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Abstract. Several space-time statistical models are constructed based on
both classical empirical studies of clustering and some more speculative hy-
potheses. Then we discuss the discrimination between models incorporating
contrasting assumptions concerning the form of the space-time clusters. We
also examine further practical extensions of the model to situations where the
background seismicity is spatially non-homogeneous, and the clusters are non-
isotropic. The goodness-of-fit of the models, as measured by AIC values, is
discussed for two high quality data sets, in different tectonic regions. AIC also
allows the details of the clustering structure in space to be clarified. A simula-
tion algorithm for the models is provided, and used to confirm the numerical
accuracy of the likelihood calculations. The simulated data sets show the simi-
lar spatial distributions to the real ones, but differ from them in some features
of space-time clustering. These differences may provide useful indicators of
directions for further study.

Key words and phrases: Centroid of aftershock epicenters, ETAS model, in-
verse power laws, maximum likelihood estimates, magnitude based clustering
(MBC) algorithm, modified Omori formula, thinning simulation.

1. Introduction

The Epidemic Type Aftershock-Sequences (ETAS) model (Ogata (1988)) is a
point process representing the activity of earthquakes of magnitude My and larger
in a region during a period of time. The model includes background activity
of constant occurrence rate u in time (i.e., stationary Poisson process) and also
includes aftershocks as described below. Each earthquake, including aftershocks of
another earthquake, is followed by its aftershock activity, although only aftershocks
of magnitude My and larger are included in the data. The aftershock activity is
represented by a nonstationary Poisson process according to the modified Omori
formula (Utsu (1961)) in such a way that the occurrence rate of aftershocks at
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time ¢ following the i-th earthquake (¢;, M;) is given by

Ky
1]_ i t — . a(}\/{i—M())

for t > t;, where the parameters Ky, «, ¢, p are constants common to all . The
rate of occurrence of the whole earthquake series at time ¢, called the conditional
intensity function based on the history of occurrence H, = {(¢;, M;);t; < t}, then
becomes

(1.2) N(t] H) = pt+ 3 wilt).

{u:t: <t}

The ETAS model can also be written in terms of a stochastic integral (e.g. Daley
and Vere-Jones (1988)), namely

[e o] t s
Ky
1.3 At|He) =p+ ——— . e (M=Mo) N (ds, dM),
a9 aelE) = [ [ e (ds, dM)
where N(ds,dM) = 1 if an infinitesimal element (ds,dM) includes an event

(t;, M;) for some i, otherwise N(ds,dM) = 0.

The five parameters (u, Ko, ¢, @, p) in (1.3) represent some characteristics of
seismic activity of the region. The parameters may correlate with tectonophysical
conditions (e.g. structural heterogeneity, stress state, temperature, etc., cf. Guo
and Ogata (1997)). Therefore, they vary spatially, and also temporally in some
cases. Among the parameters of ETAS model, o and p are particularly useful
for characterizing the temporal pattern of seismicity. The p value indicates the
decay rate of aftershocks, and the a value measures an efficiency of magnitude
of an earthquake in generating its offspring, or aftershocks in a wide sense (e.g.
Ogata (1987, 1992)). For example, swarm-type activity has a smaller « value than
that of ordinary main shock and aftershock activity, and « is large if there are no
conspicuous secondary aftershocks in an aftershock sequence, or the magnitude of
the main shock is much larger than the maximum magnitude of its aftershocks.

From the estimated ETAS model, we can predict the expected occurrence rate
of earthquakes in normal sequences. Comparing the predicted rate with that of ob-
served occurrence data, periods of relatively decreased or increased seismic activity
can be recognized (Ogata (1988, 1989, 1992)): for instance, a significant decrease
in seismic activity of a region below the level predicted by the ETAS model, which
we call Relative Quiescence, is sometimes followed by a large earthquake in the
same or neighboring region.

Spatial aspects of earthquake prediction have also been developed in seismol-
ogy to some extent. From studies of the seismicity of the northwestern Circum-
Pacific seismic belt, Fedotov (1965) and Mogi (1968) found that seismic gaps in
activity have been successively filled, within several tens of years, by a series of
great earthquakes without significant overlap of their rupture zones. According
to the studies a seismic gap roughly corresponds to the aftershock area of the
forthcoming earthquake, that is, the size of the gap leads to an estimation of the
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magnitude of the predicted earthquake. The gap theory gave successful predictions
in some cases (Utsu (1972) and Ohtake et al. (1977), for instance). However, this
is not frequently the case and gaps do not always appear very clearly, especially
in areas where the background activity is high. Further, the seismicity pattern is
usually very complicated, showing various clustering features which make it dif-
ficult to evaluate the significance of smaller gaps. Thus, the seismic gap theory
seems still under development and even controversial (e.g., McCann et al. (1979),
Kagan and Jackson (1991, 1995) and Nishenko and Sykes (1993)).

The ultimate objective of our study for earthquake prediction is to indicate the
location of the anomalous area as well as the corresponding temporal anomalies. In
the similar manner to the application of the ETAS model for detection of relatively
quiet period (Ogata (1988), (1989) and (1992)), we believe that the sensitivity in
detecting such anomalies can be amplified by contrasting the observed with the
predicted seismic activity of the considered space-time volume. In other words,
we need a suitable statistical space-time model for the detection of relatively quiet
periods and regions from hypocenter data of earthquakes. Such a model has to be
good enough to represent the seismicity of the considered wide area throughout
the whole period of the available data.

In this paper, several possible extensions of the ETAS model to space-time
data are considered, based partly on classical empirical studies of aftershocks,
and partly on a number of contrasting speculative hypotheses about the physical
nature of the space-time clustering, as specifically described in Subsection 2.3.
Thus, our main goal here is the discrimination of the models. For such purpose,
goodness-of-fit of the models is compared by the aid of the AIC for two data sets
from tectonically distinctive areas in and around Japan (Section 3). In Section 4,
further practical extensions of the models are suggested for the realistic but com-
plex features such as non-homogeneous background seismicity and occasionally
anisotropic clusters, and further model comparisons are made. A simulation algo-
rithm for these models is described and implemented in Section 5 to compare the
space-time patterns with real data sets. The last section describes the conclusions.

2. Space-time models

2.1 Self-exciting processes

If we denote by Pa¢,az,ay(t,z,y | He), the history-dependent probability that
an earthquake occurs in a small time interval between ¢ and ¢t + At and in a small
region [z,z + Az) X [y, y + Ay), where H; = {(t;, s, yi, Mi); t; < t} is the history
of occurrence times {t;} up to time ¢, their corresponding epicenters {(z;,v;)} and
magnitudes {M;}, then the conditional intensity function A(¢t,z,y | H;) of the
space-time point process can be defined as

lim Pataz,ay(t.z,y | He)
At, Az, Ay—0 AtAzAy ’

/\(t,.’E,y I Ht) =

As far as stationarity is assumed, Hawkes’ type self-exciting point-process
model (Hawkes (1971)) is naturally extended to the following form

(21)  Atzy| H)=py)+ D, glt—ti,z— 2,y —y; M)
{i:t; <t}



382 YOSIHIKO OGATA

=u(z,y)+/Ot//A/A:g(t—s,x—£,y—n;M)

- N(ds, d¢, dn, dM),

for (¢t,z,y) € [0,T] x A, where N(ds,d{,dn,dM) = 1 if an infinitesimal element
(ds,d§,dn,dM) includes an event (t;,z;,y;, M;) for some i, otherwise N(ds,d¢,
dn,dM) = 0.

2.2  Some models from previous studies

An important aspect for space-time statistical modeling is the parametric form
of the response function g(-,-,-;-) of an earthquake described in (2.1). Musmeci
and Vere-Jones (1992) suggest a diffusion type function

CexMe—bt 1 [z2 2
9s(t,z,y; M) = ——————exp {ﬁﬂ (— + y—)}

2 2
2mozoyt oz 0y

with ¢ = (C, o, 8,02, ag), and also a product-Cauchy form

CexMe=Ptc c,
w2 (2? + ¢2¢3) (y? + t%¢5)

gs(t,z,y; M) =

with ¢ = (C, o, B, ¢z, ¢y). For the estimation, they first carried out a kernel-type
smoothing a(z,y) for pu(z,y) in (2.1) using the whole data of locations {(z;,v;) €
A}, and then introduced an additional parameter p such that 0 < p < 1 in order
to adjust itself and the remaining parameters ¢ simultaneously in the conditional
intensity function

’\e(tva:vy)z(l_p)ﬂ(‘r7y)+p Z 9¢(t_t17$—$i7y_yi?Mi)
{u:ti <t}

with 6 = (p; ). This was applied to the Italian historical earthquake data. Due to
the decreased activity in the marginal and outer part of the region, the boundary
effect in the likelihood calculation is negligible in this particular data.

At about the same time, Kagan (1991) suggested other parametric forms of
g(+,+, ;) based on investigations of the second-order statistical features in time
and space of various hypocenter catalogs (e.g., Kagan and Knopoff (1978, 1980)).
One of those, for 2-dimensional space, assuming a linear fault model, is given by

BTy 1 0(3/2)6M
g¢'(t7 33, ?/7 A/[) = t1+ﬁ I[L‘M,OO) (t) : A 10
Va2 + 32 p{ ~(=* +9%) }

"2+ o 10M My P\ 92 1 510M o)

where the parameters ¢ = (8, K, 6,¢,0) are to be estimated. I, 00)(t) is the
indicator function taking value 1 when t > T}, otherwise 0; its purpose is to take
account missing events in a wave duration time Ty in the seismogram, such that
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T o 109°M for each earthquake with magnitude M. The parameter e stands for
the standard error of epicenter determination. In this model, Kagan (1991) used
the scalar seismic moment M, translated into the magnitude M by the relation
(Kanamori and Anderson (1975))

logig M = 1.5M + const.

Among a variety of spatio-temporal models of marked point processes in ecol-
ogy and seismology, Rathbun (1993) applied the model

e“ﬁU‘f’ﬁ(M—M()) < /1‘2 +y2>
)

(t+c)p o

gg(t,z,y; M) =

to California earthquakes with M > 5.0 between 1932 and 1992, where the pa-
rameters are ¢ = (0o, 51,¢,p,0) and ¢(-) is the standard Normal density function
N (0,1%). Further, Rathbun (1996) provides regularity conditions justifying the
standard large sample theory of the maximum likelihood procedure for spatio-
temporal point-process models.

2.3 Extensions of the ETAS model
Among many reported empirical laws for aftershock statistics, one of the most
important with a spatial nature is the Utsu-Seki formula (Utsu and Seki (1955),
Utsu (1969)),
log,q S = 1.02M + const.,

giving the relation between the magnitude M of the main shock and the area of
aftershock region S. The aftershock region in their sense is defined as the narrowest
convex set that includes almost all the aftershocks within a certain time span from
the occurrence time of the main shock. The aftershock region is approximated by
an ellipse to calculate the area (Utsu (1969)). Nowadays, the aftershock region
is known to correspond to the ruptured fault region of the main shock, and the
aftershock area is closely related to the seismic moment cited in the last section.
Also, the number of aftershocks V in a certain time interval after the main shock
is considered to be proportional to the aftershock area S, so that a similar relation
to the Utsu-Seki formula holds (Yamanaka and Shimazaki (1990)). The number
density of aftershocks N/S and also the constant terms in both the Utsu-Seki
formula (Utsu (1969)) and the moment versus magnitude relation (Kanamori and
Anderson (1975)) take significantly different values for earthquakes within a plate
and on a plate boundary.

On the other hand, remember that the ETAS model is not concerned with
the discrimination between main shocks and aftershocks, but with the appropriate
form of the response function for the causal relation with subsequent events (Ogata
(1988)). In a similar manner, we are concerned here with the response function
for space-time causal relationship, taking the above mentioned quantitative studies
into consideration. Specifically, we are concerned with the following questions of
physical interest.
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1. What is the form of the spatial terms in the model? Are the clusters restricted
to well-defined regions, such as aftershock areas, or do they extend beyond
the traditional aftershock regions? Can one discriminate between a model
with a fairly sharp boundary, and one with a much more diffuse boundary?
Are there perhaps two components (near field and far field) with different
characteristics?

2. How do the cluster regions scale with magnitude? Do they increase with
magnitude, or are they more or less independent of magnitude?

As extensions of the ETAS model we confine ourselves to space-time response
functions g4(t, z,y; M) such that the superposed conditional intensity

=//A At, z,y)dzdy

coincides with the conditional intensity of the ETAS model in (1.3). That is to
say, the response functions must satisfy

Koea(M Mo)
= (t, = .
// 94 (t, z,y; M)dzdy ~ // 9¢(t z.y; M)dzdy = S (t+op

Such response functions for the isotropic (i.e. rotation invariant) spatial clus-
tering include:

Ko 1 2?42
(2.2) 96(t,z,y; M) = G+op P {“g_dea'(M—Mo) :
K, ea(A’I—Mo)
2.3 tr,y; M) = : )
(2.3) ge(t,z,y; M) (t+c)p (@2+12+d)
and

Ko z? +y2 -
g¢(t,x,y§M) = (t+C)p (ea(hI—Mo) +d ’

where ¢ = (Ky,c,a,p,d) for (2.2), and ¢ = (Ko, c, o, p,d,q) for (2.3) and (2.4).
The models (2.2) and (2.3) are presented in Ogata (1993).

The discriminating features among the above models can be summarized as
follows. All the above response functions can be rewritten in the common standard
form

N et O - 1 2 +y?
(28) gtz M) = w(M) x o "[m(zw)'f {o<M> H

where k(M) o e*™ is a cluster size factor (expected number of aftershocks for the
event of magnitude M), (p - l)c”‘l/(t + ¢)P is time probability density distribu-
tion, and 71'_10'(]\/[ 1f{ (2% +y?)/o(M)} is space probability density distribution
(equivalently fo z)dz = 1 holds) in which the scale factor o(M) is allowed
to depend on maomtude M. Then the main contrasts in modeling the response
function taking the points of our questions into consideration are:
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1. between the functional forms allowed for f(-); short range decay (i.e. normal
etc.) versus long range decay (i.e. inverse power law), and
2. between either o(M) = const. (independent of M) or o(M) = e*M.

It should be noted that the exponential form for (M) is due to that the
superposition of the present space-time intensity models with respect to space is
the ETAS model in time, and that the exponential form for o(M) is based on the
Utsu-Seki law of the aftershock area relative to the magnitude of the main shock.

2.4 FEstimation and model comparison

Given occurrence times and space coordinates of earthquakes with their mag-
nitudes {(t;, z;,yi, M;); M; > Mo,% =1,...,n} during a time interval [0, 7] and in
a region A, the log-likelihood of the model (2.1) is given by

n T
(2.6)  log L(u, ¢) :Zlogx\(ti,xi,yilHt)—/ // Aty | H)dtdzdy.
0 A

i=1

The first term can be computed straightforwardly. For the numerical calculation
of the second term we have to prepare the following notations; first assume, for
simplicity, that p(z,y) = p = const. (cf. Subsection 4.2), and that the study region
Aisaconvex set. Let A—(&,n) = {(z—¢&,y—n); (z,y) € A} for any location (£,7)
in A. Further, for each event ¢ with location (z;,y;), suppose the region A —(z;,y;)
is radially divided into K subregions {Ag;k =1,2,..., K} by the radial segments
connecting between the origin and each of the K knots on the boundary of the
convex region A — (z;,y;) such that

K
A— (l‘i, yi) = U As).
k=1

Let the angles of the dividing line segments of the k-th subregion AL’) be 6, and
Op+1 (0<0) <+ <Ok < Oky1 < -+ < Og < 27) at the origin anti-clockwise
from z-axis, and let Ag = Ok4+1 — k. Then, changing the order of the integrals,
the second term is calculated as follows.

(2.7) /OT/A/\(t,x,y | H,)dtdzdy

T o)
= uT|A] -l-/ // N(ds,d¢&, dn,dM)
0 A J Mg
T-s
[ ddsdygatezinn
0 A—(&m)

n T-t; K
—url+ Y [0S [ ardsdygate sy
i=170 k=177 AL
K

~ T|A|+Xn:/T_ti Ko dtxZS(m‘ yis M) B
~ — Jo (t+C)P o k\Zi, Yi5 V4 o
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In the last (approximate) equality, we have transformed and approximated the

integral of g4(-) with respect to Cartesian coordinate dzdy over the subregion A,(Ci)
by the integral with respect to the polar coordinates rdrdf over the partial disc
centered at the origin with radius ry which is a distance between (z;,y;) and a

point on the segment in boundary of the subregion AEC'). Here, K is taken to be
sufficiently large for the accurate numerical approximation of the integral in (2.7).
This is important for the accurate log-likelihood calculation avoiding the boundary
effect. Specifically, Sk(-, ;) is the integration of the spatial factor of gy (t,z,y; M)
over the disk with the radius 7 such that

_ -r2
(28) Sk(xi,yi‘, Ml) = Qﬂ'dea(Mz Mo) |:1 — exXp {W:k——lwo)}] for (22),
a(M;—Mo)
= ﬁe_l—q- {3 +d)'"7—d'"9}  for (2.3), and
reaMi=bo) [ 42 e
-1, {ea(NIi—MO) +d} -d 71 for (2.4).

The maximum log-likelihood and its maximizing parameters § = (ji, @) in
(2.6) are computed by a standard nonlinear optimization procedure such as the
Davidon-Fletcher-Powell algorithm which uses gradient vector values of the func-
tion in (2.6) with respect to the parameters as the inputs (see Fletcher and Powell
(1963) and Kowalik and Osborne (1968)). For our models the shape of the log-
likelihood function in (2.6) can be complex, so that the initial values of the pa-
rameters to maximize the function should be taken carefully. For instance, y is
taken as a quarter of N/(T|A|); Ko, ¢, and d are taken small positive values such
as 0.01; p~ 1.3, ¢~ 2.0 and a = 1.0.

To compare the goodness-of-fit of the models, we use the Akaike’s Information
Criterion (AIC; Akaike (1974)) which is defined by

(2.9) AIC=-2 mguc(log-likelihood) + 2 x (number of adjusted parameters).

A model with a smaller AIC value is considered to be a better fit.
3. Comparison of the models

3.1 Application to the JMA data

We use the hypocenter data compiled by the Japan Meteorological Agency
(JMA), and consider two data sets from tectonically distinctive areas. The first
data are chosen from the wide region 36~42°N and 141~145°E (off the east coast
of Tohoku District; see Figs. 1a and 1b) for all depth and for the time span 1926—
1995. From now on, we refer to this region as Region A. The majority of large
earthquakes in Region A took place on the plate boundary between the North
American and subducting Pacific plates. The same region was discussed in Ogata
and Katsura (1988) for the estimation of the intensity rate of an event with respect
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Fig. 1. Earthquakes with M > 5.0, off the east coast of Tohoku District (Region A),
northern Japan, for the time span of 1926-1995; (a) distribution of epicenters and (b)
space (latitude) versus time plot. Size of circle and plus sign corresponds magnitude of
earthquake.

36

to location only: a similar method will be used to fit the background seismicity in
Subsection 4.1.

Here, we consider several data sets for earthquakes with M; > Mj to examine
the stability of the results, where the threshold magnitudes My are taken as 6.0,
5.5, 5.0 and 4.5.

Another area of interest is the region 34~38°N and 131~137°E, the central
and western part of Honshu Island, Japan, shown in the Fig. 2a, hereafter referred
to as Region B, where the majority of earthquakes are considered to be intraplate
events within the Eurasian, North American and Philippine Sea plates. Shallow
earthquakes (h < 45 km) are considered for the time span 1926-1995 (see Fig. 2b
for longitude versus time plot of the seismicity). Again, we consider several data
sets for earthquakes in this area with M; > My, where the threshold magnitudes
My are taken as 5.5, 5.0, 4.5 and 4.0.

The AIC comparison and parameter estimation of the models are carried out
for each data set. We here note that, in calculating epicenter separation (distance
between earthquake epicenters), the difference in longitudes is reduced by a factor
cos(myo/180°) relative to the difference in latitudes (one degree corresponds to
about 111 km), where yo is taken to be the latitude of the center of the area.
Table 1 lists the estimated parameters and the AIC values of the respective models.
According to the table, the goodness-of-fit of model (2.4) is significantly better
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Fig. 2. Shallow earthquakes with M > 4.5 in central and western Honshu area (Re-
gion B), central Japan, for the time span of 1926-1995; (a) epicenter distribution, and
(b) time versus space (longitude) plot.

than the others for most of the cutoff magnitude levels from both areas. This gets
clearer as the threshold magnitude Mj increases. Concerning the questions on
the clustering features raised in Subsection 2.2, the best model (2.4), in contrast
with the others, suggests that the clustering shows long-range decay with distance,
and that the size of the spatial cluster scales sharply with the magnitude of the
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Table 1. Estimated parameters and the AIC values for the models with the homogeneous Pois-
son field for the background seismicity and the isotropic clustering.

Model m K ' c a P d q AlIC
(shock/day/degreeQ) (days) (M~ (degree)
Off the east coast of Tohoku District M > 6.0, 334 shocks
(2.2) 153 x 1073 174 106 x 1071 1.666 0.968 .211 x 107! 4038.5

(2.3) 137x1073 896 x 1073 977 x 1072 1.3906 0.971 .575x 10~} 1.712  4035.6
(24) .140x 1073 174 x 1073 952x 1072 1.636 0.965 .164 x 10! 1.860 4008.0

Off the east coast of Tohoku District M > 5.5, 900 shocks
(2.2) .337x1073 425 124 x 1071 1.827 0.964 .627 x 10™2 8874.5
(2.3) .251x 1073 700 x 1073 122 x 10”} 1.247 0.970 .160 x 10™! 1.471 8910.5
(2.4) .282x107% 669 x 107 .120x 107! 1.784 0.965 .620 x 1072 1.852 8798.1

Off the east coast of Tohoku District M > 5.0, 2104 shocks
(2.2) .661x 1073 566 110 x 1071 1.584  0.937 .454 x 1072 18295.2
(2.3) 423 x 1073 542x 1073 115x 107!  1.176 0.949 .156 x 10”1 1.482 18220.3
(2.4) .502x1073  931x107% .114x 1071 1.591 0.943 .265x 1072 1.612 18085.7

Off the east coast of Tohoku District M > 4.5, 4333 shocks
(2.2) .111x10"2 780 7T77x 1072 1.360 0.900 .305 x 10~ 2 33314.2
(2.3) 558 x 1073 443 x 1073 872x 1072 0.949 0.917 .640 x 1072 1.438 33124.9
(2.4) 707 x107% 967 x 10™% 836 x 1072 1.281 0.909 .184 x 1072 1.565 32897.4

Central and Western Honshu Island M > 5.5, 157 shocks
(2.2) .864x107% 389 321 %x 1072 0.779 0.973 .851 x 1072 2306.8
(2.3) .669x 1074 342x 1073 319x 1072 0.955 0.944 .955x 10”2 1.506 2279.5
(2.4) B70x107% 277 x107% 315x 1072 0.902 0.944 .393 x 1072 1.450 2281.5

Central and Western Honshu Island M > 5.0, 489 shocks
(2.2) 176 x 1073 1.226 178 x 1072 0.932  0.962 .318 x 1072 5030.1
(2.3) 121x1073 254 x 1073 172 x 1072 0.843 0.944 .402 x 1072 1.548 4975.3
(2.4) .127x1073  152x 1073 172 x 1072 0.871 0.946 .225x 10”2 1.584 4972.7

Central and Western Honshu Island M > 4.5, 1285 shocks
(2.2) .329x 1073 1.926 369 x 1072 0.853 0.974 .251 x 10”2 9592.3
(2.3) 217x 1073 243 x 1073 406 x 1072 0.890 0.967 .192 x 102 1.490 9395.5
(2.4) 226 x 1073  .152x 1073 408 x 1072  0.950 0.968 .845 x 1073 1.492  9376.1

Central and Western Honshu Island M > 4.0, 3007 shocks
(2.2) .633x 1073 3.562 483 x 1072  0.972 0.966 .121 x 1072 16510.6
(2.3) 312x 1073 276 x 1073 517x 1072 0.822 0.962 .729 x 1073 1.382 15904.4
(2.4) .335x 1073 167 x 1073 514 x 1072 0.910 0.961 .341 x 10”3 1.405 15836.7

earthquake. We see that « for the plate boundary region is systematically larger
than for the intraplate events. Further, p in both regions has a value slightly
smaller values than 1; the reason will be suggested in Section 4.

According to the estimate 4 in the model (2.4), the background seismicity rate
in the Region A (plate boundary) relative to the whole seismicity rate is about
twice as high as in Region B (region of intraplate earthquakes) for each of the
same threshold magnitudes My = 5.5, 5.0 and 4.5. Since the total numbers of
earthquakes in Region A is about three to four times as large as the one in Region
B for each magnitude threshold, this shows that clustering activity of clusters is
higher in Region A than in Region B.
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4. More realistic models

4.1 Cluster identification and centroid of aftershock epicenters

It is often the case that the epicenter of a main shock is located at the margin
of its aftershock area, because the epicenter listed in the catalog corresponds to
the location of the rupture initiation. In such cases, the epicenter location in the
catalog is not quite suitable for the present models with spatial response functions
given in (2.2)-(2.4). Instead, we will consider the centroid of aftershock epicenters
defined as follows using the JMA hypocenter catalog. In order to estimate the
centroid, we have to identify clusters of aftershocks. Then, we use the average of
the locations of the aftershocks in a cluster to replace the catalogue’s epicenter
of the main shock. The following algorithm for identifying aftershock clusters is
a modification of the magnitude-based clustering (MBC) algorithm introduced in
Ogata et al. (1995) which is based on Utsu-Seki empirical law of the aftershock
area in space and the modified Omori law in time.

The MBC algorithm for the present purpose starts with selecting the largest
shock in the catalog for the main shock. If there are plural largest shocks, the
earliest one is adopted for the main shock. Then, to form a cluster, we set a space-
time window where the bounds of distance and time depend on the magnitude of
the main shock as explained below. All the earthquakes within the window are
considered to be the cluster members, and removed from the catalog. Then the
largest events in the remainder are selected to continue the same procedure. This
procedure lasts until only isolated events remain. The time span of the window is
taken to be max(100,10%°~1) days (i.e. 100 days for M = 4 ~ 6 and 1000 days
for M = 8) after the main shock. The side length of square area for the space
window centred at a main shock epicenter is taken to be 2 x (0.015 x 10%-3M~2 1 ¢)
degrees (i.e., about 70 km for M = 4 and 400 km for M = 8): here, we took
€ = 0.3 degrees for the error of epicenter determination in early years of the JMA
catalog.

The difference of the present (modified) MBC with the original MBC in Ogata
et al. (1995) is that here the clusters include aftershocks only, while the original
definition included any ‘preshocks’ in addition. Examples of the main shocks thus
identified at their superposed locations are shown in the maps of Figs. 3a and 3b
for both areas.

4.2  Non-homogeneous background seismicity

Instead of the constant i estimated in Subsection 2.4, we will estimate the
function p(z,y) in (2.1) indirectly as follows. Expanding the function log u(z,y)
by the bi-cubic B-splines, its coefficients are estimated by maximizing the penal-
ized log-likelihood where we assume the non-homogeneous Poisson field for the
likelihood and a smoothness penalty for u(z,y). Ogata and Katsura (1988) de-
scribes the detail of the model and of the objective Bayesian estimation procedure
to determine the weights for the penalties. In the present case, the data for the
estimation is not the whole data but only the main shocks identified by the MBC
algorithm in Subsection 4.1. The intensity function thus estimated is denoted by
fio(z,y). This function is estimated for each data set for each of the different mag-
nitude thresholds. An example of the estimated intensity functions of location is
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(b)

Fig. 3. ‘Main shocks’ identified by the algorithm of Magnitude based clustering (MBC;
see text) in (a) Region A and (b) Region B for the earthquakes with M > 5.0 and
M > 4.5, respectively. The contours for both (a) and (b) show the height of the spatial
intensity functions for the non-homogeneous Poisson fields for the ‘main shock’ locations
(+-signs) in the respective regions; the contour lines increase exponentially such that

1,2,4,....

shown in Figs. 3a and 3b for Regions A and B with the threshold magnitudes 4.5

and 5.0, respectively.

We then assume that the background intensity rate per unit space-time vol-

ume at location (z,y) is given by

(4.1) w(z,y) = v- jo(z,y),

where v is a constant to be estimated.

4.3 Anisotropic clustering

Usually, estimated epicenter locations of aftershocks are approximately ellip-
tically distributed (see Utsu (1969), for instance), for several reasons such as the
dip angle of the slipped fault of an earthquake, proportion of the slipped length of
the fault to its width, and the location errors of aftershock hypocenters. There-
fore, aiming at a better fit of the models to an earthquake catalog, each response
function in (2.2), (2.3) and (2.4) is extended in such a way that the isotropic term
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z2 + y? in the response functions is replaced by

1 02 , o1 o
(4.2) N (Ulm 2pzy + 021/ >
so that the corresponding iso-circle and iso-ellipse as a cross-section of the function
at the same height have the same area as each other. Then the numerical integral
in (2.7) with (2.8) for each of the extended models of (2.2), (2.3) and (2.4) for
(4.2) is carried out in the same way, expect that the Euclidian distance 74 from
(z;,;) to the boundary’s k-th knots (&, ) in (2.7) is replaced by

(4.3) ri= —\/1_1_—? {Z—f(&c —z3)? = 2p(& — i) (e — yi) + Z—;(m— - yi)2} .

In (4.2) and (4.3), the parameters are restricted to satisfy o; > 0, oo > 0 and
—1 < p < 1, but these are allowed to take distinct values depending on the
clusters as follows.

Suppose that events in space-time data are decomposed into a number of
clusters by the MBC algorithm described in Subsection 4.1. Assume that the
locations of the main shock and its aftershocks {(z;,y;) € C;i =1,...,n} in each
cluster C € Cp e are distributed according to one of the following four models of
bivariate Normal distribution;

V(G5 ) G #)
() (o 7)) e () (s 7))

where (z1,%1) is the epicenter location of the main shock in the cluster, (Z,7) is
the centroid of aftershock epicenters (i.e. the sample average of the locations over
the cluster members), and

(4.4)

|

52 = Z(lE] - Il)2 + Z(yj - y1)2 /2n;

J

0% =D (w5 =)+ 3w —9)° p /2m

J

Gt=) (z;—x)%/n, 83=> (yi—w)?/n,

J J

p= Z(x] - z1)(y; — v1)/(n152);



SPACE-TIME MODELS FOR EARTHQUAKE OCCURRENCES 393

where every sum is taken for j = 1,...,n.
Then, for each cluster, the goodness-of-fit of these models are compared by
using
AIC = nlog ||S|| + 2K + const.

in the present case; where n is the number of cluster members, S is the estimated
variance-covariance matrix of the model, ||-|| is the determinant of the matrix, and
K is the number of adjusted parameters. Here, K = 1,3,3 and 5, respectively, in
the order of the above models of Normal distribution in (4.4). The model with the
smallest AIC is selected for each cluster. However, it is found that extremely high
correlation p = £1 takes place for a number of clusters with only a few members.
The reason is that in early years the epicenters were determined on a coarse spatial
lattice. Therefore, to avoid this difficulty, the four models in (4.4) are compared
only in the case where cluster size is equal to or greater than 6; otherwise, one of
the first two models in (4.4) is selected.

If AIC selects any of the models in which the centroid of aftershock epicenters
(Z. ) is used, then the epicenter coordinate (z;,y;) of the main shock in the catalog
is replaced by (Z, 7). Also, if AIC selects any of the last two models for anisotropic
clusters in (4.4) then the corresponding estimates of o, o2 and p are used for the
elliptic form in (4.2) in the response function of the corresponding main shock;
otherwise they remain the same as for other events which are not identified as
main shocks by the MBC algorithm. In this way, the data sets used in Subsection
3.1 for various cut-off magnitudes are modified to compare the goodness-of-fit of
the extended versions of those in (2.2)—(2.4).

4.4 Model comparison among the extended models

Using the centroid locations and the anisotropic deformation based on the
procedure described in the previous sections, we can compare the extended models
of (2.2)-(2.4),

(45) /\(tyx7y | Ht) = V‘/lo(ll',y)+ Z gtb(t'—ti’l‘_mi:y—yi;Mi)a
{i:t:<t}

where the response functions are of the form

) = (p—Dert [ 1 r*(6)
(4.6) 9o(t, 2, y; M) = w(M) x 8 [WU(M) I { o(M) }]

(t+c)p
where
1 o2 o1
4.7 7'20:———(—“:7: — 2px +—2>
(4.7) (6) — o, Ty + Y

with § = tan~!(y/z). Then the same calculation as in (2.7) with the same S(-, ;-)
as (2.8) are carried out, except that the Euclidian distance rj between the origin
and the k-th segment on the boundary of the set A — (z;,y;) is replaced by the
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Table 2. Estimated parameters and the AIC values for the models with the non-homogeneous
Poisson field for the background seismicity and the isotropic clustering.

Model v K c a p d q AIC
(shock/day/degreez) (days) (A{_l) (degree)
Off the east coast of Tohoku District M > 6.0, 334 shocks
(2.2) .447x107% 249 283 x 1071 1.750 1.094 .142 x 107! 3891.0

(23) .449x107% 819x 1073 .304x 107! 1.456 1.122 .501 x 10! 1.721  3908.3
(2.4) .437x107% 608 x 10°% .266 x 10”1 1.831 1.096 .230 x 10! 2.327 3868.8

Off the east coast of Tohoku District M > 5.5, 900 shocks
(2.2) .626 x 10~ 483 311x 1071 1.783  1.101 .608 x 10~ 2 8597.5
(2.3) .627x107%  619x 1073 354 x 107! 1.419 1.136 .226 x 10! 1.574 8651.4
(2.4) .606 x 1074 262 x107% 313x 107! 1.860 1.104 .755x 1072 2.126 8540.1

Off the east coast of Tohoku District M > 5.0, 2104 shocks
(2.2) .895x 1074 771 318 x 1071 1.769 1.084 .281 x 1072 17657.0
(2.3) .854x10™% 488 x 1073 .353x 10”1 1.407 1.121 .159 x 10! 1.513 17620.2
(2.4) .844x10™% 501 x10™% .327x 10~} 1.801 1.094 .204 x 10”2 1.668 17477.4

Off the east coast of Tohoku District M > 4.5, 4333 shocks
(2.2) 139 x107% 1.027 219 x 107! 1.588 1.031 .175 x 1072 32216.4
(2.3) .133x1073 346 x 1073 266 x 107!  1.308 1.072 .792x 10”2 1.435 32095.1
(2.4) 131x1073 416 x107% 230 x 107! 1.605 1.043 .103 x 10”2 1.587 31859.7

Central and Western Honshu Island M > 5.5, 157 shocks
(2.2) .500 x 1074 1.272 828 x 1072 1.867 1.108 .881 x 10~3 2190.4
(2.3) 461 x10~% 419 x 107% .107x 107! 1.584 1.109 .116 x 10”! 2.001  2168.2
(2.4) 459 x 1074 250 x 107% 963 x 1072 1.464 1.097 .155x 1072 1.731 2172.0

Central and Western Honshu Island M > 5.0, 489 shocks
(2.2) 505 x 10°¢ 1.401 357 x 1072 1.072 1.043 .242 x 1072 4746.5
(2.3) .479x 1074 844 x107% 371x 1072 1.121 1.041 .358 x 102 1.725  4707.9
(2.4) 490 x 107% 235 x 10”% 402 x 1072 1.199 1.046 .135x 10”2 1.818 4688.4

Central and Western Honshu Island M > 4.5, 1285 shocks
(2.2) 697 x 10™% 2.481 745 x 1072 0.974 1.056 .177 x 10~2 9114.6
(2.3) .63d4x10”% 919x 1074 .793x107? 1.120 1.052 .204 x 10”2 1.660 8946.8
(2.4) 645 x10™% 425 x 10™% 814 x 1072 1.109 1.054 .678 x 10”3 1.668 8928.0

Central and Western Honshu Island M > 4.0, 3007 shocks
(2.2) 111x107% 4.747 883 x 1072  1.052 1.031 .850 x 1073 15708.5
(2.3) 906 x 107% 128 x 1073 830 x 1072 0.974 1.026 .804x 1073 1.510 15269.4
(2.4) .947x107% 511 x 107% 855 x 1072 1.040 1.027 .316 x 10~3 1.568 15174.6

metric defined in (4.3). The case where 0; = 02 and p = 0 reduces to the isotropic
clustering in (2.5). ‘

The extended models are fitted to each modified data set as described in
Subsection 4.3. Table 2 summarizes the results for the three models with non-
homogeneous background intensity (4.1) and isotropic spatial clustering (2.5), and
Table 3 summarizes the results for the three models with non-homogeneous back-
ground intensity (4.1) and anisotropic spatial clustering (4.6). The goodness-of-fit
of the extended versions of the model (2.4) is again far better than the other two
for all the data sets in both Tables 2 and 3. The estimated parameters for each
model and data set are rather similar to the corresponding ones in Table 1. It is
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Table 3. Estimated parameters and the AIC values for the models with the non-homogeneous
Poisson field for the background seismicity and the anisotropic clustering.

Model v K c a p d q AlIC
(shock/day /degree?) (days) (M1 (degree)
Off the east coast of Tohoku District M > 6.0, 334 shocks
(2.2) .441x10"% 257 276 x 1071 1.802 1.088 .131 x 107! 3891.2

(2.3) 446 x107% 817x1073 .303x 107! 1.472 1.119 474 x 10"} 1.693 3910.6
(2.4) .432x107% 576 x107% 266 x 10°! 1.860 1.093 .219 x 10~! 2.318 3868.5

Off the east coast of Tohoku District M > 5.5, 900 shocks
(2.2) 624 x10™% 493 311x 1071 1.789 1.100 .592 x 10”2 "8594.8
(2.3) 626 x 10°% 614 x 1073 357x 107! 1.423 1.136 .220x 10”! 1.569 8651.8
(2.4) .605x 10™% 223 x10”% 316 x 10~} 1.873 1.103 .762x 10~2 2.165 8536.8

Off the east coast of Tohoku District M > 5.0, 2104 shocks
(2.2) .894x107% 804 322x 1071 1.782  1.084 .266 x 1072 17640.1
(2.3) .850x107%* 479 x 1073 349 x 107! 1.411 1.120 .156 x 10~! 1.513 17608.2
(2.4) .845x107% 433 x107% 327x 107! 1.809 1.094 .208 x 10-2 1.698 17463.7

Off the east coast of Tohoku District M > 4.5, 4333 shocks
(2.2) .139x 1073 1.050 220 x 1071 1.595 1.031 .170 x 10™2 32195.0
(2.3) 133x1073 336 x 1073 267 x 107! 1.323 1.072 .799 x 1072 1.441 32064.4
(2.4) .131x1073 .382x107% 231 x107! 1.612 1.043 .102x 1072 1.600 31838.1

Central and Western Honshu Island M > 5.5, 157 shocks
(2.2) .495x 10~ 1.013 882 x 1072 1.463 1.110 .170 x 1072 2194.7
(2.3) 466 x107™% 257 x 10”% .110x 107! 1.641 1.116 .175x 10! 2.267 2172.5
(2.4) .462x10”%  200x 107% 977 x 1072 1.409 1.102 .217 x 10”2 1.843 2177.8

Central and Western Honshu Island M > 5.0, 489 shocks
(2.2) 510 x 10°% 1.514 364 x 1072 1.065 1.045 .224 x 1072 4734.9
(2.3) .483x107% 651 x 107% 374 %1072 1.120 1.043 .448 x 1072 1.825 4705.4
(2.4) .495x107% 134 x107% 408 x 1072 1.196 1.048 .171 x 1072 1.960 4682.1

Central and Western Honshu Island M > 4.5, 1285 shocks
(2.2) 697 x107% 2519 752 x 1072 0.959  1.056 .177 x 1072 9097.1
(2.3) 638x107% .832x107% 813x107% 1.147 1.054 .212x 1072 1.682 8920.7
(2.4) .647x107% 407 x10™% 826 x 1072 1.106 1.055 .675x 1073 1.676 8909.7

Central and Western Honshu Island M > 4.0, 3007 shocks
(2.2) .110x 1073 4.739 886 x 1072 1.065 1.031 .843 x 1073 15695.9
(2.3) .907x107% 124 x1073 846 x 1072 0.997 1.026 .818 x 1073 1.513 15254.6
(2.4) 946 x 10™% 477 x10™% 866 x 1072 1.057 1.027 .316 x 1073 1.577 15158.1

noteworthy that each AIC in Table 2 is remarkably smaller than the corresponding
AIC in Table 1, although the justification is not established for the straightforward
comparison by AIC with the models which include the function fo(z,y) adjusted
beforehand. The p-values which are less than 1 in Table 1 now become larger
than 1 for the extended models, suggesting the stationarity of the models. This
is consistent with our experience in estimating the ETAS model to the various
seismicity data. The non-homogeneous background intensity models also made
the estimate of ¢ larger by comparing Tables 1 and 2. We feel that the inclusion of
the non-homogeneous background intensity in the space-time modelling provides
the significantly better performance for the both two seismic areas.
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Comparing between Tables 2 and 3, we see that the parameters of the corre-
sponding models are quite similar and also that the decrease of the AIC is not very
large in spite of the implicitly adjusted many parameters for the anisotropic clus-
tering in (4.4). Therefore, we cannot clearly see whether the anisotropic modelling
remarkably improved the goodness-of-fit or not. However, throughout Tables 1,
2 and 3, it is clearly confirmed that model (2.4) for the spatial clustering is the
best, which provides the answers to the questions raised in Subsection 2.2. Finally,
by estimating the quantity [ Zuo(z,y)dzdy for the comparison of seismic features
between in Region A (plate boundary) and in Region B (region of intraplate earth-
quakes), we see that the same statements as in the last paragraph of Subsection
3.1 hold.

5. Comparison between simulated and real catalogs

5.1 Simulation procedure

As is briefly described in Musmeci and Vere-Jones (1992), a simulated catalog
can be developed following the thinning simulation procedures outlined in Ogata
(1981). In particular, the example algorithm for the Hawkes’ mutually-exciting
(multivariate) point processes provided in the paper can be developed for the
present space-time models. Given the intensity (2.1) with (2.2)-(2.4), events in
a realization are simulated sequentially in such a way that, for each point, first
the time coordinate (steps 1-7 below), and then the space and magnitude values
are obtained (steps 8-11), starting from the form of the intensity function at the
time of the proceeding event, and recalculating the intensity after the addition of
the current point. Incidentally, although there is an alternative and more general
thinning method which simultaneously simulates time and space coordinates, this
takes much more c.p.u.-time because the rejections are dominant in the procedure.

Consider the superposed intensity with respect to locations

J
(5.1) Aalt) =vo+ Y v;(t),

where

vy = / w(z,y)dzdy, J=max{j:t; <t}
A
and

o o0 K
. . = — tag - M\dzdy = . pa(Mj;—Mg)
(5 2) I/J(t) /_Oo /_oo g¢(t t17T7y1 _7) zay (t—- tj +C)p e

where K is a constant due to the spatial integration over R2. Notice that A4 (t) is
monotonically decreasing in time except increasing jumps from A4 (t;) to Aa(t;+)
at any occurrence time t;, where A(t+) denotes the right-limit of the function (the
left-continuity is generally assumed), and the jump size at each i is v;(t;). Then
the algorithm to simulate {(t;, z;, yi, M;)} follows:

1. Set the integersa =b=c=0and i = 1.
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2. Set s, = 0; generate a uniform random number U, in (0, 1], and put A, = v
and ug = —log(Uy)/A..

3. If ug > T then stop; otherwise put ¢; = u,. put J = 0, and go to step 8.

4. Set b equal to b+ 1 and generate a uniform random number U, in (0,1]; set
a equal to a + 1, and put u, = — log(Us)/A..

5. Put sq = 541 +u,. If s, > T, stop; otherwise set b equal to b + 1, and
generate Up.

6. If Uy > Aa(sa)/Ac, set c equal to c+1 and put A; = A4(s,); and go to step 4.

7. Put t; = s4; set b equal to b+ 1, generate Uy, and select the smallest J such
that Yo7 o v;(t:) > UpAa(ts).

8. If J = 0 then generate (z;,y;) € A according to the non-homogeneous Poisson
intensity u(z,y) (using the thinning), and go to step 11.

9. Otherwise (i.e., if J > 0), set b equal to b + 1, generate uniform random
numbers U, and V; in (0, 1], set z; = 25 + r(Up, J) cos(27V}) and y; = ys +
(U, J) sin(27V,) where the function 7(-,-) is defined below.

10. If (z;,y;) is not included in the bounded region A, then go to step 4.

11. Generate a magnitude M;, set ¢ equal to ¢ + 1 and put A, = Aa(t;+); set @
equal to i + 1, and go to step 4.

In step 9, the distance 7(Us, J) between (z;,y;) and (zy,ys) is given by

r(U,5) = d/2e~ M =M)/2(_910g U)Y/2  for (2.2),
= d1/2(U1/(1_‘7) — 1)1/2 for (2.3),
= @/2e=aM;=Mo)/2(1/(1-0) _ )2 gor (2.4,

respectively. For the generation of magnitudes {M;} in step 11, we can either
use the same magnitude series as the data or independently sample from the
magnitude series. Since I have the strong suspicion that the magnitude sequence
is not independent but rather long-range dependent (see Figs. 9 and 10 in Ogata
and Abe (1991)), we adopted the former to concentrate on the space-time aspect
of the models. Therefore, we terminate the generation of events when we get
the same number of the events as the data instead of providing the time span
beforehand as described in the above algorithm.

5.2  Implementation of the simulation

We performed simulations of space-time events using the selected model (2.4)
with the parameters in Table 2 estimated for both Region A with M > 5.0 and
Region B with M > 4.5. Figures 4a and 5a show the superposed locations of
space-time events, and Figs. 4b and 5b show plots of events’ latitudes and longi-
tudes against occurrence times, respectively. Comparing Fig. 4a with Fig. 1a we
feel a similar pattern in location. The same impression is given by Figs. 2a and 5a.
But, from the comparison of the space-time plots in Figs. 1b and 4b, we see dis-
criminating features between these. That is, synchronous and intensive clusters
in high contrast with the rest are seen in real seismicity, while the clusters seems
to occur independently and somewhat weakly in the simulated data. A some-
what similar impression is gained from the real and simulated seismicity shown
in Figs. 2b and 5b. These distinctive features seem important for the ultimate
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Fig. 4. Simulated events by the selected model (2.4) in Table 2 (M > 5.0) for Region A
(Fig. 1); (a) locations, and (b) space-time plot.

objective of our study, and there are several possible reasons for them. Firstly,
the long-range dependence of the occurrences may be stronger than that expected
from the model, which assumes a stationary Poisson process for the background
seismicity. Secondly, in the model, we have assumed that the magnitude sequence
is independent of origin times, spatial locations and the position within a clus-
ter; this is the basic assumption justifying the use of the partial log-likelihood for
the estimation of the models. Such cross-correlations may not be negligible. It
is also possible that the real seismicity may include forms of the quiescence and
activation not present in the seismicity expected from the model. In reality, the
seismic activity depends on the dynamical change of the underlying stress-field of
an area owing to various geophysical factors, many of which are not considered in
our models. Their study is certainly for the next step.

Now, we here fit the model (4.5) with the fixed vo(z,y) to the simulated data
in order to examine the likelihood ratio test statistic

(—2) log L(8)/L(8o).

Under the null hypothesis 8y = (v, Ko, ¢, @0, Do, do, o) by which the space-time
point process data is simulated, we can expect that the likelihood ratio statistic
should be distributed according to the chi-square distribution with 7 degrees of
freedom if the simulation algorithm in Subsection 5.1 and the numerical likelihood
calculation are both correct: the same approach was used by Ogata (1981) in the
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Fig. 5. Simulated events by the selected model (2.4) in Table 2 (M > 4.5) for Region B
(Fig. 2); (a) locations, and (b) space-time plot.

first demonstration of the thinning simulation of intensity based point processes.
Actually, in the present case, we found that the log-likelihood ratio values vary
around 7.0 for the independent sets of simulated data. This eventually justifies
the accuracy of the numerical integrations in (2.7) and also of [, uo(z,y)dzdy in
the log-likelihood calculations.



400 YOSIHIKO OGATA

6. Concluding remarks

Among the possible space-time extensions of the ETAS model in (2.2)-(2.4),
the model with the response function (2.4) and its extensions to location dependent
background intensity and anisotropic clustering all give the best fit to the data
sets from both the plate boundary (Region A) and intraplate region (Region B).
The results are stable for the data sets with different threshold magnitudes of
earthquakes. The difference of AIC increases as the size of the data increases,
suggesting that the above result gets clearer for the data with the lower threshold
magnitude levels. The model (2.4), in contrast with the others, indicates that:

1. the functional form for f(-) in (2.5) and (4.6) extends long range (i.e. inverse
power law) rather than short range (i.e. normal etc.), and

2. the scale factor depends on the magnitude in the form o(M) = e

Thus, conclusions and consequence of this study are as follows:

1. The clusters in space extend beyond the traditional aftershock regions, show-
ing a much more diffuse boundary with power law decay rather than a more
clearly defined region with a fairly sharp boundary converging faster than the
exponential decay.

2. There may be perhaps two components (near field and far field) with differ-
ent characteristics; the near field component corresponds to the traditional
aftershock area around the ruptured fault, and the far field component may
relate to the so called the ‘aftershocks in wide sense’ such as immigrations
of earthquake activity or causal relations between distant regions, caused by
tectonic changes of the stress-field due to the rupture.

3. The cluster regions scale with magnitudes firmly owing to the Utsu-Seki for-
mula.

Further practical extensions of the models have been suggested to include
non-homogeneous background seismicity but anisotropic features of earthquake
clustering, but the above conclusions are unchanged for the extended models.
Among the extensions, the location dependent intensity rate for the background
seismicity is found to be effective for ensuring the stationarity of the models in
time.

An efficient and practical simulation algorithm by thinning is provided, and
the simulations from this revealed some discriminating space-time features between
the real and simulated data, which may possibly relate to the ultimate aim of our
study for earthquake prediction. The simulated data also justify the accuracy of
the approximations used in the likelihood computation.
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