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Abstract. The problem of testing normal mean vector when the observations
are missing from subsets of components is considered. For a data matrix with
a monotone pattern, three simple exact tests are proposed as alternatives to
the traditional likelihood ratio test. Numerical power comparisons between the
proposed tests and the likelihood ratio test suggest that one of the proposed
tests is indeed comparable to the likelihood ratio test and the other two tests
perform better than the likelihood ratio test over a part of the parameter space.
The results are extended to a nonmonctone pattern and illustrated using an
example.
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1. Introduction

Inferences based on incomplete or missing data have aroused comsiderable
amount of interest among statisticians in the past as well as present because of
their frequent occurrence in practice. The reasons for missingness could be various
which will not be discussed in this article. However, to ignore the process that
causes missing data it is commonly assumed that the data are missing at random.
That is, the missingness does not depend on the missing (unohserved) values of
the response variable. For an interesting exposition of such issues we refer the
readers to Rubin {1976} and Little (1988, 1995).

In this article we consider the problem of testing multivariate normal mean
vector when the data are missing from subsets of components. A commonly used
approach to this problem is based on likelihood method. In the past several re-
searchers have considered various forms of missing patterns and suggested like-
lihood based procedures for estimation and testing. In particular, monotone {or
triangnlar) pattern has received a special attention in the literature since its nested
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structure allows explicit derivation of maximum likelihood estimators and likeli-
hood ratio test statistics for the mean p and covariance matrix £. Anderson (1957)
gives a simple and unified approach to derive maximum likelihood estimators for
various patterns of incomplete data. Bhargava (1962) derived likelihood ratio tests
and their approximate null distributions for several problems. Eaton and Kariya
(1983} discuss the difficulties involved in making inferences based on incomplete
data and show that no locally most powerful invariant test for the mean vector
exists.

In general, exact probability density functions of many of the likelihood ratio
criteria that can be derived using the inverse Mellin transform are quite compli-
cated and difficult to use (Muirhead (1982), p. 303). So one needs to approximate
the nnll distribution nsing methods such as the Box series and Edgeworth series
approximations. These approximations either require the moments or cumulants
of the likelihood ratio statistics which need to be computed as they are not explic-
itly awailable for the present problems in the literature. To avoid such problems it
is desired to find some exact and easy to use tests for the mean vector when the
data are incomplete.

In the following, we first consider the case where the data set has a monotone
pattern. For easy reference, we present the likelihood ratio test for testing the mean
vector and then propose three other tests. These tests are obtained by combining
independent tests (one for testing a subset of components of the mean vector
and another for the conditional mean vector} using union-intersection principle,
Fisher’s method, and Tippett’s approach. These are the contents of Section 2. In
Section 3 the results are extended to a nonmonotone pattern which 18 a multivariate
generalization of Lord’s {1955) pattern. Derivation of the power functions of the
proposed tests seems to be involved. We therefore have estimated the powers of
these tests using simulation in Section 4. Power comparisons indicate that the
test based on Fisher’s method is comparable to the likelihood ratio test. The
tests based on union-intersection principle and Tippett’s approach are preferable
to other tests when one of the components of the mean vector is away from its
specified value. An appealing feature of the proposed tests is that they are quite
simple to use and do not necessitate new table values to implement. They require
ouly p-values from F distributions which are provided by many standard statistical
softwares and electronic calculators. The results of Section 2 are illustrated using
a practical example in Section 5. Finally, in Section 6 we make some remarks
regarding generalization of the results to some other situations.

2. Meonotone pattern

Let & be a px 1 random vector which is distributed according to a multivariate
normal distribution with unknown mean vector y and unknown and arbitrary
positive definite covariance matrix X. Let z be partitioned as (z7,z5,...,z})
stch that x; is a p; x 1 vector, 4 = 1,... Kk, and p: + --- + pr = p. Partition
the mean vector i and the covariance matrix ¥ accordingly. Consider a random
sample of Ny independent obgervations from the above distribution that has the
following pattern
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ZT11,. - -3 TINgs - - - s 1Ny, - - - L1N,

L2213 s TNy -« 2N,

Tily - - 3TN

known as monotone or triangular pattern. That is, N; observations are available
on p; + -+ p; components, i =1,... k.

Let X denote the submatrix of (2.1) formed by the first p; + - -- + p; rows
and the first Ny columns, [ = 1,...,k. Let 2 and S denote respectively the
sample mean vector and the sums of squares and products matrix based on X,
I = 1,...,k. For simplicity let us assume that k = 2 (for generalization, see
Subsection 2.5). Note that

2 =21, ~ Ny (a1, Z11/N1), S =811 ~ W, (N — 1,51)

o .’1_7 o
@ = ($;’2) ~ Ny{u,L/Ny) and

. S 5
5@ — (112 P12y (N, 1, 8.
So12 Sag n(N %)
Let pa; = pa —ZgLEfll,ul and Y1 = 222—22121—11212. The maximum likelihood

estimators are given by (Anderson (1957)) fin = Z1,1, fio.] = 22 — 321,25'1_1]‘2:1'1,2,
. . A
Y11= 511/N1 and 2o = S2.12/Na = (S222 — 521,251 15512,2)/Na- Define

Q1 =Nl — 'St -l
(2.2) Qoa = NolZ1 o — M]Ifsﬂlyg[iLﬂ = 1] and
(2 = Nalfiz1 — (p2 — 521,255%2#1)}'25%[ﬂ2.1 — (p2 — S21287 5 p1))-

Write Ry = Qa/{1 + Q2q4). It is known that Ry ~ %%sz,f\’z—p independently of

Q1 ~ 32 Fp N, py (Seber (1984), p. 52).

2.1 Likelihood ratio test
‘I'he likelihood ratio test statistic (Bhargava (1962}) for testing

(2.3) Hy:p=0 wvs H,:p#0
is given by

(2.4) A= (]_ + Ql/Nl)_NI/Q(]. + RQ/N2)7N2/2
= A1As  {say).
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The likelihood ratio test rejects Hg when A is too small. Its approximate distribu-
tion under Hy using the Box series approximation (for Box series approximation,
for example, see Muirhead (1982}, p. 303) is given by

P(=2plnA < x) = (1 ~ w2)P(x} < 2) + w2 P(x} .4 < 2} + O(N;Y),
where

_ Nip(p+2) = (N - No)pa(p1 + 2)
2N3N1p !

p=1
and

wy = p{N{p*(p® —4) — (Ny — No)p1(p1 + 2)
x[3(Ny — Na){p1 + 1)? = 6(p + 1)’ N1 + (N1 + NoY{dp(p1 + 1) + 3)]}
T12{ M1pI2(Ny — 1) — p| + (N1 — Na)pi(p1 + 2)F%.

Thus, for a given level of significance & and an observed value Ay of A, the likeli-
hood ratio test rejects Hy : i = 0 when P{—2plnA > —2plnAy) < a.

Note that the likelihood ratio test for
(2.5) Hyp iy =0 vs Hap1 #0
rejects Hoy if A1 is too small and the likelihood ratio test of
(2.6) Hyz ipo=0,p01 =0 vs He:pa#0pu =0

rejects Hyo for small values of As. Equivalently, we observe that Hy, is rejected for
large values of @ and Hgg is rejected for large values of Ry. Further, recall that
Q ~ NI%T%FPLNl—m independently of Ry ~ ﬁ;ﬁ;Fm.M_p_ Thus the testing
problem in (2.3) can be decomposed into two independent testing problems and
they can be combined, using some well-known methods, to get a single test for

(2.3).

2.2 Fisher’s method of combining independent tests

Let p,; denote the p-value of the test (2.5) based on @, and let p,» denote the
p-value of the test (2.6) based on Rp. Define Z; = ~In{p,;}, ¢ = 1,2. Note that
Z1 and Z» are independent exponential random variables with mean one. Let

W =21+ Za.

For a given 0 < a < 1, the test based on Fisher’s method of combining independent
tests rejects Hy if
2W > xj (),

where v2(a) denotes the 100(1-}-th percentile point of a chi-squared distribution
with 4 degrees of freedom.
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2.3 Tippelt’s test

Let p,1 and p,o be as defined in Subsection 2.2. Tippett’s test rejects Hy for
large values of max{Z1, Z2}. Since Z1 and Z» are independent exponential random
variables with mean one, the critical region can be easily identified. Indeed after
some algebraic manipulations it can be shown that Tippett’s test rejects Hy if

min{py, pea} <1-(1— a)1/2

far given o

2.4  Union-intersection test

The test based on union-intersection principle rejects Iy in (2.3) for large
values of max{Q, Rz}. Instead of max{Q, R>}, we want to use max{Q7, R}},
where QT = (1’\/71 — 1)Ql/Nl and Ry = (Ng - P — I)RQ/NQ That is, Sll,l/Nl in
(21 is replaced by S11.1/(N1 — 1) which is an unbiased estimator of 2yy; similarly,
S2.1,2/N2 in Ry is replaced by Sa.1 /(N2 —p1 — 1) which is an unbiased estimator
of ¥2.1. Let My be an observed value of max{Q7, R3}. Then, for a given level of
significance «, this test rejects Hp If Pmax{Q7, R5} > My] < « or equivalently

Ny —p ) M —
1 - P(Fpl,Nl o g ( 1 pl) U) )= (szy}\'zp < (NQ p)MO ) <o

(N1 - 1)py T {N2—p1 - 1)p2

Remark 2.1. Although the above modification does not change the tests in
Subsections 2.2 and 2.3, we found from preliminary simulasion studies that, on
an overall basis, the test based on max{Q7, R5} is better than the test based on
max{@, R1}. This type of modification was suggested for the likelihood ratio
test in Section 2.1 by Bhargava {1962) and for testing equality of several normal
covariance matrices by Perlman (1980). Bhargava suggested using (N7 — 1)/2
instead of N7/2 and (N3 — p; — 1}/2 instead of N;/2 in the exponent terms of
(2.4); however, we observed from numerical studies {not reported here) that the
power differences between the modified likelihood ratio test and the likelihood
ratio test arc minute.

2.5 Generalization

The proposed testing methods can be easily extended to the monotone pattern
(2.1) with k > 3 in an obvious manner. For instance, when k& = 3, we merely need
to combine the test for Hyy : pa = 0,0 = O,y =0vs Hyz tppa # Qo = 0,0 = 0
with the other two independent tests for (2.5) and (2 6) to get a singls test far
Hg: =0 Let 2% and S©®) be as defined at the beginning of the section. Let

, -1 _
;:L =7 (S Sas 3) 511,3 312,3 1,3
3.21 = £33 — (931,3, 232, _
Sna Sag To3

and

-1
Qua = N3(T' o, T S13 Sy z
3d Na(ﬂ?’l,s,wé,s)( s m) (12)

So13 Saas
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where Z, 3 denote subvectors of 73 and Si;3 denote submatrices of S4) . The
test statistic for Hga is given by Ry = Ngﬁéjlsiél’gﬁg_gl/(l + Q3q). When Hgs
is true, Ra follows %%Fpa, N,—p idependently of Q1 and R». In this case, R} =
(N3 —p1 — p2 — 1) Rs/N3. These statistics @1, Rz and R3 {or Q7, R3, and R}) can
be combined to get a single test for Hy : p = 0 as in the case of k = 2.

The cxpressions for the @) and R;'s for a gencral & can be obtained using the
MLEs (see Jinadasa and Tracy (1992)) of p and Z. Following the notations defined
at the beginning of Section 2, the sample summary statistics can be written as

x
_1’[ Su,t 31.!,1
ORIt 0
Y = } , S= : :
_ S s
i 1,1 IR
for ] —1,..., k. Further, define
—1
Sug o S
(Buy - B=) — (S S y) :
St ST
Using these notations, the MLIEs can be expressed as
-1
iy =3 =2y, =2y ByEa - ),
j=1
. S(l) ) i-1
=y N = S > BuySi,
i=l .
Yo gy
(B, 25=) = (B, -+, B=) : : ,
2 2T
and
-1
E” :Ei.m...l +ZBUEﬂ, 132,,k}
j=1

In terms of these notations, we can write
@1 = Ni(fn — w)' S5 (3 — )

and

’

1-1
Qr=N |ty ,— L m— EBU#J'
=1
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. _ -1 5 =
where 1, ;7 | = 10— 3.1 By 1=2,... k.

Let
— — 1 _
bll,l: 5b1m,1 T1,1
! _f
Qua = Nl(ﬁﬂl,g:v-wxm!l)
ST T ST T,
Pi-1y
~—_—F N =2 ...k
Por—1ydVi—Pir—1y H 3 vy
Ny —py-yy 47V e

where pgy = $20_ p;. Let Ri = Qi/(1+ Qua), L =2,... k. It is well known that
€21, Ro, ..., Ry are all statistically independent with @1 ~ Nip) Fp, Ny o /(N1 —
p) and Ry ~ NipiFp ni—py, / (Nt — py). Using these notations and the results,
the LR statistic can be written as

A= (L+@Qi/N) 21+ Ry /No) N/ (14 Ry /Ny,) N/,

and its approximate null distribution can be obtained using the Box series approx-
imation. Other test statistics and their null distribution can be derived along the

lines of the case £ = 2. We note that for a general k, QF = (N} — 1)Q¢/N; and
Rif = (N,g — p(l_l) — 1)R5/Ng, where p(;) = Zi-’:l pj, l = 2, .. ,k.

3. A nonmonotone pattern

In this section we consider a pattern of data which is a multivariate general-
ization of Lord’s (1955) pattern. 'The data matrix has the following form

Ei1,-. .. L1N, LINg+1:---,T1N,
T2ty .- EaN,
TINy+1s-- -1 L3Ng -

That is, there are N3 independent observations from Ny, ., ( H ] , [EH 12 ] )

o Yor X
and Ny — Ns independent observations from Ny 4, ( Hi , Y s . This
3 Y31 Xaa

pattern is identical to the pattern in Section 2 if the observations on the third
subset of components are ignored. The problem of testing the mean vectaor is zero
can be decomposed into (2.3), (2.6) and

(31) H[)g L3 = O,p',l =0 AL Hafg T3 % 0,”1 = 0.

Let (Z7,2%) and V be the sample mean vector and the sums of squares and
products matrix based on the last (N - Ny} observations on z; and z3 components
Vir Wiz
Va1 Vi
M3 = fg — 2312{'11#1 and 37 = Y3 — Xay Eilﬂlg. The maximuen likelihood
estimators are given by

respectively. Partition V as ( ) so that Viz is of order p; x ps. Let

. Vi — Va3 VTV,
fiar =35 - Ve Vi '2] and gy = ( 33(N'l 33 I\lé) = .
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Define Q3 = (N1 = Na)[fiz1 — (pa — Var Vi )]’ S5 1 a1 — (us — Ve Viy )] and
di = (Nl - Ng)[:f; - ,ul}’Vﬁl[;Ts}‘ — [.Ll]. Let R3 = Q'g/(l + di). It can be easily
seen that R3 ~ (N1 — NQ)ngps,(Nl—Nz—p; —pg)/(Nl — Ng — P11 — ps).

The likelihood ratio test statistic for this set up is

A = AyAs(l + Ry/(Ny — Np))~ (M= al/2
= A1AzAg,

where A1 and A, are as given in Section 2. An approximate null distribution of A
can be obtained using the Box series approximation.

Let py3 denote the p value of the test (3.1) based on Rj. Let Z3 = —In(p,3),
which follows an exponential distribution with mean 1 and independent of Z;
and Z3 defined in Section 2. Further define W = 22-3:1 Zi. For a given level of
significance ¢, the test based on Fisher’s method rejects Hy if 2W > x3(a), where
X&(a) denotes the 100(1 — a)-th percentile point of a chi-squared distribution
with 6 degree of freedom; Tippett’s test rejects Hy whenever min{p,1, puz, Pus} <
I (1—a)t/3.

'(I‘he uzlion-intersection test rejects Hy for large values of max{Q7, R3, R}},
where Q7 and Q5 are defined in Section 2, and R} = (N1—No—p1—1) Rz /(N1 —N3).
Let My = max{Q], B3, Ri}. For a given level «, the union-intersection test rejects
Hy if

(N1 — p0)Mo (N2~ )Mo
. o Wiop )My Fponigey <
P (FPI*M m S (N1 - 1)p, P\ Fretbamy < (N2 —p1 — D)p2

(N1 — No —py —p3)Mo) o
(N1 — No —py — 1)ps )

x P (Fpa,Nl—Nz—pl—Ps <

4. Power comparisons

As mentioned earlier, it is difficult to derive power functions of the proposed
tests in Sections 2 and 3. Even though approximate power functions of likelihood
ratio tests can be derived using the Box series approximation, in order to have fair
comparisons we estimated the powers of all four tests using simulation (100000
runs). Wishart variates are generated using the Fortran subroutine by Smith
and Hocking {1972) and normal variates are generated nsing the IMST, subroutine
RNNOA., The powers are estimated for different values of §; = ,!1,’121_11#1, by =
th 1S5 121 and 83 = ph o) T35 Ma.21 as in Morrison and Bhoj (1973). For Lord’s
pattern & = uf X3 },Lt:)_ 1- Since all the tests are lower triangular invariant, we
take ¥ to be an identity matrix for computing powers. The estimated powers of
the likelihood ratio test (LRT), the test based on Fisher’s method (FT), Tippett’s
test {TP) and the test based on union interscction methed (UTT) arc given in
Tables 1 and 2 for monotone pattern and in Table 3 for Lord’s pattern.
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Table 1. Simulated powers of the LRT, FT, TP and UIT.
Ny =30, Npo=20,p1 =p2 =1, =0.05

L) LRT PT TF UIlT &1 &2 LIRXT rT T uIT

000 000 005 005 005 005|010 030 070 0.71 062 063

0.00 0.20 0.36 0.34 0.35 0.37 0.10 0.50 0.86 0.85 0.80 080

000 035 058 055 058 059|010 070 094 093 090 090

000 050 074 071 074 0751020 010 066 067 062 061

000 100 09 095 096 097 {030 010 081 081 078 077

0.10 06.00 029 029 030 0291050 010 094 0985 095 094

020 0.00 053 053 053 054|020 020 07 077 069 0.69

030 000 071 0.71 074 043 | 020 030 083 084 086 086

040 0.00 (08 084 086 085 020 050 093 093 087 087

0.50 0.00 091 091 0983 093|030 020 087 08 082 081

0.10 0.10 045 046 040 @40 | 036 020 096 097 09 0.95

010 020 059 060 052 052040 040 097 097 094 094

Table 2. Simulated powers of the LRT, F'I', TP and UIT.
Ni =20, Nao= 14, N3 =8 p =pa =pz — 1, & = 0.05

&, b by LRF FT TP oUIT Ay Ag Sa T.RT FT TP UIT
.0 0.0 0.0 0.05 (.05 0.05 0.05 0.5 0.0 0.5 0.72 Q.77 0.75 0.67
0.0 0.0 1.0 0.39 0.27 0.30 0.41 0.5 0.0 1.0 0.82 0.85 0.78 0.73
0.0 00 20 0.65 0.48  0.55 0.68 0.5 0.0 2.0 0.92 4.92  0.85 0.83
0.0 0.0 3.0 0.80 0.63 0.73 0.83 0.5 0.0 3.0 .96 0G.96 06.90 0.90
.0 0.0 4.0 0.89 0.74 0.84 0.9 0.4 0.0 0.5 0.64 0.69 0.65 0.57
0.0 05 00 0.39 .42 047 041 0.7 00 0.5 0.84 0.88 0.88 0.81
0.0 1.0 0.0 0.69 0.72 0.79 0.74 1.4 040 0.5 0.93 0.96 0.96 0.93
0.0 1.5 0.6 0.87 0.88 0.93 0.80 .5 0.3 0.4 0.73 sl 0.7 0.67
0.5 00 00 0.56 0.65 071 0.60 0.5 0.5 0.0 0.81 0.88 0.82 0.72
07 0.0 00 .73 080  0.86 D.78 0.5 1.0 0.0 0.93 0.96 0.91 0.85
1.0 0.0 0.0 0.88 0.92 0.96 0.92 0.4 0.5 0.0 0.76 083 076 0865
0.0 6.5 0.5 0.566 0.58 0.52 050 | 0.7 05 00 0.90 094 091 0.84
0.0 U5 1.0 04U 069 058 059 | 1.0 05 0.0 096 098 098 094
0.0 0.5 2.4 0.83 0.82 3.70 0.74 0.5 0.5 0.5 0.589 0.93 0.84 0.76
0.0 05 3.0 0.92 0.90 0.80 0.84 0.5 0.5 1.0 0.93 0.96 0.86 0.80
040 07 05 0.68 0.69  0.66 0.62 0.5 i0 0.5 0.96 0.98 (.92 0.87
0.0 1.0 0.5 .80 0.82 0.81 0.77 0.7 0.5 0.5 0.94 0.97 0.92 0.86
00 1.5 0.5 092 083 094 091 | 07 1.0 1.0 090 000 0907 003
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Table 3. Simulated powers of the LRT, FT, TP and UIT.

Ny =20, Ng =10, p; = pg=pg =1, a=0405

8y b 5y LRT FT TP UIT &y by 5y LRT  FT TP UIT
0.00 000  0.00 005 005 005 0.05 | 0.25 0.00 200 0.3 093 088 088

0.00 GO0 .50 0.30 0.27 (.29 0.31 0.50 0.00 .50 0.80 .83 0.78 .72
0.00 (W3 1.00 0.04 .48 0.55 0.58 0.50 0.00 3.75 0.84 {.88 0.82 0.78
0.0 0.00 2.00 0.84 a.ra 0.80 .54 0.50 0.00 1.00 .o .01 (-1 0.51
.00 0.00 2.50 ¢.91 0.86 0.692 0.94 0.00 0.60 0.50 0.61 .59 047 0.51
.25 0.00 0,00 0.33 0.36 0.40 0.32 0.00 1.00 0.50 0.7e 0.77 67 0.70
50¢ 0.00 .00 0.61 0.65 0.72 0.63 0.00 2.00 0.50 0.%4 0.93 .59 0.91
0.75 0.00 .00 0.80 0.83 0.89 083 0.00 1.00 1.00 0.1 0.89 0.78 0.82
1.00 0.00 0.00 0.91 0.52 G.96 .93 0.25 0.50 0.50 0.80 0.83 0.64 0.62
0.25 000G 0.50 G.59 £.62 .53 0.49 0.256 1.00 .50 0.91 0.92 0.76 075
0.25 a.00 1.00 (U .78 0.69 0.87 .50 0.50 Q.50 0,91 .93 0.83 0.78

We see from Tables 1, 2 and 3 that the differences between the powers of the
likelihood ratio test and the test based on Fisher’'s method are appreciable when
one of the components of i is away from its specified value compared to others;
otherwise they are comparable. On average, these two tests are equally efficient.
Between the test hased on Figsher's method and Tippett’s test, the latter is prefer-
able to the former if only one of the components of 4 is different from its specified
value. The union-intersection test is preferable to others when only one of the
components of y is away from ite specified value. Note that for Lord’s pattern
with Ny = N, /2, the power at (61,62, 63) is equal to the power at (8,84, 8,) for
all tests. Furthermore, Tippett’s test and the union-intersection test are useful to
identify the components that caused the rejection of Hy. Preliminary simulation
studies for the case k = 4 (not reported here) indicate that the power comparisons
of the tests are similar to the cases & = 2 and 3 and so we expect that the power
comparison results given above will hiold [ur any & > 2.

5. An example

For the sake of illustration of the results we consider an example given in
Johnson and Wichern ((1992), p. 183). The data set consists of measurements on
perspiration from 20 healthy females, and satisfy the normality assumption. Each
observation has three components, namely, £, — sweat rate, 2o = sodium content
and z3 = potassium content. We created a monotone pattern in the data set by
deleting the observations on (xy, x3) from randomly selected units 4, 7, 12 and 17,
on x3 from randomly selected units 3, 8 and 10 and then rearranging the data to
have pattern in (2.1). In the notations of Section 2, we have p; = 1, py = 1, p3 = 1,
N1 = 20, Ny = 16, and N3 = 13. The hypotheses considered in the example are
Hy - ¢ = (4,50,10}) and H; : ¢’ # (4,50,10). The sample summary statistics are
as follows:

) =464, SYU=5471, 7= ( 4.89 ) 5@ - (46‘60 167.46 )

43.73 )7 2399.89 /°
4.75 39.57 190.06 —15.75
73 = | 43.48 and SO = . 2166.48 —79.93

9.46 . . 28.39
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The value of the likelihood ratio test statistic is 4.02 with a p-value of 0.261. The
computed values of @ = 2.995 (p-value 0.108), Ry = 10.038 (p-value 0.010), and
Rz = 0.311 (p-value 0.635). Further, My = max{Q}, R5, R} = 8.783 with p-
value 0.032, the statistic W based on Fisher’s method is 6.30 with p-value 0.390,
and the p-value of Tippett’s test is 0.031. So at 5% level of significance the
union-intersection test and Tippett’s test reject Hy Note that the second mean
is quite away from the hypothesized value as compared to the other two means
and so as was noticed in the simulation study earlier, the union-intersection test
and Tippett's test provide sufficient evidence against Hy. Further, both union-
intersection and Tippett’s tests indicate that the second component caused the
rejection (the critical value of max{Q7, B3, R}} at 5% level is 7.448, which is
obtained by solving P[max{Q7T, It5, i} < ¢] — (.95 for c).

6. Conclusions

The testing methods considered in this article are in general applicable to
patterns of data for which Anderson’s (1957} likelihood factorization method can
be used to derive maximum likelihood estimators. Further, they can be extended to
two-sample problems by partitioning the data matrices appropriately. Of course, in
all these situations none of the tests which are considered in this article is expected
to dominate others uniformly since they are different functions of the same set of
pivots obtained from likelihood ratio test statistics; however, the combined tests
may be simpler to use.
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