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Abstract. In this paper we characterize the local structure of monotone and
regular divergences, which include f-divergences as a particular case, by giving
their Taylor expansion up to fourth order. We extend a previous result obtained
by Cencov, using the invariant properties of Amari’s e-connections.
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1. Intraduction

The necessity of measuring how different two populations are appears in many
statistical problems. A wide class of indices or divergences has been used with such
an objective (for a comprehensive exposition see Burbea (1983)). We are not able
to give an universal rule for the choice of a divergence in each practical case.
Anyway, we ean investigate the general properties that an index of discrepancy
should possess in order to describe a meaningful dissimilarity between populations.
For instance, suppose to assemble the individuals of two finite populations in
classes Ay,..., 4,,. Let D(P, P;) be a convenient function of the proportions P, —
(P(Ay),...,P{Ay)), i = 1,2, of individuals belonging to the different groups
in the two populations. We can now decide to join several classes, obtaining
B,...,B,l <m. P = {P,(B:),..., Bi(B)), it i1s natural to demand that
D(ﬁl,pg) < D{Py, P»), since the new classification brings less information than
the previous one.

Divergences salislying this property have already been studied Dby Cencov
(1972). He gives their Taylor expansion up to second order, by means of the
invariance of the Fisher metric. In this paper we extend Cencov’s result to fourth
order, using the invariance properties of the Amari «-connections and of a new
class of fourth order tensors. :

An additional property allows us to extend a divergence to the case when the
individuals are classified in an infinite number of groups. This property expresses
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434 J. M. CORCUERA AND F. GIUMMOLE

a sort of continuity of the divergence, when we let the number of classes tend to
infinity.

2. Some basic definitions

In this section, we introduce operators representing an index of discrepancy
between probability measures defined on the same measurable space.

In the sequel, we indicate with (X, @) a measurable space. Q, C @ is a finite
guba-field of & and P, ig the restriction of P, defined on (X, @), to ..

DEFINITION 2.1. A divergence D(P,Q} is a real-valued function whose ar-
guments are two probability measurcs defined on the same measurable space.

DErFINITION 2.2, Let (X1,Q;) and (X2, @2) be two measurable spaces. We
say that K : X1 X @y — [0,1] is a Markov kernel, K € Stoch{(X1, Q1), (X2, A2)},
if it satisfies the following properties:

1. VA3 € @9, K{-, As) is a measurable map;

2. V1 € X1, K(21,-) is a probability on (X2, (2}

If P is a probability measure on (X, @}, then K induces a probability mea-
sure on (X2, ds2), KP, defined by

1

Let D{-,-) be a divergence and (¥, @:) and (X2, @2) be two measurable
spaces.

DerniTioN 2.3, D(P, Q) is said to be monotone with respect to Markov
kernels if

(2.1) —o0 < D(KP,KQ) = D(P,Q) < | o0,

for every P, (Q probability measures on (X;,Q:), and for every K &
StOCh{(X1,CL1),(X2,a2)}.

As observed in the introduction, (2.1) is a natural property to require, since a
transformation through a Markov kernel will, in general, cause a loss of information
that is well explained by a decreasing of the divergence.

Monotonicity of a divergence function implies its invariance under a particular
class of Markov kernels. Let P be a family of probabilities on (X1, Q1).

DeFINITION 2.4. K € Stoch{(X1.@Q1), (X2,02)} is said to be Blackwell suffi-
cient { B-sufficient) with respect to P if there exists N € Stoch{(Xa, Q2), (X1, 1)}
such that N(KP) = P, VP € P. We say that K is B-sufficient if 7 is the family
of all probahility measures on (X1, G1).
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PROPOSITION 2.1. If D is a monotone divergence with respect to Murkov
kernels, then, for every B-sufficient K,

22) D(P,Q) = DIKP,KQ), VP.Q.

Proor.
D(P,Q) = DIN(KP), N(KQ)} < D(KP,KQ),
that, together with the monotonicity, gives (2.2}. O

This is also natural since a B-sufficient Markov kernel does not cause any loss
of information.

COROLLARY 2.1. The value of D(P, P) is independent of P and it is a min-
imum value of the function D:

D(Pvp):DOSD(Q:R)v VPrQaR

PROOF. Given a probability measure P, there always exists a Markov kernel
K, taking every probability measure to P: K(z,-) = P(-}, Vz € X. Then,

D(Q,R) > D(KQ,KR)=D(P,P), VQ,R,
proving that D(P, P) is a minimum value for . Now, for every probability
measure P!, K is B-sufficient with respect to the family P = {P, P'}, since
N(z,:) = P'(3), Yz € X, transforms P into P'. By (2.2},

D(P,P)=D{(P',P)=D, VPUP. O
DEFINITION 2.5. D(P,(Q) is said to be regular if

(23) D(PwQ) :hmD(Pa;Qa)a

for every P and @) probability measures on (X, @), where the limit is taken over
the filter of all finite subo-fields G, of @, that is, over any increasing sequeuce
{@n} such that a(lJ, Gr) = Q.

Remark. Since the restriction of a probability measure to a subo-field is a
particular case of Markov kernel, for monotone divergences the limit in (23)isa
supremum.

The regularity condition enables us to extend to the general case a divergence
originally defined on probability measures over finite o-fields.
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3. The multinomial case

Let (X, @) be a measurable space, with @, a finite subo-field of @ generated
by the m atoms Ay,...,A,,. Every probability measure £ on (X, ) induces a
probability measure on (X, @y, ), defined by m values, x1, ..., Zm,, with z; = P(A4;)
and Y7 | z; = 1. We shall consider only probability measures such that z; > 0

for all ¢ = 1,...,m. Thus, for every P we have a point on the simplex
me
Sm-1 = {a:& Rm:ZIizl,$i>0,i: 1,...,m}.
i=1
Sm—1 can be regarded as a surface in the dilferentiable manifold R™.
There is a tangent space T),, with base {X; = %,i = 1,...,m}, asso-
clated with every point z € R™. If z € S,, ;, the derivative of a function
h{zy,...,2m) along a curve x; = ¥;(t), ¢ = 1,...,m, tangent to S,, 1, takes

the form -, gbg(t)%. Since .0 ¢ {t) = 1, then >~ #i(t) = 0 and every
vector X tangent to the simplex S,,_1 can be represented as X = Y.~ a, X,
with 37" a; = 0. Let us denote by M, the tangent space to Sy, in z. It is easy
tosee that U, = X; — X,,,, 7 =1,...,m — 1, belong to M, and are independent.

We can thus take {U; = 3—2: - afm,z' =1,....,m — 1} as a base of M.., for every
z € Sm_t1.

For n > m, let By,..., By be a partition of X such that A, = {J,_; By,
i =1,...,m, where Iy,..., I, is a partition of {1,...,n}. For any prohahility

measure P on (X,Q), let z; = P{4;),i=1,...,m,and y; = P(B;),j=1,...,n
Thus,

(3.1) xi:ZyJ—, i=1,...,m.

7el;
Conversely, define

, v;/ze i jeL
gi; = P(B; | A) = { ’ e
0 if j&I.

Then,
T

(3.2) Y :Zqijxi, i=4L..,n
i=1

Notice that (g;;) is a stochastic matrix, that is: g;; > 0, Vi, and D °7_, gi; = 1, Vi.
Moreover, for every j, ¢-;q.; = 0 if r # s, and there is some ¢ such that ¢;; > 0.
Then, for every stochastic matrix with these properties, (3.2) defines a function
f : R™ — R™ which inverse is given by (3.1). The restriction of f to Sy,_1 is a
B-sufficient Markov kernel, with respect to the family of all probability measures
on (X, Q). In fact, it is easy to prove that any B-sufficient Markov kernel can be
written in the form (3.2). We call f a Markov embedding.
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'I'he Jacobian map associated with f, f* : 'L, — A}, is detined by
n
(3.3) f*Xi:quYj., i=1,...,m,
i=1

i Y B
w1th1”5,—-3yj,j—1,...,n.

3.1 Embedding invariant structures

In the present section we consider geometrical structures defined on simplexes,
that are invariant with respect to Markov embeddings. We characterize invariant
Riemannian metrics and affine connections, showing that, up to constant factors,
they coincide respectively with the Fisher metric and the Amari a-connections.
3.1.1 Embedding invariant divergences

From now on, we consider in S,,_; the system of local coordinates that with
each P on (X,Q) associates a vector £ = (Z1,...,2Zm—1), where z; = P{A;),
i=1,...,m, and > .o z; = 1. Every Markov embedding f : Sm—1 — Sp_; can
be expressed in local coordinates as

m—1

m—1
34)  y = (95— Gm)Ti + Gmj = > qritgmg,  J=1...,n-1
' =1

i=1

and the Jacobian map f* : M, — M, associated with f, as

n—1 n—1
(3.5) FUSY g —mi)Vs =GV i=1,...,m—1,
J=1 i=t

where {V; = % - dg ,j=1,...,n— 1} is the base of M, in S,_;.
i "

Let D be a divergence, P and () equivalent probability measures on (X, @),

P, and Q,, respectively the induced probabilities in (X, Q) and z and T the

corresponding expressions in local coordinates in S, ;. Thus,

@ (2,%) = D(Prny Q)

is the expression of D in local coordinates in Sy,—1, so that, as m changes, the

™
divergence D induces a whole family d of real valued functions defined on the
simplexes.

DerFINITION 3.1. D{P,Q) is said to be embedding invariant (e-invariant) if
it is invariant with respect to every Markov embedding f : 8,,_1 — S, _1, for each
m and n > m.

The e-invariance property of a divergence can be expressed in local coordinates
as

m kL] . .
(3.6) d (z,2) =d {y,3), VYr,T& Sm-1,
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where the components of ¥ and § are respectively related to those of z and Z by
(3.4). :

It is important to notice that, since every Markov embedding is B-sufficient,
by Proposition 2.1, every monotone divergence satisfies the preceding condition,
being thus e-invariant.

3.1.2  Invariant Riemannien metrics

Let {-,-) denote the family of scalar products (-, -}m(z) on the tangent space

M., z € Sp_1, for different values of m and z.

DEFINITION 3.2. {,-) is said to be e-invariant if
(3.7) U, N () = (U, [*UV(y), YUUE Mg, ¥z € Spme,
for every Markov embedding f : Sp,—1 — Sp-1 and for each m and n > m.

Let ?ij (x) = {U;,Uj)m(z) and 9., (y) = (V;, Vo) n(y) denote respectively the
components of the metric tensor in Sy, and in Sy,_;. If f is a Markov embedding
between S,,_; and S,_1, then (-, -}, (y) naturally induces a scalar product on its
m — I-dimensional submanifold f(Sp—1):

n - .
gi; (@) = {f*Ui, f Udaly), 4j5=1,...,m-1
We can then rewrite condition (3.7) as
n . 0
(3.8) TEU () =G:y (1), hLi=1...,m—-1
and, using (3.5), the preceding definition can be written equivalently as
n—1
m n —_ — . .
(39) gij (I) = Z Grs {y)qirq_?'m 1= 11 ceey M — L.
r.s=1
The following result was first given by Cencov (1972), anyway, we refer the
reader to Campbell (1986) for an easier proof. It essentially states the unieity of

the Fisher metric as an e-invariant Riemannian metric, see also Amari ((1985),
p. 31).

THEOREM 3.1. The only e-invariant Riemannian metrics are of the form

T L

(3.10) Zrlz-j () = (U, Ujim(z) = A (% + i) ,  Hi=1,...,m—1,

where A > 0 and b;; is the Kronecker deita.
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3.1.3 Invarwant affine connections

A characterization similar to that given for e-invariant metrics, can be ob-
tained for affine connections. .

Let V denote the family of affine connections V defined on S, for different
values of m.

Il f is a Markov embedding between Sy,.1 and §,_1, m < n, then $ induces
through f an affine connection on f(S,,—1), defined by

IS (?’hf ﬁ(x))  WreS,

where U, U are arbitrary smooth vector fields on S,,_;. Moreover, as a sub-
manifold of the Riemannian manifold S, _1, f{Sm_1} naturally inherits the affine
connection of Sy1:

n .
Vi Uy
n n
where V is the orthogonal projection of V on the tangent space to f(Sp, 1)
mDEF‘INITION 3.3. Vissaid to be e-invariant if the affine connection igduced

by V on f(S,,—1) through f coincides with that induced on f(Spm_1) by V, that

is,
a1y g (%’U ir(z)) Yy FU), VOO, Ve € Smi,

for every Markov embedding f : Sp—1 ~— Sn1 and for each m and n > m.

Remark. It is important to observe that condition (3.11} can be expressed
in the equivalent form

m n=l
(3.12) Tin (2) = Z Trse (1)GirTiole, i k=1...,m-1,

r.8,t=1

where T and I denote respectively the coeflicients of the affine connection in S, _;
and S,_,, with respect to the usual bases of M, and M,. In fact, let g be any
o-invariant metric, so that (3.8) is satisfied. We thus have, using the repeated
index convention,

n—1 n—1
fr (VU,, Uj) =T"f U= Ui GruVu= (Fijkr.gkhq_hu) Va
u=1 u=1

and
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- n—1 n n
Vf*Ul‘ f*Uj = Z FrswqiTst(Vw1 f*Uk)n gkhf*Uh
r,s=1

n—1
n

- - . _ ®mn ©
= Y Ues"Gris@hidhe Gu:9""Va

r,s,tu=1
i

n— n—1 n
= - — m
= ( E Urst Gir@is@reGhu gkh) Va,
1 \r,

s,t=1
that immediately give (3.12).

The following theorem gives a characterization for e-invariant affine connec-
tions, showing that they coincide, up to a constant factor, with the Amari o-
connections in the multinomial case {Amari (1985), p. 43).

THEOREM 3.2. The only e-invariant affine connections have coefficients of
the form

(3.13) s (z)=18B L Gk G k=1 m—1
. ijk :L_?n 1'32 y s Js IR 1

where B is a constant.
‘I'he proot is given in the Appendix.

Remark. {3.9) and (3.12) suggest an obvious way to extend the definition of
e-invariance to every array of order k such that

m n—1 n B
(3.14) Ty, () = Z Tryy e (D) Tivrss - Qi

iy Tk=1

It is readily seen that (3.10) with A € R and (3.13) provide respectively a charac-
terization for second and third order e-invariant arrays,

3.2  The local structure of D

To study the local behaviour of a divergence D, suppose it is stnooth, that is,
at any point of 5,, 1 it admits an expression in local coordinates that is differen-
tiable up to necessary order.
3.2.1 The geomelry of monotone divergences

Fixed m, every monotone divergence induces on S, 1 a collection of geometric
objects. We can express the condition of minimum irn the diagonal by:

Z!L (z,z) :Tcrilg,
(3.15) d; (z,x) =0
and
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m
(316) d;@‘j (CL’,.TJ) > 0,

for every = ¢ S,._1, where the semicolon indicates the argument with respect to

which the derivative is taken.
m

By (3.15) and (3.16), we have a second order covariant tensor, d,;;, associated

™m m
with d. When strictly positive definite, d,;; is a metric tensor. It is important to
notice that in fact it is a second order e-invariant array, since, by derivating twice

(3.6),

dij {z,z Z (Y, ¥)Wir Gys

forevery i,7=1,...,m— 1.

Tm
d also generates an affine connection with coefficients

m

ki3
Lijk (2) = = diij (z, 7).

In fact, it is an e-invariant affine connection, since

n—1
dk g (33 $ Z dt s y TJ)Q'ijsq}ct:
r,s,t=1
forevery i,7,k =1,...,m—1. Actually, it is easily seen that the partial derivatives

of any order of an e-invariant divergence, satisfy {3.14). They could be called an e-
invariant string (Bleesild (1991}). This observation, together with the results of the
previous section, allows us to characterize the Taylor expansion of any monotone
divergence in the simplex.

THEOREM 3.3. For each P and Q in {X,Q) and any monotone diﬁergence
D(P,Q), we have the expansion

D(Prn, Qu) = Do + nlz QU PN |y 5= [Q(4) = P(A)I"

P(A) Lo PA?
" [Q(A) — P(A)} " 1Q(A) - P(AN2Y
MR P v (Z P4} )

+0(|Qm — Pal|*),

where P,, and Q,, are the induced probabilities on (X, Q) and Dy, Dy, Da, Ds,
Dy are constants, Dy > 0.

Proor. Letz = (ml, ey Tm—1) and & = (&1,...,%m-1) be such that z; =
P(A), T, =Q(A),i=1,...,m, Y " ;= > v & = 1. Then, writing d(z,Z) =
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D{P,,Qy) and (T—x)5 = (Z;, — Ti,)  +* (Ts, — T, ), With I = (41,...,4), we have

m—1

1 m--1
d(z, &) = d(z,2) + 3 d(z,7)(F — )i + 5 N dila, ) (E - x)y
i=1 i,j=1
1 m—1 1 m-—1
+ 6 Z dyg (@, 2HE - @)y | 24 Z dari(z, T)(E )ik
Lik=1 ik, 0=1
+o(|z - =]%).

By the monotonicity of D, (3.10) and (3.13), we obtain

BTy dy@a)E-a)y

ij=1
mr—1 -
bi4 1
— A A P
ij=1 (mi i xm) &= 2y
m-1 (-
(& - o)} (Z — )i
= A C
il 7’1.7=1
m—1 a2 2 _ 2
_A( (F-a)f @ x>m)_AZ(m o)
i=1 i Tm i=1 i
since {& — &)y = — Z:‘l}l(f — )i, and
m—1
(3.18) 7 duje(z, ) (E - 2)ij
ig.k=1
m 1 m -~
L b\ - (& — =)}
-8 3 (G- )E-on B S
b k=1 2T i i=1 v

As regards the fourth order term, it can be shown that any fourth order e-invariant
array in S,,_; has the form

1 b; 1 &5 1 b, 1 0;
el ) 2)- (5 2) ()
Ly o Tm Xy Tm Zj Tm Tk
1 & 1 LYY
() Y]
Ty Tk Tin Iy
I i
%D(FﬁL ;3? )

m

(see the Appendix for the proof). Thus,

m—1

(3.19) > dyjn(z,3)(E - 2)iju

i3 0 I=1
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) m—1 1 5 m-—1
=3C Z (a'{‘ I ) jk: Z ( ) 'T‘-x)'tl
qk=1 7 id=1
" (@~ 2)f
+ D; =

=30(i—(i#$?) +DZ($

i=1 i=1
and the proposition follows by (3.17), (3.18) and (3.19). O
4. The general case

In the preceding section, we obtained a local expression for monotone diver-
gences defined on multinomial distributions. Using the regularity condition, we
are able to extend this expansion to the general case. We need the following result:

THEOREM 4.1. Let f: Ry — Ry be a convex function. For any P and Q,
equivalent probability measures on (X, 4}, there exists a non negative integral

fo1 (Gw) Pz =1m S (B P,

where the limit is taken over the filter of all finite subo-fields ., of Q.
ProoF. Since

Z,::f (%D PAs) = /xf (ﬁz (m)) P.{dr),

the thesis can be written in the form

hm/ ( )P (dz )—/ (Zg( )) P(dz).

It is sufficient to prove it for any increasing sequence {Q,} of finite subo-field of
a. such that o({J,, @.) = Q. Since f-divergences are monotone, see Heyer {(1982),
Theorem 22.9, p. 169), and by the remark following Definition 2.5, we obtain:

hmf (dQ" )Pn(d:c) < /Xf(%(w)) P(dx).

We show now that the reverse inequality also holds. Since

i % @) Pldz) =1 < oo,
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we can apply a well known theorem of convergence of martingales, thus obtaining

dQ, . {dQ dQ _ dQ
dF, E(dP a”) £ (dP a) TP

Since f is a continuous function, the convergence still holds:

an a.s. dQ
()= ()
By the Fatou lemma,

/Xf(dQ( )) (d) <l1mf (Zgﬂ )P(daz)
vhm/ (dQ“ )P(da:),

Remark. The preceding theorem can be easily extended to the case of f
being any linear combination of non negative convex functions.

and the thesis is proved. O

We can now prove the main result of the present section:

THEOREM 4.2. If

f Q{dx) — P(dx)
X P(dzx)

thern, at each point P, any monotone and regular divergence D(P,(}), admits the
ETPATLSLON.

4

P(dz) < oo

(4.1) D(PaQ)*DO"r‘Dl/X [Q(dx) P(dz)]? +D2/X [@(dz) P(dxz))?

P(dr} P{dz)?
[Q(dz) — P(dx)]* [ca(d:.c) P(dz)2\’
s Py + D (f P(d) )

where |Q — P||* = jk%ﬁ and Dy, Dy, Dy, Dy, Dy are constants,
D, > 0.

Proor. By Theorem 3.3, it holds:

413
D(Fp,Qa) = Do+ D1 Z )(AS(A)] +U22 Q(A)(AV(A)]

2
5> @4, > - P(A W, D, (Z Q(4) —P(A»P)

P(4;)

2

+ O(ilQa - Pa|* ),
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for every F, and (J,, restrictions of 7 and ¢ to the finite dimensional subg-field
(i, of &. We can now pass to the limit. The terms with coefficients Dy and Dy
can be obtained by applying Theorem 4.1 with f(z) = (z — 1)2. The same holds
for the term with coefficient D3, with f(z) = (x —1)*. For the third order term we
can use the remark following Theorem 4.1, since f(z) = (z — 1)* can be written
as the difference of two non negative convex functions:

f(z) = fi{z) - fa(2),

where
and

The regularity of D guarantees the result. O

4.1 The parametric case

Suppose now that P and @ belong to some regular parametric model, that
is, P and @ are equivalent probability measures with densities p(x; 8) and p(=z; '),
9,0 € © c R*, with respect to some common dominating measure gt By Theorem
4.2, we have that any monctone and regular divergence between P and ) can be
expanded as:

(4.2} D(P,Q)=D{0,0)

= Do+ Dy [ (HEZLEED Y paouias)

Pl 8) —p(z;:0)\°
NG~ = FEE

pla;8) — pla;8)\"
+ Dy /( o )p(w,e»m(dx)

2
p(x:0) — p@ 0\ e
+D, U( D KD e o) )] +o(le" - o).

Mareaver, writing {(#" — 8), = (8], — 8;,)--- (8] — ;) and 8y, = a7 [0, - -, ,
with I, = {iy,...,4,), and using the repeated index convention, we have

I3 4 1 £ I3
pla;0) = pla; 0) + Oup(z; 10" — 0)i + S 0ip(m;0)(9" — 0)s

4 Z0un(m: )8 — Ok + o9 — 0,
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s0 that:
(p(z; ') — plx; 9))2
plz;0)
_ (opla;8) ;aup(w 8) 10yl o\
= (U @ -0 0t G - 0
+o(l6' — 6]
= Bil8;1(0 ~ 8Yi; + Bl (8is1 + 8,18, 1) (0 — 0)iji
1
+ (%tijklahl + Zé‘ijl@khl + gaijlaklahl + %Bilajlaklahl) (3’ - Q)ijkh
+o(l6" — 8]*),
(p(x; ') — plx; 5))3
p{z; 0)
8ip(x; 0) 1 8;;p(;6) )3
_ MiEA Y BI . . SO S Bn’ _ 9 . /o 4
(2250 - o)+ B ), )+ o0 61
= Bilajlakl(f?’ — B)ijk + % (Bijlaklc‘ﬂhl + 3¢lajlﬁk£8hl) (9' — a)ijkh
+o(]0' - 9|1
and
p(z;0) —p(z: )\ . . f o,y r o4
( D) = Gl0,105LOR0" — 0)ijkn + o(|0' — O|1).

By substituting in (4.2) and writing vy, .. 1,.(0) = Ep(O1,1- - 84,1), for some mul-
tiindices I1,...,I., we obtain

D(G, 9’) = Do+ Dll/i1j(9)(9" — B)ij + [Dll/ij’k(g) + (D1 + Dg)l/@’j,k(f?)](a" — a)ijk
D D 3
+ [m?,—lek,h(ﬁ) + —f!/e'j,kh(ﬁ) + é(Dl + D2} ,n(0)

i 3
+ (ﬁfh + EDQ + Da) visaen(0) + Davi j (9)%,&(9)] (0 — 0)ijkn
+o(l6 — oY)

= Do + Dy [gz-j(f’)(ﬂ' ~ 8)ij+ Tiji (010"~ H)ijk}
D Dy
+ [ 31 Viikn(0) + 3 Vis kh{8) + = (Dl + Da)vij k.n(0)

7 3 ,
+ (121)1 + 5Dz + D3) vi ka0 + D4gz’j(3)gkh(9}] (6" — 0)ijin

+o(|" - 61%),
where @ = M, 9i;(#) and FUk (8) are respectively the Fisher metric and

Amari’s a-connections of the parametric model, see Amari ((1985), pp. 26 and 39).
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4.2 Concluding remarks

Monotonicity and regularity are the properties that every measure of dis-
crepancy between probabilities should possess. In this sense, we believe that all
meaningful inference procedures should be deduced from some monotone and reg-
ular divergence. The characterization given here can thus be useful for studying
the properties of such procedures.

It is also interesting to point out that the contrast functions used by Eguchi
(1992) are measures of discrepancy between probabilities belonging to a certain
family. Then, since the result. of applying a Markov kernel is, in general, a proba-
bility out of the family, the requirement of monotonicity becomes meaningless.

5. Appendix

ProOF OF THEOREM 3.2. In order to prove the theorem, we show that the
linear space generated by all the e-invariant affine connections on the siiplexes,
has dimension one. (3.13) then follows from the fact that a third order e-invariant
array can be obtained by derivating a second order array of the form (3.10).

First of all, we show that the Christotiel symbols of an e-invariant affine con-
nection, calculated in the center of the simplex Sy, _1, depend only on a constant.
Consider the case of m = n and let f be the Markov embedding that interchanges
two of the first m — 1 coordinates. Then, f{z) = x for x = (1/m,...,1/m). By

T
(3.12), we can easily see that ' calculated in z is completely symmetric and:

ki)

m ™
Tii= Fry,  Tie=Grn, Tie= Hp,

where different indices are suppose to take different values. If f interchanges some
coordinate x; and z,,, we have that, in the center z,

Lj35=10,
and
me m m T e
Tije=— Dije + Tigg = Vs + Vi
Lhat is,
F,.=0 and G, =H,.
Thus, for z — (1/m,...,1/m), we can write

m 0 i=j=k
T.. —
iak (7) { G,y utherwise,
m.
and the value of T in the center of S,,_; depends only cn a constant.
Notice now that the value of G,, for a fixed m > 3, determines G,, for each

n # m. In fact, let n = hm, with & an integer bigger than one and consider
the Markov embedding defined by fa(z) = (z1/h. ... 21 /R - Zm/he. o, Zm B},
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each component being repeated h times. Thus f, maps z = (1/m,...,1/m) to
y={(l/n,...,1/n) and

l/h a& i
(5.1) fia=1q —1/h  a€Ry\{n}

0 otherwise,

where R; = {{(i — 1)h +1,...,¢h}, i = 1,...,m. By (3.12), we have that

n-1 n—1 n—1

m n n n

F'ijk::Faaa E Qianana +3 Laap __>_ ‘jiana.q_k:b‘l‘ 1—‘aibc E qia‘jjbqk.c,
a=1 ab—1 ab,e=1

where i # j, b ¢ {i,7} and a # b, ¢ & {a,b}. Thus,

n-1 n—1
_ o 1
G =G |3 GaBalis+ Y, Galpdee | = Gnrg
a,b=1 ab,c=1
me
Now, it is easy to see that the value of I';;z at any z = (r1/n,....rm /1), with

S, ri = n and all r; positive integers, is determined by G, through (3.12). In
fact, the Markov embedding defined by

(i i B
B = 0 otherwise,

where Ry = {m +---4+r1+1,...,7m +- -+ nr}, ¢ =1,...,m, maps z to
y={1/n,...,1/n). Finally, every point in S,,_; can be approximated arbitrarily

m
well by an z of the form (ry/n, ..., rn/n) and, since the L';;3’s are C* tunctions,
we obtain the result. O

Following the same steps as in the third order case, we can obtain the char-
acterization of any e-invariant array of fourth order.

THEOREM 5.1. The only e-invariant fourth order arrays have components
of the form

m 1 é; 1 é; 1 &, 1 é;
T iy I $j L : .’Ej i Iy
1 6 1 &
Tn T Tm Z;
+D (——1 + ___6-;;,-:;;1) :

CE

Lk I=1,....m—1, where C and D are constants.
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PRrRoOF. By definition (3.14), any e-invariant array of fourth order, Tk,
should verify
m n _ _ _ _
Tijer {2} = Z T aved (V) Tialsbdhedia-
a,b,c,d
Then, if we taken =m > 3, x = (1/m,...,1/m) and the Markov embedding that

permutes the first m — 1 coordinates, the previous condition implies that T. x,
is completely symmetric and that:
ki3 m m m

™m
Tiii= Fny  Tig=Gm, Tuj=Hpm, Tup=In, Tiju=Jm.

where ¢, j, k, [ are all different. Now, if we take a Markov embedding that
interchanges some coordinate xz; and z,,, we obtain the relationships:

m " m T m m
Tjjjj—rnn 4 TUJJ +6 T“JJ 4 T‘m:f + T

ki

mo
Tiig= — Tz + Tigii

and
e e m m b
Tijhet= — Tyt +3 Tigrt —3 Tyt + Tiisin
that is,
Fm = 8Gy — 6H,p,
F,=2G,
and
2Jm + 3G, —
I, =

3

So, the value of T in the center of the simplex 5, _{ is determined by two constants.

m n
The value of T in the center of S,,_1 determines the value of T in the center
of 8,1, for any integer n > 1. In fact, if we consider the Markov embedding (5.1),

we ohtain

n—1 n—1 n—1
m n
Tii= Taaaa ‘?:La | 4Taaab Z qtaqm ! 3F¢1abb Z qm%b
a=1 a.b=1 a,b=1
n n-—1 n n—1
o -. o
+ 6 T'aabe Z GiaQivGict Labed Z Yialibdicid,
a,be=1 a,b,c,d=1
and
m n n-l
Ttgkl* aaaa Z q:,aq;ua.q.‘caq.ia +4 Taa.ab Z %,aQ'jan&q{b
a,b=1
n n—1 n n—1
+3Taath Y, TaBra@in@io +6 Toabe D GiaGjadiblic
k=1 b e=1
n—1

T
+ Tabed Y, GraldipGreid-

@by d=1
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where different indices never take the same value. Thus,

2h —1 8h—1)—6{h—1)(2h - 1)

2(;wa:: 2C;n‘*7;1f‘ *'(:n h4
4(h — 1)(2h - 3) (h— (k-2
— (Gn +2J,) v 120,
4h — 2 4h — 4
=Gn B3 JIn B3
and
ho1 ., 8(h-1) (h— 1)(h —2)
T = EGnT - GHT + 3Gn7h4—r———f
(h—6)(h—1) . 3h2 —26h+ 24
=~ 2(Gn + 2J,) W + Jn i
h—1 h—2
=Gn R In h3

and we can obtain ,, and J, from &,, and J,,.

Finally, as in the third order case, the value in the center of the simplex
determines the value everywhere. So, the linear space of e-invariant fourth order
arrays has dimension two and since

() (e ) (Lot (L)
Tm T Tm x; Tn Ty Tm Ik
N (i i %) (L 4 5_J>
T Tk T T;

1 ikt
(x—s * ?)
m 12

are e-invariant, we obtain the result. O

and
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