Ann. Inst. Statist. Math.
Vol. 50, No. 3, 403-416 (1998)

USE OF MARKOV CHAIN MONTE CARLO METHODS IN
A BAYESIAN ANALYSIS OF THE BLOCK AND
BASU BIVARIATE EXPONENTIAL DISTRIBUTION

JORGE A. ACHCAR! AND ROSELI A. LEANDRO?

lDepartmeni of Computer Sciences and Statistics, ICMSC, University of Sdo Paulo,
C. P. 668, CEP 13560-970, Sdo Carlos, S. P., Brazil
2De:na’r‘.t‘:n':.e'm of Mathematics and Statistics, ESALQ, University of Sdo Paulo,
C. P. 11, 18418-900, Piracicaba, 5. P., Brazil

{Received August 19, 1996; revised June 30, 1997)

Abstract. Metropolis algorithms along with Gibbs steps are proposed to
perform a Bayesian analysis for the Block and Basu ( ACBVE) bivariate expo-
nential distribution. We also consider the nse of Gibhs sampling to develap
Bayesian inference for accelerated life tests assuming a power rule model and
the ACBVE distribution. The methodology developed in this paper is exem-
plified with two examples.
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1. Introduction

Tn many applications of life testing, we nusually have two lifefimes X and ¥V
associated to each unit. Among the different existing bivariate lifetime models to
be used in these applications (Freund (1961), Marshall and Olkin (1967), Sarkar
(1987), Block and Basu (1974}, Downton (1972}, Gumbel (1960), Hawkes (1972))
one model has been very well explored in the literature: the Block and Basu (1974)
exponential distribution.

The bivarinte exponential distribution of Block and Basu (Acpve) with pa-
rameters Ay, Ag and Ag, for the lifetimes X and ¥ has a joint density funetion
given by

AA1Azz

file,y) = ——=exp{-dz —dagy} i z<y
(1.1) flz,u) = N li
2113 .
falz,y) = e exp{—Ar — Aoy} if z>y

where A1 = A1 + Ao, Mja= A1 + Az, Asg = Az + Az and A = Ay + Ao + A3,

403 .
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The joint generating function for the ACBVE is given by

A { AtAas 4 Az }

_ sX+EY'y _
(1.2) m{s,t) = E(e )= MaA—t—3) | Aas ¢t Az—s

From (1.2}, we get the moments of interest for X and Y'; thus, the means and
variances for X and Y are given by,

1 Ao As
Eixy— L, A
(0 A3z AdizAs
1 AL A
(1.3) Aoy Ad12An
. o% = var(X) = 1 A2A3(2A1 A + Az As)
x Afs A2 02,
2 . L Aias(2aA -+ AAg)
v =) = gt T,

The correlation coellicient for X and Y is given by

2 2
(1.4) oxy = As[(AT + A5)A + Mg
P1¢n

where
o & — [A2,0% 4 (X 4 22)A211/2 and
o do = A2 1 A (0 22000712

Observe that 0 < pxy < 1 and pxy = 0 only for the trivial cases A3 = 0 or
A= Az = 0.

Usually, researchers consider the use of standard asymptotic results based
on the normality of the maximum likelihood estimators to get inferences for the
parameters of the AGBVE distribution {1.1), but in general these asyiupiotic results
can be very poor for small or moderate sample sizes.

A Bayesian analysis of the ACBVE model (1.1) is introduced by Achcar and
Santander (1993} using non-informative prior densities for the parameters and
Laplace’s method of approximation for integrals (Tierney and Kadane (1986)) to
get the posterior summaries of interest.

In this paper, we present Bayesian inferences for the ACBVE distribution (1.1)
using Metropolis-within-Gibbs algorithms (Gelfand and Smith (1990)). We also
consider the use of the Markov Chain Monte Carlo methods to get Bayesian infer-
ences for accelerated life test problems using the ACBVE model {Achcar (1995)).

2. Bayesian inference for the ACBVE model
Considering a random sample of size n, (X1,Y1),...,(X,,Y,) of the ACBVE

model (1.1}, the likelihood function for A;, A2 and A3 is given by

n

L(A1, Az, As) = Hflﬁi(l'i:yi) 5% (s )

=1
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where §; = it X, < Y;and o; =01t X; > Y;.
That is,

n— n—r
ATATAG T AR ATy
T
12

where nZ =30 (2, nf =D, ¥, 7 = 2oy i and B =37 [y + (1 - 2)zf.

For Bayesian inference, considering the introduction of a latent variable N
representing the number of observations such that X; < Y, we assumne the follow-
ing prior densities for Ny, A1, Az and Aa:

A1
N:. ~ b R
i (na AIZ)

(2.2) A1 ~T(a1,b1), a; and b; known
Az ~ T'(aa, ba), ao and by known

(2.1} L{A, Ao, Ag) = exp{—AinZ — Aony — A3R}

/\3 ~ F(O,g, bg), [£5:3 and 63 known.

Here, b{n, A1/A)2) denotes a binomial distribution with mean nA;/Asg,
AifAip = P(X < Y); T(a;,b;) denotes a gamma distribution with mean a;/b;
and variance a,/b7. We further assume independence among the parameters N,
/\1, AQ and /\3

The joint posterior density is,

n A} Ny ()\2 )n—Nl AR
2.3) w{Ni, AL, A3 [ D) x — — —_—
28) m(M A e A [ D) (Nl) ()\12) A1z T

BT Lag e g
cexp{—{(nZ +b1)M — (nF + b2)Aa — (R + b3) A3}

where D denoies (lhie dala sel.
The conditional posterior densities for the Gibbs algorithm are given by,

A
NijA Ao, A3, D~ b (na —L>
ALz

(2.4) (AL | N1, Aoy Ag, D) oc AP The ™Ay (N7, Ay, Mg, Ag)
7T(/\2 i N], ,\1, /\3, D) X A;lee_bg'x%f)g(Nl, /\1, )\2, /\3)
m(Az | N1, A, Az, D) ox AP e 2 (N, Mg, Ag, As)

where

P1(Ny, A Aoy As) — APARZARTANAT oyl -z, ),
(2.5) Ya (N1, Ar, Ao, ) = AP AF AL AT M7 exp{~nga},
Ul)3(N1 R Al, Ag, )\;) = ’\n’\ESAT’;T P.Yp{—— R)\g}

A sample of draws from the joint posterior density (2.3) can now be obtained
by successively sampling Ny, A1, A2 and A3 from the conditional posterior dengities
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given in (2.4). Observe that, we need to use the Metropolis-Hastings algorithm to
generate the variables A;, Ay and A3 (Chib and Greenberg (1995)). Tn this way,

the value of A; is simulated as: at the r-th iteration (given the current value N I(T) ,
A(r), )\gr)), draw a candidate )\gr) from a gamma density I'{a;,b); if it satisfies
stationarity, move to this with probability

i { (B (V7 A7, A7 87) 1}
CAUREPHERIP SPNS)

and otherwise set )\Sf) = )\&T—l), where 11 (N1, A1, X2, A3} is defined in (2.5).

Similarly, we could drawn candidates )\5(;) angd /\:(;") from the gamma densities
I'{ay, b2), T{as, bs), respectively to be considered in the Metropolis-1lastings algo-
rithm. For the choice of values for the parameters a; and b;, i = 1,2,3 for the
gamma functions used as prior distributions and as candidate gencrating distribu-
tions for the Metropolis-Hastings algorithin, we should get some information on
these parameters based on a preliminary analysis. As a special casc, we could use
some preliminary estimates A;, from which we get values for a; and b; observing
that the gamma prior density for A; has mean a;/b; and variance a;/b>. Other
distributions also could be considered as candidate generating distributions for the
Metropolis-Hastings algorithm. We could monitor the convergence of the Gibbs
samples using the Gelman and Rubin (1992) method that uses the analysis of
variance technique to determine if further iterations are needed.

2.1  Bayes estimators for the mean lifetimes

We can use the Gibbs samplers to get inferences on the parameters of the
AcBVE distribution (1.1) or functions of these parameters. In this case, we could
approximate posterior moments of interest. As a special case, consider the mean
lifetimes,

Ao 4 dadg

(2.6) # o AtarigA
' s = E[Y] = M
2 Al2AgzA

Bayes estimators for g, ¢ = 1,2 with respect to the squared error loss function
are given by E(u; | D} which can be approximated by its Monte Carlo estimate,

)\(T’S)Agg’s) + )\gr,s)/\:(ar,s)
A

(2.7)

RN

where A7) = AP LA LA A0S A(med y \Ied e A(ne) a0
)\ggs) = /\g”’) + /\g'"’&) and /\gr’“), /\é""’) and Ag'"’”) denote the variates for Ay, Mg
and Az drawn in the r-th iteration and the s-th replication where R and S are
respectively, the total number of iterations and simulations of the Gibbs sampler.
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2.2 Bayes estimators for the reliahility function
Assumning the ACBVE model (1.1), the reliability function for a two-component
system at specified time tq is given by,

Rg(ty) = exp{~Atg}  for a series system, and

(2.8) {AleMto 4 erefo 1) — A3}
Rrti) = At

for a parallel system.

Bayes estimators for Rg{to) and Rp{to) with respect to the squared error loss
function are given by E{Rg(tg) | P} and E{Rp(ty) | D}. Based on the Gibbs
samplers, with R iterations and S simulations, Monte Carlo estimates for these
posterior moments are given by

io) — Z Z exp{— Alrs) to}  for a series system, and

s=1 p— R/Q+1

{)\(1" S) T )tn Le A( .[) - /\:(;"13)}
_xﬁ’;“’)ef\“’-ﬁ)to

s—1yr=R/2+1

for a parallel system.

3. Bayesian inference for accelerated life tests (Alt) with ACBVE distribution

Consider a two-component lfetimes X and V', .J stress lovels V4, Vs, ...,V
and assume that life tests are conducted at constant application of the selected
stresses. Using this information, we get inferences about the component lifetimes
under normal stress condition given by V4.

At a normal stress level V; assume that (X,Y’) has ACBVE distribution (1.1)
with parameters Ajg, Agp and Azg. Also assume that under a stress level Vi,i=
1,2,...,J, (X,Y) has the AcBVE modecl (1.1) with parameters Ai,, Az; and Agj,
J=1,2,...,J and consider the power rule model (Mann et al. (1974), Ebrahimi
(1987)) given by

(3.1) Aij = Ci‘/}P

wherei = 1,2,3,§=0,1,2,...,J; ¢, ¢, c3 and P are constants. The model (3.1)
ig also considered by Basu and Ebrahimi (1987)

Considering n; units (X1;,Y5),- .., (Xn,j, Ya,;) at the beginning of each test
with stress V;, the likelihood function for ¢1, €2, cg and P is given by

nj
b1 05
Li(er,ea,e5,P) = [[ 119 (X5, Vi) £~ (Xiy, Vi)

where é;; = 1 if X < Y}; and é;; = 0 if X;; 2 Y;; and

C1C23C123

Fi1( X5, Ye;) = VET exp{—[e1 Xy + exsYy V] ],

C
f2(Xij, Vi) = ZEBYEP o ey Xy + e2¥ig] VP,

€12
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€12 = €1 + C2; €13 = €1 + €3; Ca3 = €2 + €3 and ¢193 = ¢1 + €3 + ¢3.
That is,

Ty Ty L ]

(3.2) Lj(claCZ,C?,,P) 012361 "¢y 623613 (V?P)nj

('12
. cxp{w[clquj + (:zuj};j -+ C;;Rj}‘/;?}

where n; X; =307 X5, ;¥ =302 Vi r; =302 6,5 and Ry =" (6,
(1 - &).X5].

Assuming that the data obtained for the J stress levels V1, V5,..., V) are
independent, the likelihood function for ¢;, ¢a, ¢z and P is given by

J
Licy,ep,63,P) = H Lj(er, e, 3, P).
j=1
That 1s,
T L
63 L enes,P) = SE s 7y

p?z §=1

exp{—[c1Sx (P) + e2Sy (P) + esT(P)]}

where r = Zj (T, o= Zj__lnj, Sx(P) = Zj XV, Sy (P)

J 7, r
Ej:i anij, T(P) = ZJ R J ; €12, €13, €23 and 123 are given in (3.2),
Alsgo, considering the introduction of a latent variable N, representing the
number of observations such that X;; < ¥;1, we assume the following prior densi-
ties for Ny, c¢1, €3, 3 and P,

Ny ~b(ny, e /crs)

c1 ~ (a1, b1), ap and b known
(3.4) eo ~ T{ag, b)), a2 and by known

¢z ~ I{az, b3), a3 and by known

P~ N{po,05), o, 05 known.

Observe that N; has a binomial distribution with probability of success,

/\1 clVlP C1
PXgy<Yn)=—=—5—5=—
(Xa Y A2 aVP +aVFE s

N(po,3) denotes a normal distribution with mean uo and variance of. We also

agsume Independence among the parameters Ny, €1, ¢a, ¢3 and P.
The joint posterior density is,

w(Ni,¢1, 62,63, P | D)
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(W) &) @) s
NiJ \ 12 €12 cla

r+a1—1 n—r+ax—1 _az—1 _r n-r_n
ep ey €3” Cu3C13 Cruy

J
AT e - (P - po)? )
- exp{—[b1 + Sx (P)]Cl - [b2 + Sy('P)]Cg — [53 + T(P)]Cg}

where D denotes the data set.
The conditional posterior densities for the Gibbs algorithm are given by,

1
Nl ‘ C],CQ,CS,D o b (n’lw _)
C12

7"(91 | N1702163:P7D) = 061“_1 CXP[ 5101}¢1(N1501302=6357’)
(3.5) m(ez | N1, e1,63, P, D) x 5 " exp{—baca}ipa (N1, c1, ca, €3, P)
W(Cs | N1701102:7),D) & 023"1 QXP{—bsﬂs}Q/’a(Nl,Cll0276‘3;?3)

1
(P | Ni,c1,¢0,c3, D) x exp {——(P - Mﬂ)z}%bcl(NhChCz,Cs:P)

207
where,
Ni+r n—r n
[#1 C 0123 —
1/)1(N1,81,C2,63,P) = —_]:_#‘?M“_e SX(P)Cl?
12
n1—Ni+n—r r n
c chat e (D)o
Yo N1, 61, ¢,03, P) = 3 R e Sy (Pen
€12
Ya(Ny, et 62,63, P) = CESC?:;TC%B(T(P}C:«; and
J
Pa(Ny,e1, 00,03, P) = § [[(VPF)™ 3 exp{-c18x (P) — e2Sy (P) — esT(P)}.
i=1

Observe that, we need to use the Metropolis-Hastings algorithm to generate
the variables ¢y, ¢, ¢3 and P. In this way, we could draw candidates c,(r), i=1,2,3
from gamma densities I'(a;, b;), and draw candidates P from a normal density
N(pg, o3) to be considered in the Metropolis-Hastings algorithm.

3.1 Bayes estimators for the mean lifelimes

Considering the Gibbs samples generated from (3.5) for Ny, ¢y, ¢z, ¢3 and P
we can get Monte Carlo estimates for posterior moments of interest. A special
case is given by the mean lifetimes in a specified stress level 7,

= E(x) = (ztz t o), o
(3.6) Cizaciacy !
@ = EY) = (123012 + ClCS)V‘_p.

7

C123C12023
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Bayes estimators for ,u,f, t=1,2, 7 =1,...,J with respect to the squared
error loss function, in a specified stress j are given by E(y! | D) which can be
approximated by its Monte Carlo estimate,

s R ) )
il = 2 E Z el efy™ + e e P
o RS (r, s} (r,8) (r,s) 7
37) s=1r=R/2+1 Ciy €13 Cia3
) g R {r,8) {r.,s) (r,8) (1'* &)
2 = 2 Z Z Clo3 Clz €17 C3 " {,—plne)
T T T 2
RS s=1r=R/2+1 3523)3533)35235}
where c§23 S L A cg';) = " 4 9 = ) g )
cg’;f) = c; ) +<‘(T * and ¢ (r) c; -8} €3 (%) and P denote the varlates for ¢;, e,

r3 and P drawn in the - fh 1t9rahnn and the s-th replication where B and § are
respectively, the total number of iterations and simulations of the Gibbs sampler.

3.2 Bayes estimators for the reliebility function

Assuming the ACBVE model (1.1) with parameters Ayj, Ag; and As;, j =
1,...,J and considering the power rule model (3.1), the reliability function for a
two-component system in a specified stress level 7 at specified time g is given by,

Rf;v(t()) = exp{-—c123Vft0} for a series system.

38) R (to) = {e123(e Vs B 42V 0 1) — ¢y}

T for a parallel system.
6126 123 7 £)

Bayes estimators for R’ t(to) and R’ p(to) with respect to the squared to the
squared error loss function are given by E{RJ (to) | D} and E{RL(t;) | P}. Based
on the Gibbs samplers, with R iterations and & simulations, Monte Carlo estimates
for these posterior moments are given by

5
2 e
Rg’ (to 75 Z Z exp{—c{72) V-p( "t} for a series system,
(3.9) Z ;”/ 2
2
Ry’ = RS Z Z
s=1r=R/
) {C(T (et S}Vp( to 4 e“(r's)wp(m)fﬂ - i}

(r 5) ((r ‘V plr. -a)
€12

far a parallel system.
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4. Numerical illustrations

4.1 FEzample 1

In Table 1, we have 30 bivariate observations (X,Y’) generated from a ACBVE
with density (1.1) and parameters A; = 0.25, Ay = 0.16 and Az = 0. From the data
of Table 1, we have r = 16, n—r = 14, n = 30, 320 2, = 11451, 2% 4, = 165.67
and R = 207.77 (see (2.1)).

Considering (from (2.2)) the priors Ny ~ (30, A1/A12), M1 ~ T'(a1,b1), Ag ~
[{ay, bs) and A ~ T(as, by), where ay = 115, by = 480, ay = 56, b; — 338, a3 = 20
and by = 1400, we generated 10 separate Gibbs chains each of which ran for 2000
iterations, and we monitored the convergence of the Gibbs samplers using the
Gelman and Rubin {1992} method that uses the analysis of variance technique to
determine if further iterations are needed.

Table 1. ACBVE generated bivariate life time data with Ay = 0.25, Az = 0.16 and Az = 0.

i T Yy i T Y

1 373 254 16 342 109
2 583 774 17 771 033
3 B44 9.89 18 692 259
4 795 247 19 776 3.7

7.66 8.77 20 0.16 6.07
3.47 1.86 21 7.79 6.098
275 1.30 22 066 049
0.57 5.04 23 1083 4.03
348 1.13 24 423 271
10 4.12 7.24 25 3.23 1874
11 2.08 95406 26 100 9.10
12 4.19 1.50 27  3.08 1243
13 0.82 6.29 28 0.5 13.50
14 1.14 261 29 037 5.52
15 0.18 817 30 038 237

Do+ JRE B =

For each parameter we considered the 1010th, 1020th, ..., 2000th, iteration,
which for 10 chains yields a sample of size 1000. In Table 2, we have the obtained
posterior summaries for the parameters A, A and Az, and in Fig. 1, we have the
approximate marginal posterior densities considering the S = 1000 Gibbs samples.
We also have in Table 2 the estimated potential scale reductions R (Gelman and
Rubin {1992)) for all parameters. In this case 1000 iterations were sufficient for
approximate convargence (\/E < 1.1 for all parameters).

It is interesting to observe that the maximum likelihood estimates for Ay, Az
and A are given by A; = 0.2485, X, = 0.1698 and A; = 0.0164. Usually, we

can have very poor accuracy for the inferences based on the usual normal limiting
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Table 2. Posterior summaries for the Acsve model.

Mean Median 8. D  95% credible interval B
Ay 0.2527  0.2517 0.0223 (0.2051; 0.2042) 1.0503
Az (1651 0.1646 0.0168 {0.1342; 0.2010) 1.0424
Az 0.0163 0.0161 0.0036 (0.0098; 0.0249) 1.0109

Ay Az A3

Fig. 1. Approximate marginal posterior densities for Ay, Ay and Asz.

Table 3. Bayes estimators for Rs(tg) and Rp(tp).

True values Monte Carlo estimates
to Rg(to) Rp(ta) Rs{to) Rp{to)
0.6630 0.9673 0.64%81 09622

0.4404 0.8922 0.4204 0.8774
0.2923 0.7989 0.2730 0.7742
0.1940 0.7012 0.1774 0.6686
0.1287 0.6071 0.1154 0.5691
10 0.0166 0.2674 0.0136 0.2296
15 0.0021 0.1121 0.0016 0.0884

ol Wb -

distribution for the maximum likelihood estimates 5\1, Az and A;3. The approximate
standard errors for ¢, Az and A; based on the Fisher information matrix are given
by 0.0906, 0.0820 and 0.1017, respectively.

From (2.7), we get Monte Carlo estimates for 4y and us given by 1y = 3.8009
and iz = 5.6003. In Table 3, we have Monte Carlo catimates (from {2.9)) for the
Bayes estimators with respect to squared error for the reliability function of two-
component systems at some values of {y considering series and parallel systems.
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Toble 4. Cencrated bivariate life time deta.

i=1 Vo =2 Vo =23
(X1, Y1) (Xa:. Yas} (Xai, Yai)
(7.65; 2.18)  (2.20; 0.02) (0.34; 0.20)
(16.67; 9.26)  (0.10; 0.38) (1.50; 1.30)
(30.30; 6.72)  (0.88; 0.97) (0.63; 0.60)
(1.30; 3.22)  (0.45; 0.04) (0.68; 0.12)
(9.04;2.23)  (1.66; 1.60) (3.22; 0.00)
(5.15, 0.41)  (0.T4; 1.67) {1.91; 0.91)
(5.20; 5.91)  (2.50; 0.37) (0.52; 0.58)
(5.00; 0.84)  (3.50; 0.03) (0.30; 0.01)
(5.66; 0.42)  (8.45; 0.71) (1.30; 0.02)
(11.80; 0.15)  {4.60; 0.83) (0.52; 0.10)
(17.08; 10.37) (2.66; 106} (2.08; 0.30)
(17.92; 0.76)  (1.46; 1.04) (0.95; 0.91)
(1.62; 2.73)  (L.0%; 0.41) (0.43; 0.02)
(142; 1.85)  (4.36; 1.34) (0.25; 0.08)
(3.60; 1.50)  (0.76; 0.77) (1.39; 0.08)

Table 5. Posterior summaries for ALT with ACBVE model.

Mean Median 8. D 05% ercdible interval R
1 0.0599  0.0689 0.0518  (0.03116; 0.09542) £.0139
ez 0.2669 0.2640 0.1447 (0.18867; 0.36606) 1.0151
¢z 0.0588 (0.0571 0.0652 (0.00288; 0.10454) 1.0078
P 2.0080 1.9999 0.6967 {1.60068; 2.46957) 0.9989

4.2  FEzample 2

In Table 4, wec have the data of an accelerated life teast considering three
stress levels 14 = 1, V5 = 2 and V3 = 3. At each stress level, 15 bivariate
observations (X, Y} were generated from a ACBVE distribution and the power rule
model (3.1) with P = 2, ¢1 = 0.00, ¢3 = 0.25 and ¢z = 0.00. Frow Table 4, we
getny=na=n3=15n=45r =4, rs =3, r3 =2 and r = 9. (Sce (3.2) and
(3.3).)

Considering from (3.4) the priors Ny ~ b(15,¢1/¢12), €1 ~ '{a1,b1), ca ~
I'(ag, ba), cz ~ (a3, b3), and P ~ N{uy, (03)), where a1 = 5, by = 72, ag = 15,
by = 54, a3 = 3, by = 41, py = 2 and o = 0.25, we generated 10 separate Gibbs
chains each of which ran for 2000 iterations. For each parameter, we considered
the 1010th, 1020th, ..., 2000th iteration, which for 10 chains yields a sample of
size 1000. Tn Table 5, we have the obtained posterior summaries for the parameters
1, ¢a, ¢z and P, and the estimated potential scale reductions R for all parameters.

Monte Carlo estimates for the mean lifetimes under the normal stress level
Vi = 1 {(sec {3.7)) using the 1000 Gibbs samplers are given hy /i; = 9.76075 and
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Fig. 2.  Approximate marginal posterior densities for ¢1, 3, 5 and P.

In Table 6, we have Monte Carlo estimates (from (3.9)) for the Bayes esti-
mators with respect to squared error for the reliability function of two-component
systems at some values #; considering series and parallel systems in a specified
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Table 6. Bayes estimators for f25(¢y) and Ity (¢g).

True values Monte Carlo estimates
to Rg{ts) Rp{ty) Bg{to) Rptg)

1 0.6828 0.9756 0.6809 0.9750
2 0.4602 0.9186 0.4648 0.8171
3 03184 0.8460 0.3180 0.8439
4 0.2174 0.7681 0.2182 0.7658
5 0.1484 0.6308 0.1500 0.6827
10 0.6220 0.3832 0.0239 0.3349

stress level j.

It is interesting to observe that the maximum likelihood estimators for o1, g,
cy and P are given by ¢; = 0.0571, ¢; = 0.2643, ¢3 = 0.0602 and P — 2.03. The
approximate standard errors for €, ¢, ¢ and P based on the observed information
matrix are given by 0.0245, 0.0671, 0.0332 and 0.2300, respectively.

In Fig. 2, we have the approximate marginal posterior densities for ¢, ¢z, €3
and P considering the & = 1000 Gibbs samples.
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