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Abstract. In this paper, the problem of estimating the scale matrix and
their eigenvalues in a Wishart distribution and in a multivariate F distribution
(which arise naturally from a two-sample setting} are considered. A new class
of estimators which shrink the eigenvalues towards their arithmetic mean are
proposed. It is shown that the new estimator which dominates the usual unbi-
ased estimator under the squared error loss function. A simulation study was
carried out to study the performance of these estimators.
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1. Introduction and summary

There has been considerable research on the problem of estimating the covari-
ance matrix ¥ and their eigenvalues wy, ..., wWm (W1 2 ... Wy Z 0) in a multivariale
normal distribution using a decision-theoretic approach. Excellent reviews on this
topic can be found in Muirhead (1987) and Pal (1993). It is shown that substantial
improvernent (reduction in risks) over the usual unbiased estimator of X can be
obtained, essentially by focusing attention on the problem of estimating the eigen-
values of ¥ by functions of all the eigenvalues of 3. Works along this direction
can be found in Stein (1975}, Haff (1980}, Dey and Srinivasan (1485}, Lin and
Perlman (1983) and Dey (1988).

Suppose that a random m x m positive definite matrix § has a nonsingular
Wishart distribution with unknown scale matrix £ and n degrees of freedom,
e, § ~ Wpy(n,B). Stein (1975) considered the class of orthogonally invariant
estimators of % of the form

(L.1) S = HOL)H'

where § = HLH' with H the matrix of normalized eigenvectors (HH' = H'H =
I.), L = diag(ly, ..., 1) is the diagonal matrix of eigenvalues of S withly »>--+ >
l, > 0 and ®(L) = diag{ei(L), ..., ¢m(L)), ¢:(L) > 0 is a real valued function,
i=1,...,m.

523



524 PUI LAM LEUNG AND WAL YIN CHAN

In this paper, we consider the problem of estimating ¥ using the loss function
(1.2) L(Z, %) = tr(E — %)

which is the natural multivariate extension of the squared error loss function.
Although there are several plausible loss functions available, we only considered
the loss function {1.2) in this paper for simplicity and convenience. We proposed
a new estimator of the form

L= e s)I,

(1.3) S = 25+
n mn

where 0 < a < 1. Note that for a = 1, Ea corresponds to the usual unbiased
estimator Xy = (1/n)S8 and X, is in the class of orthogonally invariant estimators
defined in {1.1) with eigenvalues

(1.4) ¢i(L) = ;L“l:: +

where [ is the average of 1, ...,1,,, the eigenvalues of §. This estimator is moti-
vated by the fact that the sarmple eigenvalues usually tend to be much more dis-
persed than the population eigenvalues (see Muirhead (1987)), i.e., (1/n}{; tends
to over-estimate w) and (1/n)l, tends to under-estimate wy,. Intuitively, the un-
biased estimator can be improved by shrinking the sample eigenvalues towards
some central value. From equation (1.4), it is easy to see that the eigenvalue ¢, (L)
is a linear combination of §; aud . « is the shrinkage paraineler ranging from O Lo
1 representing various degrees of shrinkage. This particular form of shrinkage is
also appeared in equation (18) in Friedman (1989} although he used this shrinkage
in a different context, namely the discriminant analysis which he coined the name
‘regularized discriminant analysis’. In Section 2, we stated the sufficient condition
on o such that the unbiased estimator ¥ is dominated by %,.

Another closely related problem 1s the estimation of the scale matrix A in a
multivariate F distribution. This problem has been considered by various authors,
namely, Muirhead and Verathaworn (1985), Leung and Muirhead {1988}, Dey
(1989), Gupta and Krishnamoorthy (1990), Konno (1991} and Leung (1992). This
problem arise naturally from a two-sample setting (see Muirhead and Verathaworn
(1985) and Leung and Muirhead {1988) for details).

Suppose that a random m x m positive definite matrix ' has a multivariate
F distribution with degrees of freedom n; and ns and scale matrix 4, ie., F ~
F.(n1,m2; A). An unbiased estimator of A is Ay = ¢F, where ¢ = (no—m—1)/n,.
Using a similar approach as in the Wishart situation, we proposed a new class of
orthogonally invariant estimator of the form

(1.5) Ay = acF + %{tr I,

where 0 < o << 1, In Seciion 3, we proved that the vabiased estimator Ay is
dominated by A, for some values of « using the squared error loss function

(1.6) LA A) = tr(A A
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Although the dominance result in Sections 2 and 3 are focused on estimat-
ing the unknown matrix 3 or A, we believe that the estimation of the unknown
eigenvalues of ¥ or A could also be improved by using the eigenvalues of ¥, or
A, respectively. Waorks on simultaneous estimation of eigenvalues directly can
be found in Dey (1988) and Jin (1993). The loss function they used (which is

analogous to (1.2)) is the sum of squared errors loss function

m

(1.7) L(8,8y = (6 — 6:)*

i=1

where &; are the eigenvalues of 31, (or A,) and 8, are the eigenvalues of & {or A).
It is easy to see that if the unknown matrix ¥ (or A) is of the form kI, (k is
constant), then the loss incurred by (1.2) {or by (1.6))} is equal to the loss incurred
by (1.7).

In Section 4, a Monte Carlo simulation is carried out to study the performance
of the proposed estimators in Section 2 and Section 3 using loss functions (1.2),
(1.6) and (1.7).

2. Improved estimation of ¥

Suppose that a random m x m positive definite matrix S has a nonsingular
Wishart distribution with unknown scale matrix ¥ and n degrees of freedom, i.e.
S ~ Win(n,T). Let &y = (1/n)S be the usual unbiased estimate of 5. The
main result in this section is to provide a sufficient condition on a such that 33
is dominated by 3, defined in (1.3).

THEOREM 2.1.  Using the loss function (1.2), the unbiased estimate Yy is
dominated by X, defined in {1.3) for all nonnegative definite matriz ¥ provided
thatm>1 and (n —2)/(n+2) <a <1,

This theorem can be considered as a limiting case of Theoremn 3.2, the proof
is deferred to Remark 3 after the proof of Theorem 3.2 in Section 3. Furthermore,
although we can choose any a value between (n — 2)/(n + 2) and 1, we suggest
using ¢y = n/(n + 2} and the corresponding regularized estimator of X is

1 2
5+ :
n-+2 mn{n + 2}

(2.1) Sk = (tr §) T,

with eigenvalues

gt
T n+2" aln+2)

(2.2) $:(L) (i=1,...,m).

Again the justification of using o is deferred to the next section.



526 PUI LAM LEUNG AND WAI YIN CHAN
3. Improved estimation of A

Closely related to the problem in Section 2 is the problem of estimating the
unknown scale matrix A of a multivariate F' distribution. Let A ~ W, (n;, A) and
independent of B ~ W, (na, I). Then the random m x m positive definite matrix
F = AY2B-1 AY? hag a multivariate F distribution with degrees of freedom n,
and ny and scale matrix A, ie.,, F ~ F,{n1,n2;A). Throughout this section, we
assume that n; > m+1 and ny > m+3. It is shown in Muirhead and Verathaworn
(1985) that an unbiased estimator of A ig Ay = oF, where o = (ny —m — 1}/na.
Similar to Section 2, the main result in this section is to provide a sufficient
condition on o such that Ay is dominated by A, defined in (1.5). Before we state
and prove this result, we noed the following lemma.

LEMMA 3.1. Let F' ~ Fp(ni,ng; A). Then

(1) E[tr(F?)] = ko:i@ {[k1(m1 + 1) + 2]tr(A2) + (ng + ki) (tr A},
(i1) E[(tr F)*] = koz £ (20 + k) A + (kany + 2)(tr A)?}

where k; = 1o —m — 1.

ProoOF. The proof of (i} given in Konno (1988), Corollary 2.4. (ii) can be
proved using the Wishart identity (see Haff (1979)} or by using similar technique
as in Konno (1988). Both methods are reasonably straight forward and hence are
omitted.

'THEOREM 3.2, Using the loss function (1.6), the unbiased estimate Ay s
dominated by Ao defined in (1.5) for all nonnegative definite matriz A provided

that m > 1 and

n — 2 4ny
~ 03 <a<l.
max{n1+2 (n1 +2){(ns —m - 1) }a_

~ Proor. Using Lemma 3.1, it can be shown that the risk difference between
A and A, Is

H(A) = E[L(A,Ay)] — E[L(A,AL)
2 2
- %{%[al tr{AY) + as(tr A

where ¢ = (ng —m — 1) /n1,

2 kok
up = me[(ny + Dk + 2] — 2(n; + k1) — %:
2ﬂ1k0k3

ay = m(m + kl) — ks — 24 m
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Using the fact that (tr A)? > tr(A%} and a; > 0, we obtain a lower bound for
H{(Z) as follow:

(m —1)(1 — a®)k;
mn ks

2’!11]{)3
(1 + O!)k‘]_

(3.1) H(A) > ny+2 - ] tr(A?).

A sufficient condition for H(A} > 0 is that 0 < o < 1 and the term in the square
bracket is nonnegative. This completes the proof.

Remark 1. The lower bound of H(A) in the right hand side of (3.1) is max-
imized at ay = ni(ny —~m — 3)/[(n1 + 2)(n2 —m — 1)] and this ay always lies
between 0 and 1. The corresponding regularized estimator of A is

 me—m-—3 2ny +mna—m-—1)

3.2 Ap = F+ er F)I
(3:2) R ny+2 mny(ng + 2) (er F) I
with eigenvalues
g —m — 3 2(ny+np—m— 1) )
3.3 (L) = ; =1,...
(3.3) &s(L) S—— i+ (L + 2) {, (i=1,...,m)
where [ is the average of I1,...,In, the eigenvalues of F.

Remark 2. When ng ~ m — 1 < 4ny/(n1 — 2}, the sufficient condition in
Theorem 3.2 becomes 0 < a < 1. In particular, Ay is dominated by [(ns — m —
1)/(nym)|(tr F)I,,. An intuitive justification is that when n; is small, the variance
of the off-diagonal elements of F is too large to provide useful information about A.

We will be better off to use only the diagonal elements of F', or tr F, in estimating
A

Remark 3. Note that F = AY2B=1AY2 where A ~ W,,(n,,A) and inde-
pendent of B ~ W,,(n2,I). B can be considered as the sum of squares and cross
product matrix of ny independently and identically distributed m x 1 standard nor-
mal randowm vectours. By strong law of large numbers, nng converges to I, or ng B
converges to A almost surely, as n tends to infinity. This becomes the problem of
estimating the scale matrix in a Wishart distribution considered in Section 2. Fur-
thermore, no F is uniformly integrable so exchange between liy,, o and expecta-
tion is possible. Therefore, the result in Theorem 2.1 can be obtained by passing
the limit as ny — oo in the results in Theorem 3.2. In particular, as na tends to
infinity, the sufficient condition in Theorem 3.2 becomes (1 —2)/(n1 +2) <o <1
which is the same sufficient condition stated in Theorem 2.1 when we take nq, = n
and A = 3. The value o in Remark 1 becomes n;/{n; -+ 2) which is same as the
o defined in Section 2.
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4. Simulation study

For estimating the scale matrix 3 in the Wishart distribution, a Monte Carlo
simulation study was carried out to compare the risks of ¥y and % defined in
(2.1). For m = 3 and n = 5,10,25, a sample of 1000 Wishart W3(n, ¥) matrices
were generated for three different choices of . Then these 1000 matrices were
used to construct Yy and Y and from these average losses (with respect to the
loss function (1.2)} were obtained. The design used here replicates the setting used
in Dey (1988) in order to compare with his simulation results directly.

Table 1 summarizes these results. In this table the value given for each com-
bination of £ and n is the percentage reduction in average loss (PRIAL) for 3p
compared with f]U, ie., it is the estimate of

EL(Z,3y) — L(Z,5g)]

= x 100.
DL(Z, %)

Table 2 shows the PRIAL for the eigenvalues of 3 given in equation (2.2) using
the loss function (1.7}, i.e., it is the sum of squared difference between ¢;(L} in
(2.2) and the eigenvalues of £. The results show that the PRIAL in Tables 1 and 2
are very similar and in fact they are equal for the case ¥ = I3 as mentioned in
Section 1. The PRIAL ig large especially when n is small. The reduction in risk
is larger than those given in Table 1 in Dey (1988).

Next, we consider the problem of estimating the scale matrix A in a multi-
variate F distribution. For m = 4 and n| = ne = 10, 15,20, 1000 matrices of A's
and B’s are generated independently from Wy(ny, A) and Wy(ns, Iy) respectively
for three different choices of A. Again these A are taken from Dey (1988) for
direct comparison. 'T'hey are then transformed into

F = A1/2B—1A1/2.

Table 1. PRIAL of X5 over ¥y using loss function (1.2).

= n=5 n=10 n=25
dlag{1,1,1) 40.939 25.460 11,900
diag{4,2,1) 36.828 22512 11.143
diag(25,1,1) 22.977 13.376 7.437

Table 2. PRIAL of ER over By using loss function (1.7).

3 n=5% n=10 n=25
diagf{1,1,1) 40.939 25460 11.500
diag{4,2,1) 38371 24.334 13.249

diag(25,1,1) 22.530 13.138 7.440
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Table 3. DTRIAL of Ay over Ay using loss function {1.6).

A ni=n2=10 ny=ny=15 n; =ny =20
diag(1,1,1,1) 63129 42,820 23 065
diag(8, 4,2, 1) 55.484 37.482 28.484
diag(25,1,1, 1} 40.877 27.515 20.133

Table 4. PRIAL of Ar over Ay using loss function (1.7).

A ny=ny =10 ny=ne=15 ny =ns =20
diag(1,1,1,1) 63.129 42.829 33.065
diag(8,4,2,1) 56.393 39.683 31.247
diag(25,1,1,1) 37.968 26.839 19.708

Lable 3 shows the PRIAL for Ap defined in (3.2) compared with the unbiased
estimator Ay using the loss function {1.6). Similarly, Table 4 shows the PRIAL
for the eigenvalues of Ag given in equation (3.3) using loss function (1.7). Again
the results in Tables 3 and 4 are very similar although the PRIAL’s are not as
large as those given in Table 2 in Dey (1988).
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