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Abstract. Consider a Markov step process X = (X;);>o whose generator
depends on an unknown parameter . We are interested in estimation of @ by
a class of minimum distance estimators (MDE) based on observation of X up
to time Sy, with (Sy)n a sequence of stopping times increasing to oo. We give
a precise description of the MDE error at stage n, for n fixed, i.e. a stochastic
expansion in terms of powers of a norming constant and suitable coefficients
(which can be calculated explicitly from the observed path of X up to time
Sn}.
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1. introduction

Minimum distance estimators (MDE) have been studied for statistical models
in various settings. General features of asymptotics of minimum distance estima-
tors have been formulated by Millar {1984) who applies these results to the case
where i.i.d random variables or certain discrete-time processes are observed. Mod-
els for diffusion-type processes are treated in Kutoyants (1984, 1994), and we refer
to the references therein. In the present note we continue our study {see Hopiner
and Kutoyants (1997)) of minimum distance estimation of an unknown (here: one-
dimensional) parameter ¥ in a recurrent Markov step process X = (X)¢»o0, under
wore restrictive assuinplions on the paramelerization, and with a different aim.
In Hopfner and Kutoyants (1997), we were interested in asymptotic properties of
MDE’s if at stage n, the process is observed continuously up to time Sy, (Su)n
a sequence of stopping times increasing to oc with n. Here, as a complement to
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these asymptotic results, we give an accurate description of the MDE % at fixed
level n, in terms of an expansion

1 : Crpr (9

Po| 95, = § 04 2 ¥R 1| 2 s oy | < pots )
where (6,(9))n>1 Is a sequence of norming constants for the MDE error at 4,
where the coefficients Y, ;(1#) can be calculated from the trajectory of the process
X up to time Sy, and where Bf , is a small exceptional set such that bounds on
Py (Bfm;) are available. Expansions of this type have been considered for maximum
likelihood estimators of parameters in diffusion processes by Kutoyants (1994) and
in Poisson process intensities by Kutoyants (1983). In our Markov step process
setting, a particular choice of an observation scheme (S, )}, allows to take §,(9) =
n= 12 for all ¥ € ©, and leads to an expansion of type

pollon Jo S Ly i\ s CTCY e

w | |95, — +J_2137 ng{)n = e Tl R
valid uniformly in ¥ € @, for all n > 1 and arbitrary p > 2, where C, C}, are
suitable constants. Almost no conditions on © (except open and one-dimensional)
are needed; so we have very accurate information on the MDE error at every fixed
level n.

Consider a Markov step process X = {X,);>g with state space (E, &), fixed
initial point Xy = xo, with jump times T}, j > 1, T := 0, whose generator Ty (-, -)
depends on an unknown parameter ¢ € © ranging over an open subset © of R.
For z,y € E, Uy(z,dy) = ps{z}ms{z,dy) where the function py : £ — (0,00) is
measurable, and where my(-,-) is a transition probability on (E,£): so under ¥,
L(Xyp, | Xr, =) = ma(z,-) and L(T;41 — T; | X7, = z) is the exponential law
with parameter py(z). We assume that

for all ¥ ¢ ©, the process X is recurrent in the sense of Harris under 4,
positive or null, with invariant measure my.

By Harris recurrence (see Azéma ef al. (1969)), subsets U € & of positive invariant
measure are visited a.s. infinitely often by the process X, for arbitrary choice of
the starting point zq. The state space E is a Borel subset of £ = R!, with £ the
trace of £ = B(R'!) on F (0, F..) denotes the canonical path space of X (the
space of all piecewise constant right-continuous functions w : [0,00) — E without
accumulation of jumps in finite time intervals, starting at w{0) = x) endowed
with the filtration F — (F}),>0 generated by the canonical process; for all 4 € @,
there is a unique probability Py on ({1, F) such that the canonical process on
(92, F, Fx) is Markov with generator IIy(-,-), and we identify X with this canonical
process.
Let (Sy)n>1 denote a sequence of F-stopping times such that

Py(Sp<oo)=1, n=1, 90O, Syw)lToo as n-—oo, Ywell
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At each stage n, the trajectory of X being observed up to time &,,, we construct
a minimum distance estimator (MDE) #% for the unknown parameter ¥ € ©.
Select a subset U € £ (we assume that such subsets exist) such that for all ¥ € ©

(1.1} 0 < my(U) <o, supps(z) <oo
zeU

and a finite measure F' on (E, £) = (R, B(RY)); w.lo.g., we take F(E) = 1. Write
1 -1l, {-,-) for the norm and the scalar product in the space L*(F) of measurable
functions f: E — R with [ f%(v)F(dv) < oo. Introduce

¢
’I*:iLLI{L‘)O‘.Xt e U}, A —/ lu(XS)dS, t>0
0
and definefor t >0, v e E. £ €O, wc

1) = ([ 10RO 0747 ) e

Li(v) = Z1{T3§t}1U><(Aoo,'u](XTj_1=XTJ)/A: Lire <t
j=t

(as in classical statistics of i.i.d. variables, we write indistinctly H for a finite
measure on {E,&) and for its distribution function v — H(v) := H({—o0,v] N E)
on E). By choice of Q and by (1.1), v — L{£v)(w) and v — Ly(v)(w) are
distribution functions of finite measures on (£, £), for all w, ¢, £&. Given U, F,
{Sp)n, we estimate the unknown parameter governing the generator of X at stage
n by

(1.2) U5, = Mggg& I Ls.(-) — Ls, (& M2

with arbitrary F3, -measurable choice {such choices dn exist} of an argmin on the
set A, where S, is finite and where £ — | Ls, (-} — Ls, (&, )|l L2(#) has a minimum
inside ©, and with 9§ = v on A¢ for an arbitrary fixed value ¥g in ©; note
that the set A, belongs to Fs_. For details, see Hopfner and Kutoyants ((1997),
Lemma 1).

2. An expansion
We list the conditions to be used in the sequel.

REGULARITY CoNDITION (R). For some r > 1 and all 9 € ©, we have
signed finite kernels Hfj,m) (-,-)on (E,£),1 <m < 7+2, which are m-th derivatives
of Hg))(', ;) :=Ty(-,) in the sense of the following properties i)-iii):

i) for z € E and 0 < m < r + 2, both positive and negative parts of the

finitc measures H,(Lgm)(w, -) have continuous distribution function on F =R,
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ii) with |H| denoting total variation of a tinite measure H, there are My < oo
and gg > 0 such that

sup  sup 1™ |(z, E) S My, O0<m<r+2
&(6-9|<0p ol

i)y for0<m<r+1and £ — 9,

sup L™ (2, 0) = I (2, 0) — (€ — DTV ()] = 0()6 — )
zelUve R

and supyerr e g |H§T+2)(m, v) — Hg—f'z)(m, v)| — 0.

T1GHTNESS CONDITION (T). For all # € @, there is a sequence 6, = §,(¥) |
0 such that £{(6- !\ Ls, () - Ls, () | Py}, n > 1, is tight in R.

For a large class of sequences (Sn}n, this condition is verified by exploiting
she nartingale structure of (Lg(v) — L (#)(v))i>0 under Py for v € E fixed, using

arguments similar to Hépfner and Kutoyants ((1997), proof of Theorem 3).

MONOTONICITY CONDITION (M). Let V denote the support of the measure
Fin E. For all ¢ € ©, there is some sy > 0 such that

sup sup Hé”(m,v} < —rg <0,
&6t <ps welweV

Condition (R) ensures that for all n > 1, w € Q fixed, the map 9 —
Lg, (¥, -)(w) taking values in the Banach space of continuous bounded functions
on R has r + 2 continuous derivatives on ©:

LEMMA 2.1. Under Condition (R), consider processes
(m) t (m)
L6 = ([ 10N (K94 ) 1oy, 620
0

for1 <m <r+2, write LEO)(ﬂ, Y= L(¥,-). Then Lgm) (€, Hw) are signed finite
measures on (E, &), with total variation bounded by My if |¢ — ¥ < oy, and with
continuous distribution function. Uniformly int >0, we Q, as £ — 9

sup | L (€, 0)J — L™ (9, v) — (€ = 9LV (9, 0)| = ofl€ — )
v K

FO0<m<r+1, andsup,.p L2 (€, 00T — L2 (9,0} — 0.

LEMMA 2.2, Assume Conditions (R}, (T), (M) for U, F, (S,)n. Fiz a point
B € O, choose sequences £, | 0, 1. | 0 (depending possibly on 9) such that
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bn(P) < ep < tp < 1 and up, /e, — o0, write Z,(V,-) = 671 (Ls () — Lg {9,-)).
Define

. Up K2
Brp = (1 < S < b0 { (0,91 < 2200

and take ng = no{"¥) large enough to have

2
K
un My < ?‘9, un < 09, Vn > ng.

Forw € B, y fizred and suppressed from the notation, consider
(—tems n) % (-Emron) D () » ()
defined by
®,(u,2) = e{Zn(9), LS (8 + w)) — (Ls, (9 + ) — Ls, (9), L) (@ + w)).
Then the following 1)-ii) hold for all n > 1y, w € By,
iy Fore € (—ep,en) fized, (—tpn,un) 2 u — $n(u,e) has dertvative bounded

away from 0 on (—u,,u,), and has a zero at some ul(g) € (—upn, Un).
ity The functivn (—tn,tn) 2 ¢ — up{e) bus conlinuous derivulives Xnj =

d;;‘;; on (“_ETL:ETF,) 'va tO OTderj =7 + 1, and
z; 1
(2.1) sup |xn;(m| < 29 ()
[nl<en £n

for functions C;j : © — (0,00) which are deterministic and independent of n, un,
Epy --ey Jor j<r+ 1. If

2.2 sup My < oo, inf > 0,
2 gy oo

the functions C;{-) can be replaced by constants not depending on ©.

Note that by Condition (R), the MDE error #3 — ¢ provides one root of

O 93 u— Bylu,by) = (Ls, — L, (9 + ), L) (9 +u))
if w € Ap, the set occurring in the definition (1.2} of ¥% .

THEOREM 2.1.  Assume Conditions (R), (T), (M) for U, F, (Sy)n. Fiz
w2rte -
¥ € ©. With notations of Lemma 2.2, we choose u,,, £, such that =T = n1/2’

with &, = 6,(F). Then the following holds for all n > ny{¥¥).

( )51"+1/2 < Pﬁ(BfL,ﬂ)

Cry
* o 5
(2.3) Py |95, 19+Z Y, i (9)682 >( =
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where Y, (¥} are Fs,-measurable random variables such that Yy, ;(4) = xn,;(0)
on By, for 1 < j <r: forj=1,2,

(Za(9), LS (9))

Yn,l(’ﬁ = 1 T LS <00}
)= T gy s
(Zn(9), L2 (9)) (L8 @), L),
Yn, (6) - = Yn,l 19) - = = Yn 1("9)
’ Owe LI@E "

and expressions for 3 < j <r can be obtained from (3.2)—(3.6) below.

In the next result we specialize to a particular observation scheme which
satisfies Condition (T), already used in Hopfner and Kutoyants ((1997), Section 4},
and put

(2.4) Sy =Up:=inf{t >0: A} >n}, 8 :=n1 n>1

THEOREM 2.2. With notations and assumptions of Lemma 2.2 and Theorem
2.1, consider (Sp)n and (6,)n given by (2.4). Then
i) for every p > 2, there are (deterministic) functions G, : © — (0, 00) such
that
Py(BS ) <n PUCTHICHY), >l de6;

under (2.2), these Cp(-) can be replaced by constants depending only on p;
ii) under (2.2) and if infyco 09 > 0, ng(-) in Lemma 2.2 can be choosen

independent of v, yelding
—r/2-1/4
N Cn™"
- {r+1)!

(2.5) Py (

for certain constants C, C,,, uniformly in ¥ € © andn > 1.

S —

< ClnmP/(Cr+D)

3. Proofs

Proor or LEmMa 2.1. Imunediste from Condition (R) and definition of
L, ).

Proor oF LEMMA 2.2. First, we prove i). For w € {7* < 5, < oo} fixed,
for |¢| < €5, Pn(,£) has derivative

80, (u, =)

S0 = e Z(9), L) (0 + w)) — IL5) (0 + w))?

(L, (9 +w) — L, (9), L3 (8 + w)).
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By Conditions (R), (M} and the mean value theorem, uniformly in |ef < &q,
lu| < up,

M EnMg|| Zn (D] — K3 + un M

and thus, by choice of ng and B, g,

8, {u, ¢ w2
sup sup #l < 2
|l <Fn is] < tn Ju 2

The same argument shows that

2
sup |[®,(0,¢)] < e, Myl Z,( )|<un’1’9
lel<&n

on By, for n > ng. Both last assertions yield i). We turn to ii). For w € {S, < oo}
fixed, (u,e) — ®,(u, ) has continuous derivatives up to order 7 + 1, by Condition
(R). The implicit function theorem shows that for w € By, the function (—¢,,en) 2
¢ — u%(¢) has r + 1 continuous derivatives on (—en,&,). Since uj,{0) = 0, we have
an expansion

. . 1d? uy 1 gttt -
(3.1) Uy (e) = ZJ| e *(0)e I+ Z——&—l_)' dor 1 —i1 (Mnrti,e)E +
J_

on (—en,en), valid for w € B, and n > ng, where 1, r41.c is between 0 and e.

Write xp,; = 63;‘3 ,j<r+1. Forw ¢ B, fixed and || < &4,

8%,
. duy, .
(3.2) “E(e) = — = (uh(e) ).

du

Write shortly ¢ni; = %, then

2
2(001,197,1,0¢n,01 — Pn 0 2<Pn 1,0 — ¥n,2,095.0.1 (u?

(33) Xn, 2( ) (4071,1,0)3 u’ﬂ(E)JE)

and higher derivatives have the structure

2k—1
Pr,ir g *
(34) X'nak;(g) = Zcil=--~:i2k—11jls-~-aj2k71 ( —— l) (uﬂ(g)?e)
Iy

-1 ¥Pm10
where summation is over the set Ij, of nonnegative iy,...,%25-1,71,..-,J2k—1 such
thaté,+--- 1 dax 1 = 2k 2, j1+-- +jep—1 — 3k—2, and whevre c;; iy 1 510edunms
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are suitable constants. For k = 1,2, this is immediate from (3.2) and (3.3}, and
follows in general from

d Priy,j—i - %2
s J1 =2 * 2 n,0,1
—_——— u - . - 10 . 1 . . — ———— . . .
de ©On1,0 ( n( )! ) LFn,l,O Fn,1.0 | Pri+l,5—i 1.0 Cndp, i —4+1

0,1
—¥Pning—i [(Pn,Z,O (“L) + (Pn,l,l] }
©n,1,0

=@, 0{9071 i, —i (‘Pn,z,o‘Pn 01— Wn,l,U(Pﬂ,l,l)
+ Pnig 1,54 (—CPn,LoSOn,o,l)
+ @izt — i1 (Pn10)° -

Here, by definition of &, (u,c), one has ¢, ; ; = 0 whenever j > 2,
(3.5) na1 (€)= (Zn(9), LGTV (@ + u))

for all [, and with Cj ; =

i
A=

(3.6) Puro(tse) = e(Za(®), L5V (0 + w))
— (Ls, (8 +u) — Lg, (9), LTV (9 + u))

{
— Y G @ +w, L5V 0+ w)).

j=1

It remains to show {2.1). Using the above representation of .. i and ., ; ;, where
eVeTY ¢n0, ¥nt1 contains exactly one factor (Z,(9), J_CIH (1)), it is clear from
Condition (R) that for every & < r + 1 there is some polynomlal (z,y) — pr(z,y)
with nonmegative coefficients, with » — pu{2, ) having degree at most 2k — 1,
such that

(3.7) sup |xne(n)| < Pe([|Zn (9)| Mo, My)

In|<en infis|<an,|v|<u" !‘Pﬂ,l,ﬂ(vas)j%_l

where pi (-, -) depends only on the structure of the derivatives of the implicit fune-
tion, and not onw € B,,, nn > ng, or on choice of v, < 1,¢, < 1. From step 1 above,

2
infle <o ol <un [Pn1,0(v,€)| 2 F on By, for n > nyg, and also || Z,(9)]| < ¢
Since pr(-, y) has degree at IILUbL 2k — 1, we oblaiu

Ky
-1 P (TsMﬁ‘) uik—l

u

(3.8) sup |xnk(n)| < 2k 1 o~ k=1 2;9_1030('[9);
I7l<en (R_ﬁ) &n

9

clearly Ci(-) can be replaced by a constant if (2.2) holds. This is (2.1), and Lemma
2.2 is proved.

?57: 4M19
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FROOF OF THEOREM 2.1. Put € »:= A, N {|ﬁgn — | < Un}, where 4, is
as in (1.2). On the event B, » N C,, y, since 8, < &,, the MDE estimation error
vy — ¥ is the unique zero u}(6,} of the function u — &, (u,6,) in (—uy, u,). By
assumption, ‘it = 6777 So (3.1) + (3.8) yield (2.3), but with Py(BS, U S )
replacing Py (é; ) on the r.h.s of (2.3). We show that under our conditions, C
is contained in B“ o for n = ng. By definition of C,, 9, a standard argument (cf
Hépfner and Kutoyantq (1997), Proof of Lemma 2) shows that C¢ , is contained
in the event

RAIZ.N > inf 87 LS, (6) - Ls, (9]} U {Sn = )

which by Conditions (M) and (R) is a subset of
{201 Z.()| 2 6, ks U {Sn = oo}

since £y, > by, this shows C7 , C B? .

Proor oF THEOREM 2.2. We prove i}; ii) is then immediate from Lemma
2.2 and (2.3). Choose S, = U, and &, = n~"/? as defined in (2.4). Below, we
shall show that for every p > 2, there is some finite constant ¢, depending only
on p such that
(3.9) Es(In'*(Lu, (v} — Ly, (0, 0))P) < C/(1+Mg)?? WocRJ, n>1
Since F is a probability measure,

Ey(|Za(9)[7) = Es(|n*/*(Lu, = Ly, ()32

< Ey U [0} 2(Ly, (v) — LUnw,v))wF(dv)) < CU(1 + My)P/?

and thus, for every p > 2 (clearly 7 < U, < o0),

c \ < BollZa(® GO+ My)P2 e

Up 5129 P uh &2\’
£n 4 My 4 My
which (by choice of un, €, in Theorem 2.1) is the assertion; under (2.2), Co(-)

can be replaced by a constant not depending on 9. It remains to prove (3.9).
Write p{ds,dZ) for the random measure ) .., 1 . &7, (Xz, . X1,) (ds,dZ) on
“lydg Ll —1° 3

(0,00) x (E x E), and vy(ds,dZ) for its compensator relative to F under Py; let
MY denote the martingale

t—f []1 (6 B 19)(d, ) = (it vy £20,



502 R. HOPFNER AND YU A. KUTOYANTS

As in Hopiner and Kutoyants ((1997), Section 4), write U, = inf{s > 0 : A] >
tn}, M := n=V2Mp,_; then nV/2(Ly;, (v)— Ly, (9,v)) = M{". The Burkholder-
Davies-Gundy inequality (see Dellacherie and Meyer (1980), VIL.92) gives some
constant C" depending only on p such that

X

p . . -
P p—
t<1

1t —oond * p/2
= O g (( U 7;; u}u.b)
p/2
S —,.'M'Et19 ((lU.\(E*M)UW)
n

N /2
< Gy'(L+ My)"/*sup B (T!) =1 Gy(L+ Myy”?

where [M (")} denotes the quadratic variation process of M), and N is a standard
Poisson process. The last chain of inequalities—establishing (3.9)—uses that the
counting process 1y« g * g is compensated by 1yy g * vy = [ 1y(Xs)pue(Xs)ds <
MyA* under FPy. Defining 7 = inf{s > 0 : (lyxg * vy)s > t} such that N =
{((lyxe * pt)r)e>0 is standard Poisson, one has U, < 7,¢14ar,)- This gives (3.9),
and Theorem 2.2 is proved.
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