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Abstract. In this paper we obtain agymptotic representations of several vari-
ance estimators of U-statistics and study their effects for studentizations via
Edgeworth expansions. Jackknife, unbiased and Sen’s variance estimators are
investigated up to the order o,(n™"). Substituting these estimators to studen-
tized {/-statistics, the Edgeworth expansions with remainder term o{n™?) are
established and inverting the expansions, the effects on confidence intervals are
discussed theoretically. We also show that Hinkley’s corrected jackknife vari-
ance estimator is asymptotically equivalent to the unbiased variance estimator
up to the order op{n™").
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1. Introduction

Let X1, ..., Xy be independently and identically distributed random variables
with distribution function F{z}. Let h{z1,...,z,) be a real valued function which
is symmetric in its arguments. For n > r let us define U-statistic by

1
n
U, = (T) ;h(Xil,...,Xir)

where ch i} indicates that the summation is taken over all integers 4p,...,4,
satisfying 1< 4 < -+ <ip <n. U, is a mnimum variance unbiased estimator
of # = E[h(X1,...,X;)] and many statistics in common use are members of U-
statistics or approximated by them.

For the variance estimation of U-statistics, several estimators are proposed. In
the case of degree 2, Sen (1960) has discussed an estimator of the dominant terin
r2¢2 of the variance no2 = nVar(U,) where &2 = E[E{h(X1,...,X,) | X1}}*.

k2
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Sen (1977) extended it to general degree r. The jackknife variance estimator 5
ig given by
n

~ n_l i
53 - =S W - vy
i=1

where U,(j) denotes [V-statistic computed from a sample of n — 1 points with X; left
out. The properties of 33 are precisely studied. Arvesen (1969) has obtained the
exact representation of &3, which is very complicated. Efron and Stein (1981) have
showed that the jackknife variance estimator always has positive bias. IFurther
Maesono (1994} has obtained an asymptotic representation of 2 with residual
term o,(n~!) which means

P{lop(n™")| 2 n~ (logn) ™'} = o(n ™).

He also established an Edgeworth expansion of 4% with remainder term o(n=*/%).
The bias reduction for the jackknife variance estimator has been studied by Hinkley
(1978) and Efron and Stein (1981). In the case of small sample and r = 2, Schucany
and Bankson (1989) discussed biases and mean square errors of Sen’s {1960} es-
timator, the jackknife estimator and an unbiased estimator. They compared the
above estimators by simulation. It is easy to see that those estimators have first
order consistency, which means that the estimators converge to the dominant term
r2¢% of the variance.

On the other hand, the asymptotic distribution of U-statistic has been studied.
For a standardized U,, Hoeffding (1948) has proved the asymptotic normality
under the conditions that E[h%(Xy,...,X,)] exists and £} > 0. Callaert et al.
{1980}, and Rickel ef al. (1984) nhtained Fidgeworth expansions with remainder
term o(n~!} for the standardized U,,. The asymptotic distribution of a studentized
U-statistic is also studied. The studentization is to substitute an estimator 62
for 02. Callaert and Veraverbeke {1981) obtained the Berry-Esséen bound of
the studentized U-statistic substituting a jackknife estimator 4%. For degree two
(r = 2), Helmers (1991) obtained its Edgeworth expansion with remainder term
o(nél/?') and Macsono (1995) obtained the expansion for an arbitrary degree ».

In this paper we study the variance estimators more precisely and obtain
asymptotic representations of them with residual terms o,(n!). We show that
up Lo the arder v, (17 1), the differences between those estimators are n~ ! constant
term and the unbiased estimator of Schucany and Bankson {1989) is asymptoti-
cally equivalent to the Hinkley’s (1978) corrected jackknife estimator. Using the
asymptotic representations, we also obtain Edgeworth expansions of the studen-
tized U-statistics, in which we substitute each variance estimator for 2.

In Section 2, we review the variance estimators. In Section 3, the asymptotic
representations of the estimators and their biases are studied. The Edgeworth
expansion of each studentized [7-statistic is established in Section 4 and we study
the effects of several studentizations in the case of the variance estimation. In
Section 5, the effects on confidence intervals are discussed theoretically. Proots

are given in Section 6.
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2. Variance estimators

At first we will obtain H-decomposition or ANOVA-decomposition for U-
statistics. Let us define

6= Eh(X1,...,X,)], o2=Var(l,),
gl(ﬂll) = E{h(iﬂl,Xz,. . ,Xr)] -
ga(x1,z0) = E[h{z1,22,..., X)) — 0 — gulz1) — q1(22), ..., 9 (21, ..., 2)

r—1
=h($1,...,:c,.) -6 - Zzgk(xilﬂ“'?‘rik)’

k=1C"
Ak - Z gk(X'ilw .. !X’.':k)s
Can
f% e E[gf(Xl)} and 53 = E[g%(X;,Xz)}-

-0 () L (T H

k=1

Then we have

and
Elgp(Xy, .., X)) | Xisoo, X1 =0 as

Using the above equations, the variance ¢2 is given by

(2.1) o2 = Zr: (;)2(2) _IE[QE(Xl, . ¢5)

k=1

r2(r — 1)2

2n(n —1)
r!

=D (=7 ¥ D)

r? 2 2

E[Q?(Xla-- . ,Xr)]-

From the view-point of estimation for r2¢2, Sen (1960) proposed the variance
estimator

Vi =rin—1)7"> (Si-Un)?
i=1

where

—1 )
n—1 )]
i = (T‘l) E (X, X5, X5y
C

n—1r—1

and Eglfl ., denotes the sum of all possible r—1 combinations from n—1 indices
{1,...,:—-1,i+1,...,n}. Sen (1977) also showed that

(n—-1)?

~2

VE.
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Hinkley (1978) has discussed the bias correction of V7. Let us define
Qi =nlU, — (n—1)UE + UD) + (n— 2)UHD

where US"" denotes the value of U, when X; and X ; are deleted out from the
sample. The bias corrected jackknife variance estimator is given by

. 2
—— (Qi; — Q)

Cn,2

VE=V7—

where Q = Y Qy;/[n{n —1)]. For r = 2, Schucany and Bankson (1989) pro-
posed the unbiased estimator of no2, which is constituted from unbiased estimators
of each terms of the variance expression. Another expression of the variance no?
is

o (1) () (20

where
ai = Eh(Xy, ..., Xe, Xey1, o Xe)h(Xay ooy Xy Xty ooy Xopg)] — 67

Let us define

Ck(wla"'::r?'rfk)
Cf2r—k\ T fer -2k
N k r—k
*
> Z h(m‘il)"':mik7$6k+1)'"amir)h(IhJH-11£k:I£1»+11---yxizr__k)

where Y7 denotes the sum extending over all (2'”,6_ k) (2::?“) pairs. The unbi-

ased estimator of ER(X1,..., Xk, Xgg1, - Xp)h (X1, oo, X, Xy, o0 Xopei)]

is given by L
. n a
/\Iz = (2?“_ k) CZ (k(‘Yha"'a‘Y'iQr—k)‘

n,2r—k

Similarly let us define

-1
2r o
go(ml,...,xgr): (7‘) Z h(l‘il,...,Eir)h(ﬂ?ir+l,...,Ii2r)

where $°"" denotes the sum extending over all (2:) pairs. Then

1
g% = (;) Z Co(X1,. ., Xor)

Cu 5a
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is an unbiased estimator of #2. Substituting @& = A; — 62 for af in (2.3), we obtain
an unbiased estimator V% of no? as

@) R0

Schucany and Bankson (1989) compared the estimators VZ, VZ and V;? by simu-
lation in small samples n = 10. Tt is easy to see that all estimators converge to
reEt.

3. Asymptotic representations of variance estimators

To discuss asymptotic properties of a statistic, it is convenient to obtain an
asymptotic representation with remainder term o,(n~'} which means

P{lop(n™")| = n~ (logn) '} = o(n™").

Let T, R and T = T + R be random variables, H(-) be a bounded function, and
~ be a positive constant. Then

(3.1)  sup|PAT < a} ~ H(z)| < sup |P{T <2} - H(z)| + P{|R| = 7}
+max{H(z — ) — H(z), H(z +v) - H(z)}.

Thus the representation of a statistic with remainder term o, (n™!) is very useful for
discussing asymptotic properties, especially in the case of Edgeworth expansion.
For the jackknife variance estimator V7, Maesono (1994) proved the following
asymptotic representation.

THEOREM 1. If E|h(Xy,..., X )|[*¢ < oo for some € > 0, we have

r2(r — 1)2£3

(3.2) Vi=VZ4r2%d + +op(n7")

where
fo—Ei:f(X.)+_2,ﬁ§ F2( X5, X,)
n_nizllz ﬂ2022 iy <rg )y

fi(z) = (g1 (@) = €11 + (r = DE{g1{X2)g2(z, Xo)]

1
2
and

falz,y) = —g1(2)g1 (@) + (r — Lga(z, yH o (z) + 91(y))
— (r — 1)E[ga(x, X3)q1(X3)] — (r — 1)Ega(y, X3)g1(X3)]
+ (r — 1)?Elga(z, X3)g2(y, Xa)]
+ (r— D r — Q)E[gg(m, y, Xa)g (X3}
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Similarly we can obtain asymptotic representations of V2, V2 and V2.

THEOREM 2. If E|h(X1,...,X)|* < oo for some € > 0, the asymptotic
representations are

r{(r —1)7°¢8 — 2(r — 1)¢7}

(3.3) VE=V24r2% 4 - +o,(n 1),
2 _ 22
(3.4) VE=VE+ried+ % +o,(n 1)
and
. 2(p — 1)2£2
(35)  VE=viirugs DO o,

2n

The differences between the variance estimators are the constant order n=!

until o,(n~'}). Especially the unbiased estimator V}? is asymptotically equivalent
to the Hinkley’s (1978) carrected jackknife estimator V2. 1t is easy tn see thar

E{f](Xl)] = E[fg(Xl,Xg)] =0 and E[fQ(Xl,XQ)IX]_] =0 a.s.

Using Thecrems 1 and 2, we can study the asymptotic properties of the
variance estimators. Maesono (1994) established the Edgeworth expansion of
(V? — no?)/+/Var(V?) with remainder term o(n~!/?). Similar expansions are
easily obtained for another estimators. Here we will study the biases for variance
estimation and Gini’s mean difference.

Ezample 1. Let us define

bJ=;r2(f- 1% and b5=;1ﬂ2[(r 125 4r 17,

Then from (2.1), (3.2) and (3.3), by and bg are n~! biases of V7 and V2 respec-
tively.
(i} Variance estimation;
Let us consider the kernel h(z,y) = (z — y)?/2. Then if Var(X;) = o2 exists,

the U-statistic »
n
U, = (2) > h(X, X;)
Cnz
is an unbiased estimator of ¢2. Without loss of generality, we assume E(X,) = 0.
It i3 easy to see that

; 1
(3.6) f=0° gz)= 5(9:2 - 02) and  gy(z,y) = —2y.

So we can get
3
&= {BExH -0 ad g=o"
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(Normal distribution:) If the underlying distribution is normal, that is X; ~
N(0,0?), we can show that

by =20 and by = —2*

(Logistic distribution:) We consider the logistic distribution which has the density

function
me— R IRVET

VEr(l = el var)

In this case we have that Var(X;) = o2,

22
b; =2 and bg= —3—04.
(Laplace distribution:) Finally we consider the Laplace distribution which has the
density function
L vERle
V20

Then we have that Var(X;) — a2,
by =2¢* and bg = —8s%.
(ii} Gini’s mean difference;
Let us consider the kernel h{z,y) = |z — y|. The corresponding U-statistic is

Gini’s mean ditference. We study the normal case, that is X; ~ N (U,0%). From
direct computations, we can show that

2 1 4-2V3
Q:E\Xl—Xz\:\/—EU, ffz{g-——wﬂ_—}o@ and

4 4-4v3
fg""{‘?:%———?r\/_}o‘z-

Thus we have

— Ve 8{5 — 3
bJZS{%+1 \/3}02 and bg—i——}s—\/—_—laz(< 0).

m

The biases of VZ are always positive, and in many cases the Sen’s estimator
V4 has negative biases. Though V& and V7 are unbiased until the order o{n™!),
they take sometimes negative values, especially in small sample case. V? and V2
are always positive. ‘
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4. Edgeworth expansions of studentized U-statistics

Maesono (1994) obtained the Edgeworth expanbion of the studentized U-
statistics v/n(U, - #)/V; with remainder term o(n™!). Let us define

~ 28
VZ=V24+ril+ % +op(n™h).

Since V2, V2 and V}Z can be expressed as the form V2, we will obtain an Edgeworth
expansion of the studentized U-statistic v/n(U, — 6)/V,..

LemMa 1. If EJR{Xy,..., X,)}]® < 0o and £ > 0, we have

r&Vy b =1-n"! Z 5] (X)) =n7? Z [fz X, X;) - & fl(Xé)fl(XJ)]
- db{f (X1)] ¢
o 1{ TR } +oln™).

Using the above lemma, we can obtain an asymptotic representation of the
studentized U-statistic /n(U,, — 8)/V,,. Let us define

= %ﬁfl)] B %’ n = Elf1(X1)g:1(X1)]

01 () = Trgy () g?{(fl (2)a1(2) — m) + Elfolz, Xa)g (Xo)
_ 3—.?f1(w) + (r = 1) Elgale, Xo) (in},
g (z,y) = r{r — Dz, y) - é{h(m)m () + Ao (@)]

and
Q3(33, Y, Z) = ?"('J" - 1)(7‘ - 2)93(1‘::% Z)
-5 { r = DUfi (@)2(9:2) + (0o, 2) + F1(2)g(a,9)]

+ g1(x) "fg(y,z) - _?iﬁfl(y)fl(z)-

t o) | folz, ) - %mm ()

- 3 :
+ q1(2) | fo(z.9) — E_gfl(m)fl(y) }
L 1 A
Then we can get the following lemma.
Lemma 2. If BE|h{X1,...,X,)|° < 00 and &} > 0, we have

VU, ) = LUz -

n -1
5 + 0N
r&1 \/—7’151; p( )
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where

1

Ur=nt Z {rgw (X:) + M}
i1

+n72 Y X X)) 4070 Y aa( X, X, Xe).-
Cn.2

Cn 3

Thus the studentized U-statistic is a sum of a U-statistic U} with degree three
and n~1/? term. For asymptotic U-statistics, Lai and Wang (1993) established the
Edgeworth expansion with remainder term o(n“l). Applying their result to U}, we
can obtain an Edgeworth expansion of the studentized U-statistic. Let us assume
the following conditions.

(C)) ElWX1,....,X)|" <0

(C2) limsup, _q, |Elexp{itg (X1)}]] < 1

(C3) Elg2(Xi, X2)|® < o0 {s > 0) and there exist K + 2 Borel functions 4, :
R — Rsuch that E[2(X))] <oolv=1,...,K+2), (K+2)(s—-2) > 45+ (285~
40)1¢ g|gy (X1, %2, X33 >0}> and the covariance matrix of (Wi, ..., Wgy2) is positive
definite, where W, = (L#,)(X1) and (L. )(y) = Elga{y, X2)v.(X2)}, and Iy is
an indicator function.
The condition {C3) is concerned with the number of nonzero eigen function of
g2(z,y). Alternatively Lai and Wang (1993} have proved the validity of the Edge-
worth expansion under the following condition {Cj).

(6’3) There exist constants ¢, and Borel functions w, : R — R such that
Ew,(X1)] = 0, Elw,(X})]* < oo for some s > 5 and ¢2(X;,X3) =
mel cow, (X1)w,(X2) as.; moreover, for some 0 < v < min{1,2[1 — 11/(3s)]},

K
E {exp (it {91 (X7) + ZU,,w,,(Xl)})}
Let us define

ey = Bl@(X1),  ex=(r— 1)E{n(X1)g1(X2)g2( X1, X2},
es = Elgi(X1)], es=(r—1E[gi(X1)g(X2}g2(X1, X2)],
es = (r — 1)2Elg1(X2)g1{X3)g2(X1, X2)ga( X1, X3)],
e = (r—1)(r — 2)E[g1(X1)g1(X2)g1(X3)g3( X1, X2, X)),
wr = E7%(2e1 + 3e2),  wo = £ er + Bea),
wy = 66, Hes — 66 + 12e4 + ey + deg) — 26, °(2e1 + 3e2)(2e; + 9ea),
wy = 3E; 5(4e? + 12e1e4 + 3e3)
+ 18671 ({26 — (r — 1)’E3}ET — ea + 261 — dey — 2es)

lim sup sup < 1.

el o0 fan|4eeblusc | SI6 =

and

Qn(z) = ®(z) + @(wlazz + wa} + ES—(a’;)(fmf;t:a + wyz® + waz).

6/ 72n

We have the following theoream.
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THEOREM 3. Assumne that the conditions (C1) and (Cz) hold. If either con-
dition {C3) or (C5) is satisfied, we have

sgp |P{\/EVH"1(UR 6) <z} Qnlz} = o(n_l).

Since the studentizations by Vj, Vg, Vg and V{? are special cases of the
above studentized U-statistic, we have the Edgeworth expansions of them. The
differences between the expansions based on VZ, VZ, V2 and V2 appear in wy. Let
way, way, wae and wyy are corresponding terms to wy of the Ddgeworth expansions
of the U-statistics studentized by V7, V2, V2 and V2, respectively. Then it follows
from (3.2)~(3.5) that

way = 3¢7°(4ed + 12e1e2 + 3¢3)
+ 1864 ((r — 1)°€5€7 — e + 26} — deq — 2es),
wys = 367 °(4e] + 12e1e7 + 3e3)
+ 18674 ({(r — 1)%65 — 4lr — 1)ETIEE — €5 + 26 — deq — 2e5)
and

wic = war = 3¢70(4e2 + 126169 + 3e3) + 186, H—ea + 26} — dey — 2¢5).

Erumple 2. Let us consider the case of the variance estimation. The U-
statistic with the kernel h(z,y) = (z — y)?/2 is an unbiased estimator of o2 =
Var(X;). For the sake of simplicity, we will consider the case that the distribution
F(z) is symmetric about the origin. Let us define my = E[X]. Because of
symmetry of F, if k is odd number, mz = 0. It follows from (3.6) and direct
computations that

2 2)
3

(@) = 3@ 0%, ey = sy @) =6 - 2077 —m)

and

1 T .
falw,y) = —7(a* — o?)(4? - 0%) — T/ (@® + 47 — 20%) + Ehay.

Thus putting

1 1
8] :_ﬁa wl(:‘c):mﬁ 62:_§§_123 w2(37):f1($)+91($)7
1 1
£y = 3—6%, wa{z) = fi(z), ec1= @ and  wy(z) = ¢ (),
we have

4
G2 (X7, Xo) = ZchV(Xl)wv(Xg} a.8.
vr=1
Assume that E{X{|?* < oo and the underlying distribution F(z) has a density
function. We can show that
< 1.

lim sup sup E

lti—oe |ui |+ Hlual<|t] 72

exp (it {gl(Xl) + Zuuwu(Xl)})}

=1
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Hence the conditions (C1), (C2) and (C3) are satisfied. Further we can obtain that

1 1
Ef:z(mzL*O’A), g=0' e :g(m6—309m4+206),
63:16(nzg—4am6+60m4*30’) and ez =¢4=e5 =€ =0.

(Normal distribution:) If the underlying distribution is normal, that is X; ~
N(0,5?%), we can show that

15 1
€] —= 06, ez — ZJS, Ef = _0-41
wi =4V2,  wp =2v2,  wy=—10,
Wag = -—102, wig = —174 and Wacr = Wiy = —138.

{ Logistic distribuiion:) We consider the logistic distribution which has the density
function We’wx/(‘/g")/ﬁa(l + e””/‘/gg). In this case we have

128 o 240 s 4,
35 7 GB=770, Ss1T50%
wp = 10.22,  wy =511, ws—=7645

way = —592.32, wys = -66432 and wio =wyy = —614.82,

€1 =

(Laplace distribution:) For the Laplace distribution which has the density function
e*‘@x'/“/\@a, we get

37 2193 5
€] = ZUS, €a = 16 0'8 61 = 4

wy = 13.24,  wy =662, w3z= 136 98,
Wiy = *100286, wis = —1063.34 and W = Wy = —1017.26.

In all cases, we have wag < wye < wyqy. If the sample size n is small, the Edgeworth
expansions are affected by the differences of the studentizations.

5. Confidence intervals

One important application of the Edgeworth expansion is to construct a con-
fidence interval of the parameter 8. Here we will discuss the effects of the studenti-
zations to the confidence interval. From a Cornish-Fisher expansion hased on the
Edgeworth expansion, an approximation s, of the a-quantile of \/n(U,, —8)/V,, is

(5.1) So = 2o — (w122 + wo)

M

+ _72 {(4&’1 — Qwnwg — id:’.)-?‘z + (e g mg —14) 2 }
I
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where z, is an a-quantile of the standard normal distribution and w;’s are defined
in Section 4. The confidence interval J(gry with coefficient 1 — o {0 <@ < 1/2) is
given by

(5'2) Up — 'Uiél—a/2 <8< up ~ U—R§Q/2

Vv Vn

where u,, and v, are sample values of U,, and V,, respectively, and 3, is a sample
value of s, with estimated values &;(i = 1 ~ 4).

Also we can construct a confidence interval based on the Edgeworth expansion
of the standardized U-statistic (U, — #)/o,. The confidence interval I E“S D) with
coefficient 1 — « is given by

Upn .y Un_ o
(5.3) un—\/’%s1 a/2<9<un—\/riﬂf2
where
~ a2
- K K5
(5.4) B = zy 6\/_( )+ ﬁ( %~ 32a) = go-(22) — 52a)

and &z and /&4 arc cstimated values of
K3 = 5;3(61 +3e3) and k4= §f4(eg - 35? + 12e4 + 1265 + 4es).

As pointed out by Hall ((1992), Chap. 3), the convergence rate of a coverage
probability of the interval Igry is o{n='/?), and that of the interval Iigpy 18

O(n~'/2). Thus from the theoretical view-point, the coufidence interval Igr) is
better than [ FS Dy Here we compare the intervals based on the variance estimators

V2, V2, V2 and V2. Comparisons are theoretical and not by simulation. Similarly
as Lemma 1, we can show that

. 1 o T8 1 72 r2§ 2 -1
{5.5) Vy =781 + 36, (Irn —+ - ) 8r3§§ (Vn + - + op(n™")

=1t + g — e PR
+2T1£ vZ— szfl (X)AX;) + op(n7h).

Since E[V?] = E[fi(X1)fi(X2)] = 0, V,, is asymptotically equal to

Iy 2,”51 E[f}{X1)).

Also it may be possible to make estimators &;(i = 1 ~ 4}, k3 and k4 which converge
to wi(i = 1 ~ 4), k3 and k4 respectively. Replacing w;(i =1 ~ 4), k3 and &4 by
wi{i — 1 ~ 4}, ny and #q, we can comparc the confidence intervals theoretically.
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Erample 3. Continued from Example 2.

Let us consider the case of the variance estimation. Smce exact lower and
upper bounds are available, we discuss the case of the normal distribution. Let us
assume that X; ~ N(0,02). The exact confidence interval with coefficient 1 — «

is given by

(n— 1y <ot < (n—1)un

2 2
Xn—l;l—a/:? Xn—l;a/Q

where x2_, . is an a-quantile of the chi-square distribution with n — 1 degree of
freedom. From (5.5) and direct computations, we have

vn:\/iang@—L—ﬁaQ.

no? 4dn

Since u,, is an estimate of ¢?, we can approximate the estimates vy, vs, v¢ and

vy
v;mﬂug—ﬂJQN( 2—3—\/_-g>un,
4n 4n

1)32\50’24@0'22 \/§~—1@ Un,
4dn 4n

Vo \/Ecrr2 — r—-—sfug o~ ( 2 — —5\/5) Up

4n

and vy o~ ve. It follows from Example 2 and (5.1) that the approximations of the
n-quantile §, are given by

Sa,0 ™ Za — %(4\/523 + 2\/5) + —‘1"—(10632 + 158z4),
Bas ™ 2y — —(4\/52: +2v2) + m(106z +2302,),
Ba,0 ™ 2o — m(zh/ﬁza +2V2) + n—n(l()ﬁzg +1942,)

and 84y = 8u.c. Here 34, denotes the Cornish-Fisher approximation based on
each studentization. So the differences of the confidence intervals are the coeffi-
cients of u,,. For example, the approximation of u, — vy3. 7/v/n i8

Vn T2n 4n
Similarly an approximation of 8} is given by

.~z ‘/_
~ Ze W

{1 - —l-'* [ZQ 6\/_ 4\/_.5 +2f) + L(106""3 | 158“(1):| |:\/_ - L\/i] } Ugy -

( Fa )+_n{zg_720')'
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Table 1. Coefficients of uy.

n a  VZ  exact Iism I(*SD) exact [rgT) I(*SD)
lower lower lower upper upper upper

10 (.05 VJQ 0.4731 0.0882 0.0282 3.3320 2.9827 1.6213
1% 0.1145  0.1333 2.8407 1.5542

Vg 0.0991 0.0808 2.9139 1.5877

0.01 Vj" 0.3815 —-0.4602 04109 5.1875 4.2202 1.7159
'VS2 —0.3974 —0.2533 3.9671  1.6385

Vg —-0.4317 —0.3346 4.0965 16772

20 0.05 VJQ 0.5783 0.4479 0.3175 2.1333 2.1093 1.5002
v 0.4483  0.3530 2.0799 1.4742

Vé 0.4477 0.3352 2.0950 1.4872

0.01 V3§ 0.4925 0.2049 0.0360 27762 2.7108 1.6024
V32 0.2090 0.0861 2.6591 1.5711

Vg. 0.2064 0.0610 - 2.6854 1.5868

101 0.05 VJQ 0.7718 0.7619 0.7081 1.3473 1.3519 1.2547
v 0.7615  0.7110 1.3511 1.2521

Va 0.7617 0.7096 1.3515 1.2534

0.0t Vi 07134 0.6911 0.6034 1.4853 1.4959 1.3228
ng 0.6907 0.6073 1.4945 1.3196

V2 0.6909 0.6054 1.4952 1.3212

Multiplying the approximations of v;, vs, v and vy, we can obtain approxi-
mations of lower and upper bounds of the intervals based on the standardized
U-statistic.

The Table 1 lists the coefficients of u, for lower and upper bounds of I;gr)
and [ (”‘S Dy 'I'he approximations based on the studentizations are better than the
standardizations except the lower bounds of the case n = 10. This supports the
fact that the convergence rate of the coverage probability of the interval based
on the studentized U-statistic is better than that of the interval based on the
standardized U-statistic. The intervals based on the jackknife studentization are
comparable to those based on the Sen’s studentization. The studentizations based
on the Hinkley’s and the unbiased estimators are moderate intervals.

6. Proofs

We first review the moments evaluations of H-decomposition, which is very
uscful for discussing asymptotic properties. Let v(z1,...,®,) be a function which
is symmetric in its arguments and Fv(Xq,...,X;)] = 0. Let us define

pmie) = Ewiey, Xq, ..., X0,
p2($15$2) = E{V(Sl?l,j?g’. e 7XT)] - ,01(371) - .01(932): RS

and
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r—1
p?“(mlal‘?u---vxf‘) = V($17$25"'7$r) - ZZPk(ﬂfil:xigw--;mik)-

E=1Cr i
Then we can show that
(6.1) Elpp(Xy, ., X)) | Xq,..., X1 =0 as.
and
r
) X n—k

5 st n =3 (0

Cr.r k=1
where

A= prl(Xiy,. ., Xay).
Cﬂ,k

Using the equation (6.1} and moment evaluations of martingales {Dharmadhikari
et al. (1968)), the upper bounds of the absolute moments of Ay are given by

(6.2) ElAglf < enl®®/2 (g>21<k<y).

It follows fromm Markov's inequality that if

(6.3) ERP =0n™ 1" forsome A>1 and vy >0,
we have
(6.4) P{|R| >n '(logn) '} =o0(n *).

It is trivial that en™'~" = 0,(n"1) for a constant ¢ and v > 0.
Using the above evaluations, we can easily prove the following lemma.

LemMA 3. IfE[p(Xi,...,X,)] =0and Elp(X1,...,X,)|*T® < oo fore > 0,
we have that

65 2Ty w(XL, X)) =0p(n Y,
Char

(6.6) T Ag = o0p(n )
k=3

(6.7) nT2AY = n T E[pH(X )+ 072 ) 200 (X (X)) + op(n ),

Cn,z
(6.8)  n7?AjAg = o (n 1)
and
(6.9) n~AL = o,(n7!).
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PROOF OF THEOREM 2.
[Approzimation of V&
It follows from the equations (2.2), (3.2) and (6.5) that

_ 20
VE = {1 - Z(Tn D + O(n_Q)} Vi=V;i-~ E G} (; 1}512 + o,(n71).

Thus we can easily obtain the equation {3.3}.
[Approzimation of V{]
To obtain the equation (3.4), it is sufficient to prove the following lemma.

LemMMa 4. If E|R{(X,,..., X,)|** < co for some ¢ > 0, we have

2 _ 1y2
(610) Z (Q1 = — %)_‘Sg + Op(n_l).

1<z<_j<n

Proor. For the sake of simplicity we will consider the case r — 2. For gen-

eral r, we can prove Lemma 4 similarly. Since } 7, U = nU, and
Dot i ) = (n — 1)UL, we have Q = 0. Further since Y7 L2 O =
nUy —UU),
> (@i @)
On,2
1 . . . .
= 3 S (- 2O — U + (= DAUP - U + (U — U
ity
+2(n— YUY — U )UP = Uy)
~3(n - 2)ULP UYL
—mnfnm—axvﬁﬂ—vmxmﬂ—v)}
n —2)2 P i nin — 1 n — p
_ { . ) Z(UT(LTJ) _ U,S, ))‘2 ( I Z U(-) _ Un)Q.
i3] i=1

From direct computations, we can show that

n

vovp=—t Dt R
;(Uﬁ) -U,)" = mD1 n(n —1)2 Dy + n(n - 1) Dy
16 8
TL(?’L - 1)2(71 — 2) Dy + n(n _ 1)2(?'?, — 2)D5
8(n — 1) 16

+

R IR Ch R e VT i T ERd
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where

n
D, = Zg%(‘Yi): D; = Z 91(Xi}g:1(X;),
i=1

Cn.2
Ds =Y {q1(X:) + g1(X;)}oa(Xs, X5),

Cn,2
Dy =Y {g1(X)ga(X;, Xx) + 91(X;5)92(Xi, Xi) + 91 (Xn)92(Xs, X;)},

Chn,3

Dy =" g3(Xi, X;),
Chrn

Ds =Y {92 X, X;)g2(Xi, Xi) + 92(Xi, X;)92( X, Xi)
On.ﬁ
+ g2(Xi, Xe)go( X5, X)) }
and
D7 = > " {ga{Xi, X3)92( X, Xe) + g2 (X, X ) g2 (X5, XKe)
Cn,4
+ g2(Xs, Xe)g2 (X, Xi) }-
Note that Y37, i D) gl is a value of Z?Zl(Ua,(f} — U,)? when X; is

deleted from the sample. Let v(z1,...,Zs) be a function which is symmetric in its
arguments. Then we have

2L (i)
EZCnilst(‘lev' sy Xj ) =1{n—s) Z 0. SR ¢35
=

Cﬂ,s
where }:gi _,, denotes a sum of all s combinations from n — 1 indices {1,...,i-
1,3+ 1,...,n}. Using this equation, we have
k3 T
Z Z (Uéi,j) — U,ff))z
i=1 j=1 i
4 8
= Dy — D,
n—2 ' - Dm-2) "
8 16 8
Dy — D D
e T o Dm -2 " oD -2)(n-3)
— 16(n — 4
N 8(n — 5} (n—4) D,

Dy — ; ;
DP9 ¢ (Dl 2P(n - 3
Comparing the coefficients, it follows from H-decomposition and (6.5) that

1
n+1

3(Qus ~ QY = 28 +oyln™).

Cn,z
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[Approzimation of V{3
Finally we will consider the unbiased estimator Vi#. Applying H-decompo-
sition to @3, it follows from {6.5) that

() B @ i=nom

k=3
We wiil obtain approximations of 47 and @3. From the definitions,

Elh{z,y, Xs,..., Xp)h(z, X1, ..., Xor1)]
= {g2(z,y) + 1 (2) + g1 (y) + OH{an () + 6},
Elle,y, X3, ..., X )M X3, Xop1,..., Xor_1}]
= El{ga(z, 4, X3) + 02(2, X3) + 02(y, X3) }2 (X)] + &}
+ 8Hga(r,y) + g1(x) + 91 (y) + 0}
and
Elh(z, X3, ..., Xy 1)P(Y, X3, X gn,. ., Xar 1))
= Ejga(z, X3)g2(y, X3) + {g2(2, X3) + g2y, X3} } a1 (X3)]
+g1(2)g1 () + o (@) + a (v) + 0} + €5

It follows from the above equations that
(2r = DE[G (z,y, X3,..., Xor—1)]
= (r ~ 2)E[gs(z,y, Xa)q1(X3)| + (r — 1) Elga{z, X3)g2{y, X3)]
+ (@2r = 3{E[{g2(r, X3) + g2(y, Xa) }g1 (X3)] + €3}
+ (r = Da(@)q1(y) +r8g2(z, ) + 2r — V{1 (z) + g1 () + 6}
+{g2(z,9) + q1(2) + 1(y) + OH{a () + a1 (¥)}-

We also have

(2r — 1}E[Gi (2, X2, Xa,y ..., Xop—p )]
= (2r — 2){Elga(z, X2)g1(X2)] + £1} + 2r0g1 () + (2r — 1)0% + ¢3(2).

Thus using H-decomposition and (6.6), we can show that

2r — 2
n2

D 520X X5) + op(n )

Crn,2

. 1<
6.11 = 2+92+_§:~ X;
( ) At 51 na71gl( )+

where

§1(z) = (2r - 2)E(ga(x, X2)91(X2)] + 2r0g1 () + {97 (x) — &1}
and
§2(JJ, y) = (T - Z)E[QS(;’U’ Y, X3)gl (X'S}] =+ (T o I)E{g2{l‘1 XB)Q?(ya X?)]
— El{g2(z, Xa) + go{y, X3)}g1 (X3}]
+ (r+ Da1(m)g1 () + {o (=) + ;m{y) + r8}g2(z,y).
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Next we will obtain an approximation of 62. Similariy as ;\1, we can get
6.12 P TS ek s X Y(Xi, X -1
(6.12) — 0 Y e (K)o ¥ 03X, X) + op(n)
=1 Chr,2
where
gi(z)=0g1(z) and gj(z,y) = ro:(@)q(y) + (r — 1)bga(z,y).

Combining (6.11) and (6.12), the approximation of &} is given by

o - g r(r—1)° -
T{ﬂ GJC_DﬁZQﬁ“L%yLﬁ+ﬁ+%m4)

T

Similarly we can show that

”(n) () (C2y)a =" eg gy o0,

r r—2
Combining the above evaluations, we have the desired approximation (3.5).

ProorF oF LEMMA 1. Using Tavlor expansion, we have

1 1 - r2§ 3 -~ r26\ >
V*l__i____ 1[72 rv v Vz -1
n & 23 ( nt T ) 8rogP ( n T v ) +op(n).

From (6.7), (6.8) and (6.9), we have an approximation of V.2 and so Lemma 1 (cf.
Maesono {1994}, Lemma 3).

Proor oF LEMMA 2. Combining Lemma 1 and Lemma 3, we can prove
the asymptotic representation of the studentized U-statistic (cf. Maesono (1994),
Theorem 3).

ProoF oF THEOREM 3. It follows from Lemma 2 that

P{vrV (U, —6) <z} = P{%U; — gfl < .L} +o(n™").

Applying the results of Lai and Wang (1993) to /nl/} /(r&;), we have

\/-ﬁ # "7 _ @ 3 TF }__ —1
P{EUW—\/EQ§$}—P{T€1Un<x+ 523 = Qn{z)+o(n" ).
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