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Abstract. Classification between two populations dealing with both contin-
uous and binary variables is handled by splitting the problem into different
locations. Given the location specified by the values of the binary variables,
discrimination is performed using the continuous variables. The location proba-
hility model with hamaseedastiec across lacation conditional dispersion matrices
is adopted for this problem. In this paper, we consider presence of continuous
covariates with heterogeneous location conditional dispersion matrices. The
continuous covariates have equal location specific mean in both populations.
Conditional homoscedasticity fails when strong interaction between the con-
tinuous and binary variables is present. A plug-in covariance adjusted rule is
constructed and its asymptotic distribution is derived. An asymptotic expan-
sion for the overall error rate is given. The result is extended to include binary
covariates.

Key words and phrases:  Location linear discriminant function, covariance ad-
justment, heteroscedastic conditional dispersion matrices, overall expected er-
ror rate,

1. Introduction

A vast amount of substantive statistical research centers on prediction. A
prediction rule given by a [unclion of explanalory variables affecting a response is
to be formulated. For a categorical response, the issue becomes identification of
category membership often discussed in discriminant analysis or pattern recogni-
tion.

The traditional approach imposes normality on the explanatory variables with
homogeneous across category dispersion matrices. Such assumptions oversimplify
the problem. In many situations, both mixed discrete and continuous explanatory
variables and heterogeneous across category dispersion matrices are encountered.
Furthermore, a subset of the variables may not possess discriminatory power for
group membership because their true means within a given category are identical
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in the given populations. These variables called covariates in Cochran and Bliss
(1948} can play a substantial role in classification.
In this paper, we consider assigning an object to one of two groups, say II;

and II; based on an observed random vector measurement v’ = (z',3') where
z' = (z1,%a,...,%p) is a row vector of b binary variables and ' = (yt!)", 2"},
y = (1, ), D" = (g1, - Up14) is A row vector of p 4 g continnons

variables divided into two parts of p and q variables respectively. The first p
continuous variables are the discriminators for simplicity. The last ¢ variables are
the covariates in the sense that given the observed values a, E(Y(z) | 2,11;) —
E(Y® | 2,T1,) is a known function of z. In Section 2, a classification model
similar to Krzanowski {1975} is formulated. A plug-in rule is constructed using
training data from Iy and II;. Asymptotic expansions of the distribution of the
studentized rule under both II; and Iz are derived. In addition, an asymptotic.
expansion of the overall expected error rate is given. The overall expected error
rate offers to answer whether regularization as suggested in Friedman (1989) be
used in practice. In Section 5, we consider inclusion of binary covariates. To fix
ideas, we first consider the case where the covariates consist of continuous variables
only.

2. The classification rule

A gystematic approach to classification consisting of mixed binary and con-
tinuous variables is based on the location model of Olkin and Tate (1961) adopted
for classification in Krzanowski (1975). The b binary variables are expressed by a
multinomial variable having r = 2% locations, each location being represented by
an incidence vector Z' — {Zy,...,2Z,) with observed value 2’ — (21,...,2,). Each
Z,, assumes either the value 0 or 1 and only one nonzero value is allowed in each
location. Specifically, let Z | II; ~ Multinomial (1;p14,...,pr) with probability
function f(z | pi) = [Te1 Povis Bi = (P> P2is - -5 Pri),

T ™
0 < pmi = F{Zm | IL) < 1, Z & — 1, Z P — 1, and
m=1 m=1
YI|IL, Zn=1 2Z;=0,
_ P [Hmi| somy
m#Fk=1,..., 1~ Ny ) ,  where
q [ Am
BV |0, Zy = 1,2, =0m#Ak=1,...,7r) = fim,,
E(Y® U, Z =1, Ze =0m#k=1,...,7) = A,

p o q
nD 57
s b
km =1, ,rand i = 1,2 Given Z,, = 1, m = 1,...,r, replace ¥ by
Y — {0/, Al,) where / is a row vector of p zeros, we can assume that A, is a
column vector of g zeros. When the parameters are known, given 7, = 1, the
Bayes rule under specific priors for II; and I, assigns U to II; if and only if I7,,, > ¢

Ay being known. T js positive definite and partitioned as Z [
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where ¢ € (—o0, +00) and
1
Um = Y(l) - ,BmY( - “{Hml + Jum2) Z] 2) (Ju'ml - Jqu) - log(pm2/pm1)

with £ = 5™ plmnim 7yl ang g, = 238 he value of ¢ de-
pends on the costs due to misclassification and the priors. In Krzanowski (1975),
U =@ = ... = %) js assumed. In the absence of continuous covariates un-
der heterogeneous across location conditional dispersion matrices, Chang and Afif
(1974) derived the rule for b = 1(r = 2). Balakrishnan ef al. (1986) obtained the
probabilitics of misclassification associated with Uy, m = 1,...,r for p = 1 and
b = 1 under the same assumptions. In practice, heterogeneity of across location
conditional dispersion matrices often prevails. To implement the procedure, a fea-
sible rule, say U, rather than .., m = 1,...,7 based on two independent training
sets from II; and II; should be constructed. Amongst the existing approaches, the
plug-in rule using unbiased estimates for the parameters in Up,, m = 1,...,7 is
preferred due to its simplicity. Specifically, suppose that large independent samples
of size n, and ny from II; and [, respectively are available with n,,; observations

from II; in location m,i = 1,2, m=1,...,r. Given Z,, =1, m =1,....r, let
ﬁmz‘:nm«;/nv‘, t=1,2,
Vi (Y,S;?,‘,Y,Eil) J=1 i, =12,
= (h) (h _ L
Yy — ZYmJ{, h=1,2 i=1,2,

VA (Y(” Y”)), i=1,2.

me !

g
Let $2, 72 Yt = Vond) (Vi = T = [ﬁm 5] and n(m) = n +
nme — 2. Given Z,, = 1, unbiased catimates for Bm, L™ and Eg 2) arc given
respectively by
6m — S('”)s(m) 1’
2 N
B = (n(m)) . ZZ mii — _mz Y (Yingi — )_/mi)’y and
i=1 j=1

= (n(m) — g)" (I — S{Msm ™ glmhy,

Unbiased covariates adjusted estimate of pr; 18 flrm; = ?ﬁ,} —3myﬁ), =1,...,m

1 =1,2. The plug-in rule of /..., say Um is formed by substituting above estimators
inlU, form=1,...,r.
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3. Distribution of the studentized classification rule

In this sectlon we derive an asymptotic expansion of the distribution of
Am (Um +(~ ) e + log(Pma/Pmi)} under II;, with A = (ftm1 — fima)’ E%)
(ftm1 — fima), & = l 2;m=1,...,r. The derivation reheb on the following lemmas.

Their proofs are given in the appendix.

LEMMA 1. Suppose that the following conditions hold:

P P
AssuMPTION 1. 2=z — ko >0, m=1,...,r where —— denotes
Tml ny,np—oc .M 00

convergence in probability.

P
ASSUMPTION 2. b — k>0, s,m=1,...,r.

Mml ny,ng—on

Let n=>3"" _ n(m). Then
(i) n(,;n) i’ 1+kn, kL,z20m=1,...,r,

(ii) Tty oo 22 = & > 0,
(iii) Let ap, — [(n(m) — ¢ — 1)/(n{m) — D]/? and by, = q/(n(m) q 1),

P P
then 6, - landb, — Oform=1,.. ., r.
Ny —00 Ny, — 00

LEMMA 2. LetY be a random vector such that (Y, Z) has a joint probability
distribution in each of the r locations specified by the values of Z' = (Z,,...,2Z.).
Suppose that under Z,, = 1 the expectation of ¥ denoted by FE, . (Y) exists and
is finite for m = 1,...,r. Let Eo,, (-} and Er,{-) denote the operation of taking
conditional expectation for given n,,1 and n,a and taking expectation with respect
to the joint distribution of n., and nma both under Z,, = 1, then En(Y) =
Elm(EQm{Y))a m=1...r

LEMMA 3. If F“ml — 0, Hml — Hm2 = 6??’11 6;]@ = (Amuoa"'ao)x 0 < A'm =

(ot — ) B3 (s = )2 and S0 = Iy, a (p+q) x (p+ q) identity
matriz, then undefr the same assumption on (Y, Z) and Z,, = 1, for given ngy,,
and e, m=1,...,r,
(i) EQm(ﬂml) - 01

(11) EQm(I-}ml - ﬂm?) - 6nu
(111) EQm(ﬁAm)Az 0,
( V) EQm(Bm,B;n) = mepa

(v) Eam(33)) — 1,

(vi) Eam(ftmifig) = nr:zll(l + b ) Iy,

(vil) Eam({fim1 — fmz — Om)(fim1 — fimz — 6m)’) = (“’ 1 nmz)(l + by ) I,
(Vm) E2m((!lm1 - J‘:Lm2 - 6mJnUJ;n1) = n;zll(l + bm)Ipv

(ix) E‘zm( B (£1 — 1)) = (n(m)) " (p + L)AL,

() Famn (8,05 — ,)8)%) = 2n(m))"IAL,,
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(x1) Eom (8, (BB —bmdp)bm)?) = 2dm 7, with dm = q|(n{m) ~1)(n{m) —
Q) 1(n(m) — g — D)7 Hn(m) — g — 3)71 + (n(m) — 2)72(n{m) — 4)7'| where the
relevant quantities are defined in Sections 2 and 3.

THEOREM 3.1. With the same assumptions in Lemma 1, for any ¢ €
(—o0, +00), given Z,, =1, form=1,...,r and n=ny +ny — 2r,

(31) Pr {Ar_nl (ﬁm — ‘é;ﬂl + log(ﬁmg/ﬁmi)) <e | Hl}
= ®(c) + 0 G(c)Pime + O(n?),

wWhere Yime = (1 + k;‘n)[(f’A‘—;)(l +ky)—(p+ 3% - % + %)C - %], and

. . A2
(3.2) Pr {Aml (Um + MQ’E + log(ﬁmz/ﬁml)) <e| I'Iz}

= &(c) — n~Lp(clame + O(n~2),

where Yome = (L+ kR (B2 1+ =)+ o+ -+ mo)c+ 21 with ®(-) and ¢()
being the cumulative distribution function and the probability density for N{0,1)

respectively.

PrOOF OF THEOREM 3.1. Given Z,, =1, m = 1,...,7 invariance consider-
ation in Memon and Okamoto (1970} is applied to sach Uy, to simplify the distri-
bution of U,,. Without loss of generality, we assume that g, = 0, tima = —6m,
& = (Am,0,...,0) and B0 = [, . om =1,...,7. Let Trn, Wi, Hy, and V,, be
defined by

.aml - [‘*m? = b, + (n(m))_l/QTm’
fim1 = (n(m))‘”QWm,
B, = b, + (n{m)) V2 H,,,
i)g’;) —Ip+ (n{m)) "2V,
By Lemma 3, Bz (L) = 0, By (W) = 0, Eop (Hy) = 0 and Egppn, (Vi) = 0.

Given Z,, = 1, m = 1,...,r and ¢ € {00, toc}, by conditional normality of

ﬁm + 1og(fmo/Pm1), and Lemma 2,

(3'3) Pr {ﬁ;ll (gm - "j:\:;m + IOg(ﬁmQ/}aml)) <c ‘ Hl}
= Em((P(Gm)) = El”m(EQTn((I)(Gm))):

where F,,(-) is the expectation with respect to the joint distribution of pmy, Prma,
fim1s fim2; B, and B under 113,

~ N -1
(34)  Cn- Bt (fims ~ i) EY (frons — i)
N m N R ~(my—1 P - -1, N
[(fm NmZ)’S(l.rQL) (Ip | ﬁmﬁnfn)ggg) (Bmi fimz)]

12’
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and ®(-) denotes the standard normal cumulative distribution function.

~ -1 - -2 N
Expanding ngg) and EST’;) and re-expressing fim1, flm2 and Gy, for fixed
large n,..1 and n,,2, we abtain

(3.5) Gm = amc+ (n(m)}_l/QLm + (n(m))*lQm 4 T,
with
a 6! Vinbm ca2 8 Hpmbim
3.6) Lm=—— |4 T e
(3.6) Lm Am { + 2A,. oA, , and
(3.7) Qm= [ oW — 6, Via Wi, +K(5’ V28 + T T — 260, Vi Tin)
__°¢ ’ st 2
S (28T = B Vinb) }
+ A [2 As 0,2 (T Ty — 467, Vi T, + 3680, Vi 6 }
+ 260 Hp Ty — 38 (HVin + Vi Hp Yo }
3a® [ o, 8 Hpmbém ) *
a3 =, 7 ‘5, Hmém
_ Gm T 8 Vb)) +
Al [am (8,,1 87, Vinbm ) + 5 ]
8§ Wi ! Ty~ 8 Vinbm) |
[ Vi + 7 2A (26, T, Vi )}
where ry,, is a remainder term such that Ein,(Eom(rim)) = O(r™2). From

Anderson {((1973}, p. 968), we have

(3.8)  Eim(Eam(2{Gm)))
— F1{®(ame))

+ By ($ame){ (2m) 7 Ear (L)
+ () ™ Bz (Qm) - (a"‘c) By (L7, )] })
+0{(n™%),

where ¢(-) denotes the probability density for the standard normal distribution.
Using Lemma 1 and Lemma 3, it can be shown that

(3.9) By (®(amc)) = B(c) — i’%@cq(i SED+0(M ) and
(310) By (#lom){(n(m)) /2 Eapn (L)
+ (am) " [Bam(@m) = (5°) Bam(22)] })
= o+ k) [(5 ) 0tk (01 = 5) e G

+ O(n‘Q).
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Now (3.1} follows by adding (3.9), (3.10) and a remainder term of order O(n"*).
Notice that interchanging my and ma in ﬁm changes Um to uffm. Hence (3.2)
follows by subtracting from one the result of substituting —c for ¢ and kit for ky,
in the expression after the equality sign in (3.1).

Remark 1. Wheng=0h=00r =1Lk =0,k=k>0, A1 =A>0and
p11 = pr2 = 1, (3.1) and (3.2) reduce respectively to (29) and (30} in Anderson
((1973), pp. 969-970).

Remark 2. Results in Memon and Okamoto (1970) and Kanazawa and
Fujikoshi (1977) can be derived by setting b = 0{r = 1}, ki = 0, ks = k > 0,
A=A >0and pj; =p2 = 1, in (3.1) and (3.2).

Remark 3. Studentization avoids limitations in Vlachonikolis (1985) when
A,, is unknown and the threshold ¢ is nonzero.

4  Prohabilities of misclassification

In this section, we study the expected error rates. For our plug-in rule, given
Zm — 1, the probabilitics of misclassification between IT; and Il in location m are

eim(t) = Pr{(=1)iU > (-1)it | IL}, m =1,...,r; 4 = 1,2 and ¢ € (—00,+00)
with asymptotic expansions given below.

THEOREM 4.1. Under the same assumptions stated in Lemma 1, given Z,,, =
1,t€ (—oo,+00), m=1,...,r

(4.1) e1m(t) = ®(Mume) + 07 @Mme) (@1me + Ttme + Vime) + O(n~™%), and
(4.2) eam(t) = B(Name) + 1 L (Mame ) (Qome + Tomt + Yoms) + O(n_g), where

A2
Mt = A [t + log(Pma/Pm1) — _21@] '

Az
ot = =5 1+ 08 fpnt) + 52

(1 + k)(l - pll’bl) {% o A;’LQ

[t + log(me/pml)J}

Cimt = APt 4 2
O+ k;)ﬂ(; - Pm2) { % N Aé?f it + 1og(pmz/pm1)1} :
oy, = (L k/;:;;_ Pm2) {% + %5»_2[:: + log(pmz/pm)}}
e +2)ﬂ(;mlpm1) {i _ %”’i[t + log(sz/Pm)]} :

A2
—q(1+ k) [t + log(pma/pm1) — —2"1]

T -
1mt 2Am )
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AE
g(l+ k) [t + log(pma/Pm1) + =2

. 2
Imt — 2Am 3
(p—1DAR{1+k;,)  (p—1) e
Yimt = 1 + A, {301+ k)Pml {1+ I)Pma
— [t + log(pmz/pm1)]
{p- DA +k,)  (p—3) e
At @ D+
A2
[t + log(me/pml) - 2?7 :l
B 2A,,
1 _
+ AL+ 10g(Pma /Pm) (1 + & Dy — (L+ )pp)]
+ A [t + log(me/pminz
O R 4 (1 kT )p;32+2( AL
— DAL+ k5, _
S Jp SE S < B G A S o
4 4A,,
+ [t + }-Og(me/pml)]
3{p— 1)1+ k& -3 — —1y —
{ ( 233(m m) (};A%)[(Hk)pmﬁ(wk P }
AQ
[t + 108 (Pm2/Pm1} + T’“
* 2A,, '
1 _ _ _
A0+ Rk + 0+ R
+ ALt + 108 (Pma /D)L + & s — (1 + Bph
+ A;:l[t + lOg(pm2/pml)]2
kI A+ L +HE Dpnh + 200+ kX )Aﬁ]}.
Proor. Ouly e,,(¢), m — 1,...,7 is derived. {4.2) is obtained by substi

tuting —t for ¢ in {4.1) and interchanging the subscripts n,,; and n,,; and n; and

No 0 Qimey Time, 04 Y. With &, T, Wi, Hppand Vi, m =1, ..

earlier, given Z,, == 1, by Lemma 2,
(4.3)  eip(t) = Pr{Un <t |1} = Eip(Eam(®(G5))),  where

AQ
(4 4) G* - amAm t+ log(me/pml) 2m

+ (n{m)) 2L, + (nlm)) Q) +

He

., 7 defined
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m Vm6m
L, = amAr [5' 8 T + %]

A2
- @A, [t +10g(Dma/Pm1) — —;]
6’ T
. [a;‘?(é:nTm _ é\;nvm.(sm.) — _7."_}“;—5J ,

! r 2
Qn = andy [T’ Wi — 8, Ve W + 8" Vi Tin T 8,Vibm

2 2
. A2,
- [i + log(pm1 /Pm2) — T}
a'n’lAmS 1 1 ' 2
5 { (T m — 46, Vi T + 358, V.56,

+ 25;1Hme - 35;;'1(Hmvm + VmHm)fsm}
5 -5 " 2
B T~ SV + it }
2 2
i
—a3 AS {a;f(&inﬁl’m — 8 Vinbm) + ﬂé_]

2
8, Vmém
- [5;,1Wm — &, T + mT] )

and r}, is a remainder term similar to ri,, in (3.5). Similar argument shows,

(4.5)  Eim{fomn(®(GT,)))

- B, (cj[) (amA [t+log(pm2/zvml) %D)

. Az
+ nWIElm (glmtﬁb (am [t + IOg(pmz/pml) - _:| ))

2
+0(n™%), where

on p—1 Saf}nbm
flmt — TL(WL) ( 4 8 a"i’TLAm

n (p—Dan(l+b,) (Sn(m) 3 n(m))
n(m) 14,

il )am(l + by ) [t + 108 (Brna/Drmt )]

Ap—1) 3at n{m)d,, (p—3) /n{m) n(m)
' {2(1 Vo)A AL { b)Ay, T AT, ( + )]

i1 N2

LL20%1 Nm2
n o ad (14 by) A2
- ¢ 1 Y " -
n{m) 24, [ 1og{Bua/Pu)

_ [afnbmAfn ! (n(m} s n(m)) N

S(1 1 byy) 4

mi1 N2
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s {nm} n(m) aln(m)d,Al, ) )
+A (W e 2{1 b )HHOg(pm?/Pmﬂ]

_ 2A? al nim)d. A2
T Bm ( Tml + N2 * 1+ by + 2(1 + bm)

e+ lng(ﬁmg/ﬁml)ﬁ] |

It follows from Lemma 2 that,

A2
(4.6) Evn (‘1’ (amAT—nl [t + log(Pma/Pm1) — _Qﬂ] ))
= ®(nme) + n?lfﬁ(nlmt)(almt + T‘lmt) + O(n_g), and
2

(47 0B (flmt(f) (umé;f [t +log{Pma/Pm1) ~ AQHD)

=" G (Mmt ) Vimt + O(n™?).

From {4.5), e1m(t) is the sum of (4.6), (4.7} and a reminder term of order O(n™2).

COROLLARY. For the plug-in rule, the overall expected error rate with equal
prior probabilities for I} and Uy with threshold at t, t € (—00, 400} is given by
F(t) = 3 N Dmitim(t)/2 where e (t) i = 1,2; m = 1,...,7 is given in

i=1 dwrn=

Theorem 4.1.

Remark 4. Boih Theorem 3.1 and Theorem 4.1 are valid under conditional
normality of ¥V given Y?} with mean linear in Y4 at each of the  locations.
Our treatment simplifies the discussion and follows the formulation in Krzanowski
(1975).

Remark 5. Anderson ((1984), Corollary 6.6.1, p. 218) can be obtained by
lettingq =0, b = O(T = 1)! t =0, k; =0, pn1 =p2 = ]-7 i1l = N2 = Na
n = 2N — 2, A% = (,Uql - ,ulg)’Zng_% 1([.“1 — ;1.12) = /_\2 in (41) and (42) The
result in Vlachonikolis {1985) can be derived from Theorem 4.1 upon substituting
g =0,t=0. Theorem 4.1 generalizes Leung (1994) to heterogeneous across lo-
cation conditional dispersion matrices with location specific continuous covariates
including the case where ¢ = 0.

Remark 6. Based on an empirical study, Vlachonikolis and Marriott (1982}
suggest a regularized rule to handle the problem of heterogeneous across location
conditional dispersion matrices when continuous covariates are absent. However,
the overall expected error rate for their rule has yet to be worked out.

Remark 7. Theorem 3.1 and Theorem 4.1 are valid only when reasonable
numbere of data are available at every location for reliable estimation of the means
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and covariance matrices. When continuous covariates are present, estimates based
on a multivariate linear regression model can be used, namely

b k-1
FZAF
o] St § 5

q k=2 j=1

where o ﬁ*ﬂc are unknown (p + ¢) x 1 vector parameters and ™ is the value
of the j- th binary variable in cell m of the underlying contingency table for the
binary variables in TT;, i = 1,2; j,k = 1,...,b. Pooling the two remdual matrices
. i : (m} gqv 2(m) it yiim) — P 11) E(m) i
produces an estimate of 1™/ say '™ partitioned as X\™/ = o [5m 5:("” with an
5(1)
estimate of ¥ [ ] given by say, O.m1 partitioned as 2 {gm], 1 =1,2. An cstimate

(

E(m)E(m) with an estimate of 21’2

of phms 18 given by fiyn; = 8&2 ﬁmﬁﬁl, ﬁm
given by E(nzl) — n(m)(n(m) @~ LS 6m2 '8! ) provided given Zp, = 1,
Ni > 1+p+q+b(b+1)/2,i=1,2. A correspondmg second-order log-linear model
is then fitted to the incidence table of counts in each population via iterative scaling
as in Haberman (1972} tu oblain an estimate say, pmi of pmi, m— 1,...,r, 6 — 1,2
resulting in the plug-in rule, U, = [Y(l) — B Y — %(ﬁml + ﬁmg)}"ﬁ%)-l (frm1 —
fima) — 10g(Pma/Pm1), m = 1,...,r. However, the overall expected error rate
associated with the rule obtained is difficult to obtain. Alternatively, Tu and Han
(1982) suggest an inverse sampling scheme for the construction of Up,m=1,...,r

and provide similar asymptotic results.

Remark 8. Theorem 4.1 is essential for studying the overall expected error
rate. If interest lies in the overall apparent error rate, the conditional overall error
rate given the training data is our concern. ‘l'he conditional error rate at each
location can be obtained by jack-knifing, cross-validation or bootstrapping. See
McLachlan ((1992), pp. 339-362). The overall apparent error rate is the weighted
sum of the location specific conditional error rates.

5. Generalization

Now suppose that b — b (b < b) of the binary variables X = (X1,...,X})
are covariates. Each X, is assumed to take either the value 0 or 1. Following

Krzanowski (1975), express X by a multinomial Z = (Z,,...,%Z;) with » - Pid
locations. Z, — 1 is the incidence for location m and m = 1 + 30_, ;271
is uniquely determined from the observed z,m = 1,. ..,r Without loss of gen-
erality, let Z* = (zOW' z®&, z(0' = (Zl,.. 7)), 2 = (Zp sy Zr),

(r1 < r) where Z identlﬁes r1 = 2% noncovariates bpemﬁc locations. Z(2
is associated with the remaining covariates specific locations. Suppose that Z |
II; ~ Multinomial(1;p\") ,p®"), with E(ZY | IL) = 2" = (pui .., prya) and
E(Z@ | 1) = p@ = (p,,ﬁl,...,pr)’ being known, ¢ = 1,2. The probability
function of Z under II; is f(z | PE p2)Y) = - p”“ | ) L1 p.

sz“"i' Z Zme =1, mei+ Z P = 1, and

Mme=1 m’ =ry+1 m—1 nmf—r1+1
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Y|, Zy = 1, Zg = 0, m#k =1,2,. Np+q(? (], 20, i = 1,20 Ay
is assumed zero, m =1,...,r. Given Zm = 1 m=1,. ..,r, U is allocated to II;
if and only if U}, > ¢ with

U;:{Um’ m=1,...,71
Dy, m=ri+1,...,r1,

where D, = [Y(1} - 3, 7@ _ Hpmr + umz)] ng’;)_l(ﬂml — lm2). When the
parameters are unknown, a plug-in rule say U,;L, m =1,...,r 1s constructed from
full covariates adjusted estimates. The adjustment involves multivariate linear
regression and loglinear or multinomial logit fittings. See Aitkin et al. {(1989),
p. 228) for example. Setting aside Y’ = (Y1, Y4, given Y(z), simultaneously
fit the multinomial logit models, log(p,n: (Y2 /py; (Y(z))) Y2 with VO =
(1,Y®') and Bl = (BomisBimis- -2 Bami)s m = 2,...,11 to the training data
on (Y? Z) from TI;, ¢ = 1,2 to obtain py,(Y(?) = (1 + Zrl 2exp(ﬁ’ Vi)l
and pm&(y(g)) = plL(Y(Q)) exP(ﬁ, Y(z)) with fitted 6’ (ﬁ[)m’uﬁlmz: .- 7ﬁqmz)
m = 2,...,r1; 2 = 1,2. Given (Y Z} with Z,, = 1, the location probability in
location m in II, is estimated by

Pri = PrmalY ) (l - Z 101) / Zﬁhi{Y@)), m=1,...,r; i=12

I=ri+1 h=1

Plugging in pj,q, pho With fiym1, fma, B and 25’,’;’ suggested in Remark 7 yields
the rule,

i - {f)mlog(p;ng/p;m), m=1,..
Dm: m:rl_l_l,___’,r.?

m

where D = Y — 8,Y® — (i + fin2)EY (it = fima)-

Notice that in the above construction, continuous covariates are used to esti-
mate the location probabilities. Estimates of the parameters of the two multivari-
ate normal distributions are derived from fully adjusted variables. The method
relies on the validity of the 2(r; — 1) logit models. In view of the nature of Y,
this aseumption seems plausible under homogeneity of (212)7-“ EgT‘) for both
populations. However the computing cost incurred should be sonousl) considered
before adopting the method. Apart from this, the adjustment further complicates
the distribution problem. Conscquently, Theorem 3.1 and Theorem 4.1 are not
applicable. Nevertheless, performance of the plug-in rule can be assessed by the
weighted sum of the location specific estimated conditional error rates.

Remark 9. Alternatively, smoothed estimates suggested in Remark 7 with

covariates adjusted location probability pjy = Brmi(1 — 30, 11 1)/ 2ont Phiy
t = 1,2 can be substituted in U}, m = 1,... 7 for the construction of the plug-in

rule.
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Appendix
In this section, proofs of the lemmas are given.

PrROOF OF LEMMA 1. Recalln =3 _ n(m) = ni+nz-2r, n(m) = npy; +

Nm2 — 2, m = 1,...,r. By weak law of large numbers, 3% L Pmi(l+ k)
1 NN —30
n(m) r 1 ; X L 2
and == e Pm2(1 + k1), (i) follows from oy = sty T ey il

ey = pt(L 4 k)T + b (14 k51T > 0. Observe that, 22 = (2 4

n(m)n g — 00 ni11
g ILA ez, Bry n21 Rry p ; _
e ke T2 R} /(] Lo 4 Bel) By weak law of large num
P kytkokagtotkek
ng 1tkaka rkr1
Tl oy ng—oo A HReabetke
E(plimy, pyoo n2/m) =k > 0 say. (iii) follows from (i) and the definition of a,,

and b, m=1,...,r.

bers, > 0. (i) follows from lim,, n, 0o Ra/my =

Proor or LEMMA 2. Obvious.

Proor oF LEMMA 3.

(i) Given nmi1, nyp2 and Zp, — 1, Yo | II; ~ Np+q( ["’“] mt Iniq) ¥oos
and $(m) are independent. From Kshirsagar ({1972}, Theorem 2, p. 112), Slm)
SI5S5 TS~ W (Tyn(m) = @), B | S5~ Npy(0,1,8577) and 87 ~

q(qun( )) So, E2m(nu‘m1) = EQm([ ﬁmDE’«-’m( ml) = Hmt-

(i) follows from Eam (fm1 — fim2) = Eam (s Bea)) Eoe Vit —~ Ymg) bime

(111) follow% from the fact that given Sgé”) s Eom(Bm | S5PY = 0 and
Egm(ﬁm e h S(m)(Egm([)'m ] S(m})) where E, S(m)() denotes the expecta-
tion with respect to 822 for given 1, and ri,e and Z,, = 1.

(iv) From Kshirsagar ((1972), Lemma 10, p. 72), if W ~ W,(S,n), n > p+1,
then E(W 1) = (n—p-1})712"1. Given Sg;"}, the p rows of 3, are independent
and identically distributed as N (0, S5 (m) ) Thus

Eom{Brally) = By, g (Bam (Bl | bé’;) D) = By s Bam{ TS5 1))
- EQm,Ség‘) (H(E2m(822 ))Ip) = mep-

(v) follows, since Sﬁn) -5 )S(m ng) ~ W1y, n(m) — q) for given

and My,
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(vi) follows from

B ftm1 fiyn1) = Eam ([, _Bmlfiml?;:ﬂ [Lp, ~Bm]’)
= Esm(npi p + Bmfrn))-

{vii} and (viii) follow similarly.
(ix) follows by applying to each of the » locations, a similar argument to
derive (26) in Anderson ((1973), p. 969).
(x) follows by applying to each of the r locations, a similar argument to
derive (27) in Anderson ((1973), p. 969).
{(xi) follows from the following result.
(A1) Let W: (p | g)x(pt q) be a Wishart matrix distributed as Wy, q{Jp4q,7)-
P g

g | War Wa
Var((6'80'6)) = 2¢A%*(n—1)(n—g) " (n—¢-1) " (n—-g=3) " +(n-2)"*(n—4)7"].
To obtain {xi}, substitute n(m) for n, A, for A and 3,, for § in (A.1). To prove
(A.1), note that B | Was ~ Ny (0, L., Wa') and Way ~ W,(I,.n). So (§8)' |
Wiy ~ Ng(0, A2Wy;!) with Var(8'85'6) = E1Va(&'33'8) + ViEa(5'33'6) where
E5{-) denotes the conditional expectation given Waz, V,(-} denotes the conditional
variance given Wz, F;(-) denotes the expectation with respect to Wy and V4 ()
denotes the variance with respect to Was. By Searle ((1971), Theorem 1, p. 55),

E»(6'33'6) = A2 Tr(Wy!) with

Partition W as W = ? [W” Wm} and & = (A,0,...,0) : px 1, A > 0, then

q 4
saaren vy A4 IR 2¢A
Vi Ey(8'83'8) = A Var(Tr(Wy,')) = A% Var (Z,X ) ECEDECEL

where X;,...,X, are independently identically distributed as x2. By Searle

((1971), Corollary 1.2, p. 57), Va((§'35'6)) = 2A! Tr{(W5,?) with By Va((6'353'6)) =
2qA*n—1)(n—q) " (n-g—1)"*(n—g—3)7! by Srivastava and Khatri ((1979),
problem 3.2(iv}, p. 97). (A.1) follows.
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