time via Corollary 3 (a). O

The remaining cases of the exact distributions for Rn(Xgm), Ra(Xpk),
K {Xp.n) and Kn(Xy)) follow along the same lines. All these results point
out to the respective statistics as convenient tools for testing the equidistribution
hypothesis for data connected with exceeding a random level.

Remark 5.1. Assume now that for the general model, i.e. without the as-
surnption F = @, the distribution of, say, &,,(X) is known. It means we are given

the numbers p;(n) = P(K,(X) =j), 1 =0,1,.... Then similarly as in the proof
of Theorem 7 we define

dH(z) = p3*(1 - )"dF(C (@), € (0,1),

which appears Lo be uniguely deterinined by the sequence (p;(n))n=1,, .. since

. ()4 %
E(T,{):pﬁ(nh‘ . i=1,2
po(n}n?  po(n)

Now for .
@) = [ (1-w " dH ),
0

x € (0,1), we have
(5.1) HoG=F,

where H is a df on (0, 1), again uniquely determined by (pj(n)}n=12, . The above
relation (as given for K,(X) or its analogues for other exceedance statistics) can
be a source of many new characterization results, since assuming one of I or G
to be known, the second can be derived. To some extent this observation will
be exploited in the next section for characterizing the gamma and exponential
distribution.

Remark 5.2. Observe that assuming G to be the df of the U (0,1) distri-
bution, the question of seeking for F while knowing one of the distributions of
Sn(X), Ry(X) or K,{X) is nothing else but the identifiability problem for the
binomial, negative binomial or Poisson mixtures—see Teicher (1961), Barndorff-
Nielsen (1965) or the last chapter in a recent monograph Prakasa Rao {1992).
Hence the possible approach announced in Remark 5.1 can be viewed as identi-
fiability of generalized b, nb and P mixtures. Consequently if G is known and it
is a 1-1 function then by Theorem 2.1 (together with Remark 1(iii)) of Sapatinas
(1995) it follows that F is unique. This will be the case considered in Theorem 8
of Section 6.
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6. Records exceedance for exponential sequences

Let ¥1,Y3,. .. be iid exponential with the density f(z) = Aexp(—Az)I ) (2).
Then it follows immediately from general properties of K, = K,{X) given in
Section 3 that

An)? :
P(K,=j)= %E(Xn?em‘x), i=0,1,....
From now ou we will consider, without wuoch loss of generality, the case 1 = 1,
and denote as in Section 2, K3 = K. Consequently we have

N
P(K =j) = FE(XJB_’\X), i=0,1,....

In the sequel we are going to consider two different distributions for the random
threshold X: gamma and normal. In the first case we derive the exact distribution
for K and then respective characterization results, while in the second case after
computing the exact distribution of K we use it to obtain an unexpected derivation
of the Laplace expansion formula for the df of the standard normal distribution.

6.1 The gamma threshold
Assume that X is distributed according to the gamma law, gamma(r,a).
Then

LoatM e r4+j—1 AN/ e N
P _ _ j+r—1_—(Atalz —
(K =J) F(r)jl/o ‘ ¢ d r—1 Ata Ata)’

j=0,1,...,ie K is a negative binomial, nb(r, a/{a+A)), rv. This observation will
be used now for characterizations of the gamma via exponential and exponential
via gamma laws. The result can be looked at as a generalization of the Engel,
Zijlstra {1980) characterization of the gamma distribution—see also Cacoullos and
Papageorgiou (1982).

THEOREM 8. Let K have the negative binomial distribution nb(r,p), where
r >0 and p € (0,1) are given numbers. Then

F ~ gamma(r,a) & G ~ Ezp(}),
where a > 0 and A > 0 satisfy the relation Ap = a(l — p}.

ProoF. Assume that G is exponential. Then Theorem 2.1 and Remark
1(iii} of Sapatinas (1945) imply that F is unique, hence it has to be a df of the
gamma(r, a) distribution. )

Assume now that F is a df of the gamma distribution, gamma(r, a). Since H,
as defined in Remark 5.1 is uniguely determined by p,(j)’s, then it follows that in
the case, we consider, it is a df of 1 — exp(—V), where V' is a gamma(r, p/(1 — p))
rv. Consequently H restricted to (0, 1) is invertible, i.e. G = H !(F) is unique. O
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6.2 The normal threshold

Now keeping the sequence of Y’s exponential with the parameter A we consider
the threshold X having the normal A (Ao?,0?) distribution. Observe that this
time supports of F and G do not coincide. According to the formula given in the
beginning of this section it follows that
Y .
SE(X e X Iip o) (X)), i>1

Bl _oop) (X)) + B(e M Ig,00)}, F=0.

Observe that
E(l_s0{X)) = P{(X <0} =1—P(A).

On the other hand for any 7 =0, 1,... we have

E{(X7e I 15,00) (X)) = 07 exp (— (’\g) ) Jj,

where

1 o0 A .'132
Ji = ——x/ﬁfu z’ exp (M?) dx.
Consequently J; = (j — 1)J;_1 for any 7 =2,3,..., Joy = 1/2 and J; = 1/v/27.
Hence 1/2 o4
Jj:(j—l)!!{ ITERe
1/vV2r  j=1,3,...

Finally we obtain

~®(Ag) + 05exp(=0.5(x0)?)  j=0
P(K:]): (AG’)je_O_S(AgF 1/2 j:2747"' .
J 1/V27% i=1,3,...

This pmf can be used to obtain characterizations of the exponential and nor-
mal distributions, similarly as it was done in the last subsection for the exponential
and gamma ones. Instead we will use 1t to give a quite surprising derivation of
the Laplace (1812} expansion formula for the df ® of the standard normal law.
Observe that the given above form of the pmf implies

:iP(K.—_

=0
/\ )21

@on exp(—0.5(A)?)

Il

— ®(Ao) + 0.5exp(—0.5(Ao)?) + 0. 52

(321
+ \/12_7r Z ((2); z O exp(—O.S()\J)Q).
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Observe Lhat combining the third and the fourth terms in the above sum we get

oc 72 00 o)1)
0.5 exp(—0.5(1e)?) Z (()f\:.‘i))” - 0.5 exp(—0.5(\o)?) Z %—)— = (.5.
i=0 v i=0 ’

Consequently for any > > 0 (hence also for any real z)

222'—1

1 o0
‘1)(2) = -+ L exp(—0.532) 2 I ou————
=0

2 Wlr

{23 — 1Y

which is exactly the celebrated Laplace formula, rediscovered in Polya (1949) {see
also the comments in Kerridge and Cook {1976}).
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