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Abstract. Let y,. 4, ...,¥%, ¢ B? be independent, identically distributed
random vectors with nonsingular covariance matrix ¥, and let S = S{y,. .. .. ¥,.)
be an estimator for ¥. A quantity of particular interest is the condition number
of £7'S. If the y, are Gaussian and § is the sample covariance matrix, the
condition number of 715, i.e. the ratio of its extreme cigenvalues. equals 1+
Op((g/n)' /%) as ¢ — oo and q/n — 0. The present paper shows that the same
result. can be achieved with two estimators based on Tyler's (1987, Ann. Statist.,
15, 234-251) M-functional of scatter, assuming only elliptical symmetry of £(y;)
or less. The main tool is a linear expansion for this M-functional which holds
uniformly in the dimension g. As a by-product we obtain continuous Fréchet-
differentiability with respect to weak convergence.

Key words and phrases: Differentiability, dimensional asymptotics, elliptical
symmetry, M-functional, scatter matrix, symmetrization.

1. Introduction

It hag heen nated hy nimerous anthors that asymptotic results, where the
dimension of the underlying model is fixed while the number of observations tends
to infinity, are often inappropriate for real applications; e.g. Portnoy (1988} or
Girko (1695). In particular, the literature on M-estimation in linear regression
models with increasing dimension is vast and still growing; see for instance
Huber (1981}, Portnoy (1984, 1985), Bai and Wu (19946, 1994b), Mammen {1996)
and the references cited therein. In the present paper we investigate the related
problem of M-estimation of a high-dimensional covariance matrix.

Let ﬁn be the empirical distribution of independent random vectors y,1, ¥n2,

.oy Yy in R with unknown distribution £, and let S5, = Sn(ﬁn) be an estimator
for the covariance matrix ¥, of P,, both assumed to be positive definite. Of
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particular interest is the condition number of £_18,,

—1

(S 5n) = —:\\lg’;?‘;,

gh=n “n

where A{A) > X(A) > A3(A) > -+ denote the ordered real eigenvalues of
A € R79_ There are explicit bounds for various scale-invariant functions of §,, and
¥, such as correlations, partial and canonical correlations, regression coefficients
or eigenspaces, all in terms of y(3718,) (ef Diimhgen (1998)). An example is the
following sharp inequality for correlations, where ()’ denotes transposition:

/ ’ 1
arctanh Ty ) arctanh 7 Sny < log y(3:5 1 85)
T2y Ly Va5, Y Sy 2

for arbitrary v,y € RY\ {0} Therefore it is of interest to study the probabilistic
behavior of y(X;15,). If P, is multivariate normal and S, is the sample covariance
matrix, a modification of Silverstein’s (1985) arguments reveals that

(1.1) VS 8} = 1+ 4lg/m)? + op((g/n)'/?);

see also the proof of Theorem 5.4. In connection with P, P, we assume tacitly
that the dimension ¢ = ¢, may depend on the sample size n such that ¢/n — 0.
Asymptotic statements refer to n — oo, unless stated otherwise. Expansions such
as {1.1) hold under more general assumptions on the distribution I?,, provided that
it has sufficiently light tails (cf. Girko (1995)). On the other hand, the distribution
of the extremal eigenvalues of the sample covariance matrix is very sensitive to
devialious [romn normality. The weaker assertion

(1.2) V(L 8) = 1+ Op((a/n)'?)

may be false, even under elliptical symmetry of P,. It is thus desirable to have an
estimator, whose distribution is less model-dependent, such that expansion (1.1)
or at least {1.2) holds.

A possible alternative to the sample covariance matrix are M-estimators of
scatter as proposed by Maronna (1976} and Tyler (1987). The present paper
focuses on two estimators related to Tyler’'s (1987) M-functional. The latter is
defined in Section 2 as a matrix-valued function @ + X(Q) on the space of prob-
ability measures on R¥\ {0}. Section 3 provides a basic linear expansion for %(-)
with a rather explicit bound for the remainder term. As a by-product we obtain
continuous Fréchet-differentiability of ¥(-) with respect to the weak topology.

Section 4 describes estimators based on Z(:). One obvious choice is the M-
estimator E(Pn), which is distribution-free if P, is spherically symmetric around
zero. In addition we propose the estimator $(P5), where }3”‘7‘ is a symmetrization
of ﬁ”. This is an intuitively appealing method to get rid of unknewn location
parameters. The linear expansion of Section 3 implies asymptotic normality of
both estimators and consistency of certain bootstrap methods. Some of these
results and conclusions arc not cntircly new but nevertheless stated explicitly for
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the reader’s convenience. In connection with the bootstrap one can use similar
arguments as Bickel and Freedman (1981).

In order to prove Fréchet-differentiability for fixed dimension ¢, one could also
apply general methods of Clarke (1983). An advantage of our explicit expansion
is that it enables us to investigate the asymptotic behavior of £(P,) and X(P5)
as ¢ = qn > oo. This is done in Section 5. Under certain regularity assumptions,
assertion (1.2} is valid for both estimators ¥(F,) and %(£;). In particular, if P,
is elliptically symmetric, E(ﬁn) is shown to have the same asymptotic behavior as
the sample covariance matrix in the Gaussian model, including expansion (1.1).

Proofs are deferred to Section 7. As for Sections 2 and 4 the reader is referred
to the technical report Diimbgen (1997), which contains the present material as
well as more detailed proofs. This report also reviews Tyler's (1987) approach
to the problem of urknown location, re-centering P, around an estimator fin =
in(P,) for P,'s “center”, in view of dimensional asymptotics.

2. Definition and basic properties of the M-functional X(:)

Let us first introduce some notation. Throughout the set of symmetric ma-
trices in R?*7 is denoted by M, while M denoctes the set of positive definite
M e M. For M € M the unique matrix N ¢ MT with NN = M is denoted
by MY2 and M~Y2 .= (M-1)/2 = (MY%)7'. Further we consider the affine
subspaces

M(t) = [J\J C M : trucc(]\f) = t} = (t/q)f | 1\4(0}

of M, where [ stands for the identity matrix in R?*?. Let f be a real or vector-
valued function on RY, and let A be a signed measure on R?. Then f(A) stands
for [ f(z) A{dz). This convention will be particularly convenient for functions
of several arguments. Further, for A € R?*? we denote by AA the transformed
signad measure A o A-L

Throughout this section let 2 be a random vector with distribution ¢ on
R?\ {0}. We regard @ as rotationally symmetric around zero in a weak sense if
Q) = [ C(x) Q{dw) is equal to I, where

G(x) := qlz|%zz’ € M(q) for z€ R\ {0}

here || denotes the standard Euclidean norm {z'z)!/2 of z. Note that G(Q) equals
g times the matrix of second moments of |z| 'z. If Q is spherically symmetric
around zero, one casily verifies that in fact G(Q) = I. More generally, this equality
holds if the vectors z = {z;)1<icq and (€i2Zrquy)1<i<q have the same distribution
for arbitrary e € {—1,1}¢ and permutations m of {1,2,...,¢}. In general one tries
to find M € M7 such that

M-V 200 M -172
o’ M-tz

G(M*Q) = q / Qldz) — I

Note that G(M ~12Q) = G({sM)~Y2Q) for all s > 0, so that G(-) is only useful

in conneclion with scale-invariant functions on MY such as correlations.
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DEFINITION. I the equality G(M ~Y/2Q) = I has a unique solution M in
M (q) := M+ N M(q), this matrix M is denoted by £{Q). Otherwise we define
arhitrarily 2(Q2) := 0.

An important property of X(-) is linear equivariance. For nomsingular A &
R*7 one can show that

(2.1) L(AQ) = rAD(Q)A’  with r:=q/trace(AL(Q)A’).

{Recall that AQ stands for the distribution of Az.) Necessary and sufficient con-
ditions for £(Q) € M ™ are as follows.

THEOREM 2.1. Let V be the set of proper linear subspaces V' of R?, i.e.
1 <dim(V) < q.
[a] If G(M ~Y/2Q) = I for some M € M™*, then

QIV) <dm({V)/qg forall V CV.
[b] If

(2.2) Q(V) < dim(V)/q forall V €V,

then there exzists o unique M € M™(q) such that G(M 1/2Q) = 1.
[c] Suppose that G(Q) = I but Q(V) = dim(V)/q for some V € V. Then
QIVUVY) =1 and

G((all + b(I —T)"V2Qy =T  for all a,b>0,

where I1 € M describes the orthogonal projection from R onto V/, and V1 stands
for the orthogonal complement of V.

Parts [a] and [b] are due to Tyler (1987) and Kent and Lyler (1988). Their
proofs are formulated for empirical distributions ¢}, but extension to arbitary dis-
tributions is mainly straightforward, requiring only notational changes. The only
exception is the existence statement in part [b]. For the necessary modifications
as well as the proof of part [c] we refer to Diimbgen (1997). Part [c|, combined
with an equivariance argument, supplements part [b] in that condition (2.2) is
even necessary for £(Q) € M*. It will be needed in the proof of Theorem 3.2
below.

3. Differentiability of Z()

For M € M we define its norm ||M| = max{|A; (M)], [A(M}|}, commonly
referred to as its spectral radius or operator norm. Since the dimension ¢ may
vary, this particular choice of a norm is important. It is particularly useful in
connection with eigenvalues, because |A;(A) — A;(B)| < ||[A— Bl for A, Be M
and 1 € i < q. Generally, we always use the norm

LY = ax i Lyl
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of a linear operator L from a normed vector space (B, || - |/} into another normed
space, where S{B) denotes the unit sphere {y € B : {jy|| = 1}.

Throughout this section let P, Q be probability distributions on R?\ {0}.
Now we investigate £(Q) if Q is close to P in a certain sense and G(P) = I. By
equivariance of G(-) and Z(-) it suffices to consider the latter case.

For any » € RY\ {0} the function G(M~1/2z) is differentiable with respect to
M e M" with

D(z,DB) — % G +tB)™%) = F(@,B) 271(BC(2) + G(=)B),

F(z,B) := |z| 722’ Bz G(z} = q|z| 2/ Bz z2'. '

Note that D{x,T) = 0 and trace{D(z,B)) = 0 for all B €¢ M. 'The next lemma
shows that condition {2.2) is closely related to the operator D(Q, ).

LEMMA 3.1. The operator D(Q,-) is nonsingular on M (0) if, and only if,
Q(V UV <1 for arbitrary V € V. In that case,

trace(D(@,B)B) <0  for all B e M(0)\ {0}.

The inverse operator of D(Q,) : M(0) — M{0), if existing, is denoted by
D YQ,-). Here is our basic linear expansion for X(-).

THEOREM 3.2. For any b < co there exist constants r{b) < oo end ¢(b) > 0
(not depending on g, P or Q) such that

IS@Q) — I+ D HP,G(Q— P)I < w(b) IF(Q - PIIIG(Q - P

whenever
S(PY=1, |[DTHRHI<b and  |F(Q £l S €(b).
The latter two nurms || - || refer to the linear operators D-1{P, ) on M(0) and
F(Q - P,-) on M, respectively. Note also that |G(Q — P)|| = [|[F{@ — P, I <
[#(Q = Pl

Theorem 3.2, Lemma 3.1 and (2.1) together imply that 3(-) is I'réchet-differ-
entiable with respect to the weak topology. The reason is that z v F(z,-) is a
bounded, continuous mapping from R?\ {0} into the finite-dimensional space of
linear operators £ : M — M, so that |F(Q — P,)|| — 0 as @ — P weakly.

COROLLARY 3.3. Suppose that B(P) = I. Then, as Q — P weakly,
G@Q)—1 and X(Q)-I1=-DT(PCGQ-P))+ol|G{Q - P)).
One can even show that () is continuously Fréchet-differentiable. Instead of

pursuing this issue, we shall prove a related statement about limiting distributions
of £(,) and I(F) in the next scetion.
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4. Related estimators and their properties in fixed dimension

At this point it is convenient to drop the assumption @Q{0} = 0. We only
assume that ¢ is nondegenerate and define £(Q) := Z(Q(- | RY \ {0})).

Suppose first that the distribution P, has a known “center” u, € R?. Without
loss of generality one may assume that p,, = 0. Then a straightforward estimator
for &(Py,) is given by £(F,). An important example are elliptically symmetric dis-
tributions P, = L{R,, » 2u), where R,, > 0 and u are stochastically independent,
u is uniformly distributed on the unit sphere of RY, and %, € M1 (g). Clearly
S(P,) = Z,, and the empirical distribution P, satisfies condition (2.2) almost
surely if n > g. Moreover, the distribution of v(, 1E(fﬁn}) depends neither on X,
nor on £(R,,) (cf. Tyler (1987)).

The center p,, no matter how it is defined, is rarely known in advance. In
order to avoid definition and estimation of an unknown location parameter we
propose the functional {) — 2{Q0®) with the symmetrized distribution

Q%= L(21— 22| 21 £ z2) where (21,22)~0Q3Q.

Generally, Ay ® A; denotes the product measure on RY x R? of (signed} measures
A1, A on R?Y. One motivation for the functional @ — X(Q %) is the representation
27 E{(z1  =2)(z1  22)") of the covariance matrix of Q. Morcover, if # ~ @ has
independent, identically distributed components, then G{Q*) = I, whereas G(Q)
may be different from /. Thus symmetrization partly corrects a possible deficiency
of M-estimators.

One easily verifies that @ — 2(Q®) is affinely invariant in that

(4.1) AX(QHA =rN{(n+ AQ®)  with r:= trace{AN(Q%)A") /g

for any nonsingular A € R7*? and p € R?. Here u+ AQ stands for £(u + Az). If
@ is elliptically symmetric around g with scatter matrix =, € M T {g), then Q% is
elliptically symmetric around zero with the same scatter matrix ¥,.

An application of Theorem 3.2 utilizing the explicit error bound is the following
Central Limit Theorem for the distribution of £(F,) and Z{P3).

COROLLARY 4.1. Suppose that P, converges weakly to some distribution P
on RY.
[a] Let P{0} =0 and 3X(P) = I. Let L,(-| P,) denote the distribution of

n!/HS(R(E,) TR - )
{provided that S(P,) € M™). Then £(P,) — I and
La( 1 Pn) w L(W),

where W is a random matriz with centered Gaussian distribution on M(0) and
the same covariance function ns D™YP. Gly) = T), y~ P
[b] Let P{u} = 0 for all u € RY and B(P®) = I. Let Li(-| P,) denote the
distribution of
! REEN TR - 1)
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(provided that 2(PS) € M™). Then %(PS) — I and
L;( ! Pn) —w E(Ws)s

where W* is a random matriz with centered Gaussian distribution on M(0) and
the same covariance function as 2D 1(P® G(y, P}~ I), y~ P. Here G(2,y) :—
Gz —vy).

Remark 4.2. The covariance function of a random matrix W € M (0) is
defined as the function {4, B) — Cov(trace(W A), trace(W B)) on M (0) x M (0).

Remark 4.3. In case of P being spherically symmetric around zero one can
deduce from equations (7.9} and (7.10) in Lemma 7.4 that

E(trace(W A) trace(W B)) = 2(1 + 2/q¢) trace(AB)  for A, B € M(0).

Remark 44. 1If P, — P weakly, then the emprirical distribution P, con-
verges weakly to P in probability. Precisely, dy, (Py, P) converges to zero in prob-
ability, where d(.,-} metrizes weak convergence of probahility measures on RY.

Consequently, the bootstrap distributions Ly (- | P,) and L3(-| P,) are consistent
estimators of L,{-| P,) and LE(- | P,), respectively.

Remark 4.5. Utilizing the equivariance properties of ¥(.), {2.1) and (4.1),
one can deduce from Corollary 4.1 that

R2((S(Pa) B(P)) — 1) vz (M — A)W,)  in pat [a],
n 24PN = 1) = (A — A)(W2)  in part [b].
5. Asymptotic behavior of £(P,) and E(ﬁ,f‘) in high dimension
Now we consider the case where
g=gn, —oc but ¢/n—0.
For the sake of simplicity it is assumed that P, has no atoms.

THEOREM 35.1. Suppose that (P} — I for alin. Let

ni:z max (u’G(y)u)an(dy) =0(1),
uweS{RY)
y' By\*
2
o= max P, (dy) = o(1).
BeS(M(0)) /( Y'Yy ) (dy)=oll)

Purther let g = O(n'/%). Then
EIG(P) ~ Il =0(1) and E|(B,) - G(P)| = o |G(P,) - T}).
If in addition ¢ = O(n'/?), then

E|C(P,) - 1| = O((g/n)'/?).
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Remark 5.2. Suppose that y,) = (Yn.i)i<i<q ~ Pr has independent, iden-
tically distributed components with continuous symmetric distribution such that
E(y?,) =1 and E(y?,) = O(1}). Then x? O(l) and o2 = Q(¢1). For it fol-
lows from the one-sided version of Bennett’s (1962) inequality that IP{|y,,%/q <
1/2} < exp(—ang) for some number a, depending on the fourth moment of
¥n,1 and ¢ such that liminf, .., @, > 0. Therefore, since (2/G(y)1)? < 4% and
(y'By)?*/(y'y)? < 1, one may replace these integrands of x2 and o2 with 4(u'y)?
and 4¢72(y' By)?, respectively. Then the assertion follows from tedious but ele-
mentary moment calculations.

Remark 5.3. The conclusions of Theorem 5.1 and Remark 5.2 remain valid
if (P, P,) is replaced with (P$, ]35) where the symmetry condition in Remark 5.2
becomes superfluous. For the proof of Theorem 5.1 consists essentially of bounding
E(|F(P, ~ Py,")|?) and E(|G(P, — P,)|]?). But F(P$, B) can be written as a

matrix-valued U-statistic

(2)_1 > Flowi = 40y B).

1<i<i<n
Let 1575 be the empirical distribution of ¥y, ¥5, . . ., Yo, Where m = my,, 1= |n/2]
and ¥p; = ¥n2i—1 — Ynz- Lhen a simple convexity argument due to Hoeffd-

ing (1963) vields

E(|G(Ps — P)|?) < E(|G(Ps - P2)[2),

(5.1} N ;
E([(F(PS = P2 )IP) < B(|[F(P2 ~ PP

see also equation (7.18) in Section 7. Now the signed measure P3 — P® can be
handled analogously as P, — P,.

Under spherical symmetry of P,, restrictions on ¢ beyond ¢ = o(n) are super-
fluous, and one can obtain rather precise expansions.

THEOREM 5.4. Suppose that P, is spherically symmetric around zero for all

"] Then
E||G(F) -~ I|| O((a/m)"%),
IE|2(P,) — I — (1 +2/q)(G(Py) — D] = Ollog(n/q)q/n).

Moreover, one can couple Z(]sn) with a standard Wishart matriz M, € M with n
degrees of freedom such that

E [5(Pa) -~ Ma| = o{(g/n)"?).

~

In particular, v(2(P,)) =1+ 4(q/n}1/2 + 0:)((‘1/”)1/2)'
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[b] As for P2,

E|£(P2) - Ifl = O((a/m)V/?),
E|2(B2) - I -0 57 Hollyn: N(Glyns) — DI = ol{g/n)/?),

where H,, is an inereasing funetion from [0,00f into [0,2]. If in addition |y,,|*/q
converges in probability to a constant k, > 0, then

ES(P2) — (P = o((a/n)/?).
6. Some final remarks

In principle different M-estimators such as in Maronna (1976) could be treated
similarly. But this would require stronger regularity assumptions {not to mention
more complicated notation) without giving substantially better results.

An interesting special case is the maximum likelihood estimator for the mul-
tivariate Cauchy distribution on R, Suppose that y,; = (%,;,1)’ with random
vectors B,,; € R9™! having distribution P,. If we write

~ ~ Y, — ftajty,
S(P) = BB |
I L

with fin = jn(P) € R9 Y and £, = £,(P,) € R VXD then (i, 3,) is the

maximum likelihood estimator for (fi,, 2,) under the model assumption that
(6.1}  Po(di) = const.(q — 1) det(X,) Y21+ (7 = fin) T3 T — fin)) ™V dij;

see Kent and Tyler (1991). The results of the present paper can be used directly
to derive asymptotic properties of (fin, 2,), where (6.1) is replaced with general
regularity conditions on P,.

7. Proofs

7.1 Proofs for Section 3
ProOF OF LEMMA 3.1. For any B € M(0),

trace(D(Q, B)B) = q[(|Iq(I’B$)2 — |zl 72" B*x) Q{dz).

By the Cauchy-Schwarz inequality, (z'Bz)? < |z|?(2'B%z) with equality if, and
only if, z is an eigenvector of B. Hence, if Ay > -~ > Ay are the distinct
eigenvalues of B, and if V; := {z € R?: Br = A(;)z}, then trace(D(Q, B}B) <0
with equality if, and only if,

RIViU--- UV, =1

Now the assortion follows from the fact that m > 1 whenever B £ 0. M

In order to prove Theorem 3.2 one needs explicit bounds for the norm of the
remainder term G((I + B)~Y2Q) — G(Q) — D(Q, B).
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LEMMA 7.1.  There is a universal constant k, ¢ RT (not depending on Q or
q) such that

G+ B) V2Q) - G(Q) — D@, B)|| < xo |G B]?
for arbitrary B € M with | B| < 1/2.
PrOOF OF LEMMA 7.1. For A € M with A (A) < 1 define
K(z, A) :— G((I — A)z) — C(z) — 2D(=z, A).
Then for y == |z|7'z € S(RY),

K(z,A) = ((I _yi-)f_(yi()iy_ 4 G(y)) —2D(y, 4)
I ACHUT A (1 2 Ay 4 A%A(Y)
—_ y’(I—A)Zy _2D(yaA)
_ AGyA - y’z(‘lfyi()y) 2D A)  opiy 4
_ AGy)A—y'A% G(y) +2(2y' Ay — v’ A%y) D(y, 4)
y'{ — APy

The denominator y'(I — A)%y is not smaller than A,((Z — A)?). As for the numer-
ator, given any unit vector u, pick v € S(RY) such that Au — {4u|v. Then

lu/(AG(y)A — o/ Ay G(y))u| < ||A|P(v'G(y)v + v/ Gly)u),
[W'(2y' Ay o' A%y)D(y, A)u| < (2]|A]| + || A%} D(y, A)ul
< QAP + AP Gy)u + W' Gly)e).

Further there are orthonormal vectors @, ¥ such that

w=((1+u'0) /2% + (1 —u'v)/2)V %,
v = ((L+u'v)/2) %5 (1 - 'v)/2) %,

so that

|’ G(y)v| = 27 (1 + v )@’ G{y)a — (1 — w'v)TG(y)7]
< 271 + YT Gy + 271 — W Gy)T.

Hence

1A

(R {Q, A max /|u K (i, Ayu| Q{dx)

ucS(RI)

AT — A) 7210 AP + 4]l A1) Jmax w/'G(Q)u

(7.1) = M (7 = A) 7 (0JA2 + 4| A |G-

[
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Moreover, since |F{Q,-)|| = |G(@)],
(7.2) 1D(Q, )1l < 2]G(Q)]]-

Now let B ¢ M with ||B|| < 1/2 and define 4 := I — (I + B)™1/?, ie.
I+ B={I-~ A2 Then it follows from the spectral representation of B and A,
together with a Taylor expansion of the function t — 1 — (1+¢)71/2, that X ({7 —
Ay 1) <1+ B, 124 - Bl < (3/4)||BI? + #'||BIF® and ||A] < ||B[/2+ "] B|?
for universal constants ', x” € RY. Hence (7.1} and (7.2) imply that

IG((7 + B)"?Q) - G(Q) - D(Q, B)|
<K@, Al + [|D(@,24 - B)|
< (1 +[IBDLOJAJ® + 4 AIPNG@ + 2 G@) 1124 - B|
<HG@QIEIBIP + ™| BI*)

for suitable &' — &"(«/,x'). O

PrOOF OF THEOREM 3.2. For notational convenience let L := D™{P,-).
Suppose that [|L]| < b < oc and |F(Q P,-)|| < ¢ ¢ ]0,1]. Now f(B) := L(G((I 1|
B)~Y2QQ) — I) defines a continuous mapping from .= {B € M(0) : |B|| < p}
into M (0), where p €]0,1/2] is some constant. One can write

F(BY = LG(Q — Py + L(G{(I + B)"'*Q} - G(Q))
= LG(Q — P)+ B+ LD{(Q - P,B)
+ LG+ B)"'?Q) - G(Q) - D(Q, B))
= LG(Q - P)+ B + R(B),

where

(7.3) IR(B)I| < BID(Q — P, )HIBIl + bk, [IG(@)I| BY?
< 26| F(Q — P, M1 B + 2bx, || B
< 2b(e + Kop) | B,

according to Lemma 7.1. Since ||LG(Q — P)|| < be, this implies that
IRB) < |B|/2 and B f(B)<p forall BeQ,

provided that be, bp and €/p are sufficiently small. Then Brouwer’s Fixed Point

thcorem shows that f(B,) = 0 for some B, € ). If f(B,) — 0 for some point
By € Q, which is equivalent to G{((I + By)"Y2Q) = I, then |Bi|| < {|LG(Q —
P+ [R(BL)|| < blG(Q — )| + [ Bull/2, whence

(7.4) 1B1ll < 26| G(Q — P)i| < 2be.
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Combined with inequality (7.3} this yields

1B, + LG(Q — P)|| = | R(B,)|
< 4P| F(Q = P )ING(Q ~ P) + 86, G(Q — P)II?
< 46 (1 + 2br,) [ F(Q — P, )[[G(Q - P)II.

It remains to be shown that Z(Q} =1 + B,, ie. that ) satisfies condition
(2.2). Suppose the contrary. Then, by Theorem 2.1 [¢] and {2.1), there exists
a proper projection matrix IT € M such that G(A~1/2Q) = I with M = (I +
B2 (Xl +6(I —T))(I + B,)"/? for arbitrary a,b > 0. But then one casily verifies
that for suitable a,b > 0 the matrix B, := M — I belongs to 4%, i.e. |Bi]| = p.
For sufficiently small ¢/p this is in contradiction to {7.4). O

7.2 Proofs for Section b
The proofs of Theorem 5.1 and Theorem 5.4 utilize the following two results.

LEMMA 7.2.  For any normed vector space (B, || - ||) let F(B) be a maximal
subsct of the sphere S(B) such that ||x —y|| > 1/3 for different z,y € F(B). Then

#(F(B)) < exp(2 dim(B))  and  |L] < (3/2) max |La]

for any linear function L from B into another normed space. In particular,

M|l <3 n}ax |v'Mu|  for all M & M.
vE

LEMMA 7.3. For any finite collection of functions g1,92,-..,9m € L1 Py)
and arbitrary numbers t > 0,

172 log(2m)
(m o o3(Bn) ) <2 ( + e logTcosh(igy () ) /1

1<j<m T 1<3<m
where A, = P, — P,,.

In Lemma 7.2 the bound exp({2 dim(B)) for the cardinality of F(B) is stan-
dard and follows from considering balls of radius 1/6 with center in F(B) (cf.
Pollard (1990), Section 4). The bounds for |L|| and | M| are elementary.

ProoF ofF LEMMA 7.3. This inequality is a modification of Pisier’s (1983)
Lemma 1.6, which is tailored for our purposes. It follows from Jensen’s inequality
and convexity of exp(-} that

(Eexp(tntg;(Aa)/2)V™ = Bexp(+t(g;(gn1) — 9;(FPa))/2)
= Eexp(IE(£t(g; (¥n1) — 95 (#a21)/2 | ¥n1))
< Eexp(Hi(9;(¥n1) — 95(¥n2))/2)
< (B exp(£tg;(¥n1)) + IE exp(Ftg;(yn2)))/2
— IEcosh(tg,(v,1))
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Thus E1(g;(An)?) < (Ecosh(tg;(yn1)))", where (z) := cosh(ntz'/?/2) is con-

vex and increasing in z > 0. Since ¥~ 1{y) < (2log(2y)/(nt})? for y > 1, a second
application of Jensen's inequality vields

IEmj?-ng(an)z <yt (En{?xw(gj(ﬁnf))
5 (Zwtgj(ﬁn)%)
< v (mmax B v(,(B.)"))

((Q/nt) log(2m) + (2/t) max log IEcosh(tgj(ynl))) . mi

PROOF OF THEOREM 5.1. Note first that | D{ Py, B) + B|| = |F(Pn, B)|| <
Ontkin||B|| for all B € M(0}, by the Cauchy-Schwarz inequality. Thus
Sup ge scaroyy | P71 (Pu, B) + Bl| converges to zero. Therefore, according to Theo-
rem 22, it suffices to qh()w that

E [|F(An, )| = o(1),
E |GA)? = Og/n) i q=0®n?),

where A,, = P, — P... Lemma 7.2 yields

IGA) <3 max |o/G(An)],

F( )
IE R, < NCAD+ I1F B, oy,
1E (A, oyl < (9/2) max W F(Ag, B)v|.

ve F(R),BC F(M(0))

In order to bound the latter maximum we use a truncation argument. For any
constant K > 0,

W' F(A,, B)v| < ‘[m_?:ﬂ'Bx H{v'Gz)v < KW Gz An(dz)
+ f Hv'Glz)v 2 K} G(x)v (P, + P,)(dz)
= Kif(Ru|v,B,K)| + 9(An |v, K) + 29(Fn | v, K},
where

glz|v, K) := 1{v'G(x)v > K}'G(z)v
flalv, B, K) = |z[722’"Bx 1{s'C(z}v < K}U’G(w)U/K
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(and f(z]v,B,0) := 0). Note that v'G(A,)v = g(A,|v,0) and ¢(P,|v,K) <
w2 /K for all K > 0. Thus it suffices to show that for a:rbltra.ry fixed K > 0,

o(1),
7.5 E X A v, K
) oLy 9B |0 H0" = { Olg/) it q=0@"),
(7.6) E max F(An|v, B,K)? = o(1).

veF(R9),Bc F(M(0))

Since |g(-} < ¢, B(g(yar |0, K)*) < k7, 1)) < 1 and E(f (yn |0, B, K)?) <
o2, one obtains

IE cosh(tg(y,, |v, K)) < 1+Zt2k 22 [(9k)!

=1/ ("“n/Q) (cosh(qt) — 1)
< exp{(#n/q)*(cosh(gt) — 1)),
IE cosh(tf(u,, |v, B, K)) < exp(e2(cosh{t} — 1))

for all £ > 0. Combining this with Lemmas 7.2 and 7.3 we get

172
(2 5, o3e1:57)

< 2min (20 +1)/n+ (kn/q}* (cosh(qt) — 1)) /4

< 2kp/q min ((3/67)¢% /n + cosh(r) - 1}/r
(7.7) = 265/q h((3/K3)4" /n),

1/2
A 2
(E S P(RY) B R M(0)) [(Balv, B, K) )

< 2min (2 + qlg + 1) + 1)/n + o] (cosh(t) — 1))/t

(7.8) < 207, h(5¢°/(nol)).

Here h(a) == min,»q(a + cosh(r) - 1)/ is increasing in a > 0 with

A

Q) = (20)'2(1+0(1)) as a—0,
afloga(l +0o(l1})) as a - oo.

Consequently, {7.7) and {7.8) imply (7.5) and (7.6). O

The next lemma summarizes some (in)equalities for spherically symimetric
distributions.

LEMMA 7.4, Let y~N(0,1). Then EG(y) =1 and

trace{A) trace(B) + 2 trace(AB)
1+2/q

(7.9) IE{trace(G(y)A) trace(G(y)B)) =
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for all A, B € M. In particuler, for spherically symmetric distributions P on

R\ {0},

(7.10) D(P,B)y=-(1+2/9)"*B  forall Be M(0).
Moreover,
(7.11) E((v'C(ypv)*) < E((v'y)*) < 2°k!

for arbitrary v € S(RY)  and integers k> 1,

(7.12) IE exp(trace(G(y)B)) < IEexp(y By)

< exp (trase{B) + trace(5%) )

{(1=2(Bl)*
for arbitrary B ¢ M.
Proor oF LEMMA 7.4. The key point is that G(y) = G(u) and yy =

g '|y|*G(u), where u := |y| 'y and |y|® are stochastically independent with
L(|y*) = x2. Consequently, for A, B e M,

IE(trace(G(y) A} trace(G(y) B))
= E(trace(yy A) trace(yy B))/ E(q2|9|*)
= (1 +2/¢) "' E(trace{yy A) trace(yy B))
= (1+2/q) ' IE(y Ayy By)
= (1 +2/q)"Ytrace(A) trace(B) + 2 trace(AB)),

where the last equality follows from elementary moment calculations. In particular,
if A, B € M(0), then

trace(F(P, BYA) = ¢ ' IE(trace(G(y)A) trace(G(y) B)) = 2(q + 2) ! trace{ AB).

Hence F(P,B) =2(2 | ¢)"'B and D{P,B) = (1| 2/¢)"'B.
Generally, for any convex function ¢ : M — R, Jensen’s inequality yields

E¢(C{y})) — EY(E(yy | v)) < EE(y(yy) | u) — Ey(yy).
In particular, for v € S{RY) and integers k > 1,

(I Glyol") < E((v's)™) = B) = [[(1+25) < 2k,

i=0
while for any B € M and y = (yi)1<i<q,

IE exp(trace(G(y)B)) < Eexp(y' By)

= Eexp (Z )u(B)yf)
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( 271 ) log((L - 22:(B)) ))

i=1

! \

4

(Ziz’“ '\i(B ’“/k)

i=1 k=1
< Eexp (Z ()\2 By’ Z(anu)k))
k=0
= exp(trace(B) + trace(B*)/(1 — 2||B|)T). 0

Proor OoF THEOREM 5.4 [a]. Since M — G(M_UQPR) depends only on the
directions |y,;| ' u,;, which are uniformly distributed on S{R7), one may assume
without loss of generality that P, is a standard normal distribution on RY. With
the same notation as in the proof of Theorem 5.1, the first two assertions in part [a
follow from Theorem 3.2 and (7.10), provided that the following two claims are
true:

(7.13) IE max g(ﬁn lv, K)? = O(g/n) uniformly in K > 0,

ve F{RY)
2 A 2
(7.14)  max g(P|v, Kx) +KH1E“EFW§§1§§F(M(G)) F(An v, B, Ky)

= O(log(n/q)* a/n}

for anitable nimhbers K, in BT,
Note first that

IE cosh(tg(y,, |v, K)) < IEcosh(tv'Q(y,, v) = Z ’1t2)"1,
k=0
according to (7.11). Thus Lemmas 7.2 and 7.3 yield
1/2
(I, max, o(Bal0K)?) " < (2/t0)(20/n—log(1 = 422)) = O(a/)")
ve 2
if ¢, := min{{g/n)'/2,1/2}. Moreover, it follows from (7.12) that
9(Po [0, K,) < Ko exp(=Ko/3) Fexp(s/Glyn)n/3)
< Kpexp(—K,./3)exp(2/3) forall »¢€ S{RY)

whenever K, > 3, because z exp{—2z/3) is decreasing in z > 3. Setting K, equal
to (3/2)log(n/q) shows that a sufficient condition for (7.14) is given by

(7.15) E max f(A,|v,B,K.)? = Og/n).

VEX(HY ), BEF(M(V))
But for any B € S(M(0)) and 0 <t < ¢/2,

IE cosh(t f(yn1 | v, B, Kn)) < Ecosh((t/q) trace(G(y,1)8))

< exp((t/q)* trace(B*)/(1 - 2¢/q))
< exp((#/q)/ (1 2t/q)),

A
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according to (7.12). Now (7.15) follows from Lemma 7.2 and 7.3 if £ =, is taken
to be gmin{(g/n)/?,1/2}.

_As for the coupling with a Wishart matrix, the preceding results show that
S(P,) may be replaced with G(P,). The matrix M, = n f zz' P,(dz) has the
desired Wishart distribution. Further,

E(G(#1) —~ Yn1¥n1) = 0,
E(v'(Glyn1) — unitha)ol?)
= E((v'G(y1)v)?) Var(ly, */a) = 6/{q + 2),
E([v(C () ~ vaatha)n ")
< (B((20'G(yn1)0)") + E((20' 31 4,1 0)%))/2 < 47K,

see (7.9) and (7.11). Consequently,

B cosh (8 (Guny) — Htl)¥) S 1+ 382/q + (401/(1 - 1682)
for 0<t<1/4,

If we take t = t, = min{e~'(g/n)*/?,1/4} for arbitrarily small ¢ 3> 0, it follows

from Lemmas 7.2 and 7.3 that IB(||G(P,) — n L M,|%) = o(¢/n).

As for the assertion about the eigenvalues of L(FP,), one can modify
Silverstein’s (1985) arguments in order to show that ‘

In=" My, — T,DaTy | = Op((log(a)/m)1/%),

where T, is Haar-distributed on the group of orthonormal matrices in R while
D,, denotes the non-random tridiagonal matrix

no (nlg-1D)V? 0 0 \
n+qg=2 {((n-1){g-2)""
Dy :=n" n+qg-—4 0
(n—gq-+2)'/?
\ (symm.) n—g+2

Silverstein (1985) derived from Gerégorin’s theorem that
M(Dn) < (14 (g/m)'7?)? and Ag(Da) z (1= (g/m)'")*.
On the other hand consider unit vectors

un ¢ = k"V2(0,1,1,...,1,0,...,0),
Uy, — kT2(0,-1,1, -1, (=1)F, 0, Q)
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in R? with k = k, = ¢'/?+O(L) nonzero coefficients. Then Ay (Dy) > ul, | Dptn ¢
and A (D,) < uy, Dy, - with

k+1 k
Wy, Dt + = (kn) ™! (Z(n+q-2i) + QZ((n*z‘J(q-z’—l))W)

i=2 =2
= (1 £ (g/n) )2 + O(n=12), .

PROOF OF THEOREM 5.4 [b]. Because of (5.1) and the proof of part [a],
we know that |E(FP7) — G(PF)|| has expectation o{(g/n)'/?). Thus it suffices

to analyze G(P;) in more detail. This is just a matrix-valued U-statistic with
Hoeffding-decompaosition

G(P2) = CG(U,) =T +2G(A, ® P,) + G(R,),

where G(z,y) = G(z — y) and

N ] oA
U, = (’2*) > by, ®6,, ad R, =0,-2P,@P,+P, 3P,
1<i<j<n

Now we show that

E|G(R.)| <3E max ['G(R,)v| = o((q/n)"/?).

ve F{RYI)

For that purpose we use once more a truncation argument. Let g(z|v, K) be de-
fined as in the proof of Theorem 5.1 and h(z |v, K) := H{'G(z)v < K}w'G(z)v =
v'G(z)v—g(z | v, K). Further let §(z,y|v, K) := glz—y|v,K) and h(z,y v, K) =
h(z —y{v, K). Then it suffices to show that for suitable positive numbers K,,,

(7.16) B max [F(Rn]v, Kn)l = op((a/m)"/?),
(7.17) E max [5(falv, )| = op((a/n)/?).

In order to prove (7.16), let # be uniformly distributed on the set of permu-
tations of {1,2, . n} and independent from (y,;)1<i<,. Then

ynl1yn23"‘7ynn) 3

(7-18) - ( ! Z§yn w{2i— 13 @ 6yn.7r(2i)

ﬁ”® ( _IZ Yn mi2i-

k3

—1
m Zéyn,fr(Ei—l) & Pﬂ'

i=1

=1 (m_l Zéyn.ziq ® 5%1,2:;
=1

n|Ynls Ynor - 5ynn) ¥

Ynas Ynas Uney - - ) ’
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where m = m,, = |n/2]. Consequently, applying Jensen’s inequality three times
while using the fact that £{(y,;)i) = L£{(#n,x(i))s) 8ives us
E F(Rn v, K,
o |g(Bn ], )l

i I max ]g(ﬁn - ‘Pn, ) ‘Pn i v, Kﬂ-)l
vEF(RY)

+2F max [§(P, ® P, — P, @ Py v, Ky

veF(R?)
< 3E max

Py —1
ve F( R} ( Zé\ynh 1 ‘Zi_PH®PRU1Kn)

=3E PSWPS Ky
vg?»gq)lg(n nlv, )|

<6 ((ZQ +1)/m+ max logIEcosh(tg(¥,1 — Yn2 ]v,Kﬂ)) /t
veEF(R9)

(7.19) =6 ((2(} + 1) /m+ H}F(l.}){( ) log IE cosh(tg(y,.. | v, Kn))) /t
ve q

for arbitrary ¢t > 0, where P5 was defined in Remark 5.3. The last inequality
follows from Lemmas 7.2 and 7.3, applied to (m, P35, P?) in place of (n, P,, P,).
The last equality is due to G(y,; — y,2) being distributed as G{y,;). Now we
deduce from (7.11) that

E(g(yn1 |0, Ka)*) < B((v' Glynr)v)*) < 2%k,
E(g(v1 | v, K0)?) < W/ Cly,)) )/ KL < C/KE,

whence log IE cosh(tg(y,, |v, Kn)) < Ct2/K?2 + 16t%/(1 — 4t%) ;. Consequently, if
K, — oo but K2 < n/q, then (7.16) follows hy setting t = K, (q/n)t/? in (7.19).
As for (7.17), an exponential inequality for degenerate U-statistics yields

E cosh(cn?z(ﬁn | v, Kpn)/Ky) < e

for some universal constant ¢ > 0. This follows from Nolan and Pollard ((1987),
Section 2) or Arcones and Giné ((1994), Proposition 2.3{(d)). Hence, with 4(z) :=
cosh(cnz'/?/K,) for z > 0, one can conclude from Lemmas 7.2 and Pisier’s (1983)
Lemma 1.6 that

(E max A{Ra|v, K,)%)"?
ve F(R?)

< (w-l (exp(zq) max E (i (‘nlv,Kn)g)))l/g

cF(R?)
< 2K, (g + 1}/ (ne)

= O((g/n)*/*),

because ¥~ (y) < (K, log(2y)/(re))?.
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Now we consider the random matrix G(A, ® P,) in more detail. For fixed
z € RY let vy,v,...,v, be an orthonormal basis of R? such that = |z|v;. Then

with ¥, = (Yn.i)1<icn a0d An(r) == E((r — 30 1)2/((r — yn.1)? + [y ® — ¥2 1)),

VG2, Payor = qB((|2] = v 900)?/ (2] = ¥} 901)? + |91 I* = (01 01) %))
= ghn(|z}),

vViG(z, Pa)vi = QIB((v901)*/ (2] = 1900 + 9] = (V] 91)))
= qlg = DTy * = w2 D/ = yn1)? + 90> —221))
= Q(q_ 1)W1(1 o hn(|m,)) for 2 <1< a,

U;é(ﬂ?,Pn)ﬂj =0 for 1<i<j<q.

Hence G(z, P,) — I can be written as
ghn(jz)Jorvr + (g = D71 = ha(l2))U — wivq) — 1 = 27 Ho(J2))(G(2) - 1),
where
Halr) = 2ghn(r) - D/(a - 1) € [0,2]

This leads to the representation n= 1 37 Ho |y MG lume) — I) of 2G(A, @ P,).
Finally, suppose that |y,,/°/¢ —p %o > 0. Then one easily verifies that
he(lynil) —p 1/2 and thus H,(|y,1]) —p I. Since 0 < H,, < 2, this implies that

E([(Hn(|yn1l) — DV (Glyn1) -~ D)v[¥)
= (| Hu(lynil) — 1) B(v"(Glyna) — N[F)
< e, 45k!
for k > 2, where €,, — 0. Thus logIE cosh(t(H..(|w.|) — 1)/ (G(y,..} — Iv) is not

greater than 16¢,t2/{1 — 16t%)", and a final application of Lemmas 7.2 and 7.3
gives us

= o((a/n)'/?).

i=1

E ‘G(ﬁn) I 0y Hol i) (Glyms) — 1)

But part [a] provides the expansion IE ||(5,) — G(P,)l = op({g/n)/?). Conse-
quently, E | 5(P5) — (o) = op((a/m)/2). 0
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