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Abstract. In the Wicksell corpuscle problem, the maximum size of random
spheres in a volume parl is W be predicted ftom the sectional circular distribu-
tion of spheres cut by a plane. The size of the spheres is assumed to follow the
generalized gamma distribution. Some prediction methods according to mea-
surement methods on the sectional planc are proposed, and their performancos
arc cvaluated by simulation. The prediction method based on the r largest
sizos and the total number of the sectional circles is recommended, because of
its satisfactory performance

Key words and phrases: Extreme valuc theory, generalized gamma distribu-
tion, Gumbel distribution, metal fatigue, stereology.

1. Introduction

Spherical particles of random size are randomly scattered in a space, and
scctional circles of the spheres cut by a plane are observed. Lo estimate the size
distribution and the spatial density of the random spheres from those of circles on
the scctional plane is Wicksell's corpuscle problem, Wicksell (1925). Our problem
in this paper is to predict the maximum size of the spheres in a given volume and
that of those intersecting with a given plane area.

For controlling the fatigue strength of stecl, Murakami (1993, 1994) devel
oped a prediction method using the Gumbel QQ-plot of the sectional maximuimn
data. A feature of his method is to use only the maximum circle in each of some
parts of the sectional plane. Takahashi and Sibuya {1996), assuming the size
distribution of random spheres to be generalized gamma, proposed an extended
Murakami’s method for prediction. Simulation results show that the performance
of this method is unsatisfactory.

* Now at Takachiho University, 2-18-1 Ohmiya, Suginami-ku, Tokyo 168-8508, Japan.
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In this paper, we proposc alternatives by adding more works to the mea-
surement and using corresponding prediction methods, and evaluate their perfor-
mance by simulation. Some prediction methods are preferable to the extended
Murakami's one.

In Section 2, Wicksell transform in terms of the arcas is summarized, and
the prediction method in Takahashi and Sibuya {1996) is reviewed. In Section 3.
we propose some measurement methods on the sectional plane and corresponding
prediction methods, and in Section 4 evaluate their performance by simulation.
The final Section 5 is supplementary and technical. In the Subsection 5.1, we prove
a theorem on the maximum of Wicksell transforms of areas. In the Subsection 5.2,
a theorem on the extreme value in a random sample of random size is stated, and
in the Subsection 5.3, the Fisher informations of the estimates in Section 3 arc
ovaluated.

2. A parametric modcl of Wickscll's corpuscle problem

2.1 Wicksell’s corpuscle problem

Spherical particles of random size are randomly scatlered in space. The cen-
ters of the spheres constitute a Poisson process of intensity Ay, and the size Sy of
the sphere is independent of its position. The spheres are cut by a sectional plane,
and the centers of the sectional circles constitute a Poisson process of intensity A4,
and the size 54 of the circle is independent of its position. We need to consider
the spheres (with size S¢) crossing the sectional plane, Assume E(Sy) is finite
and small enough compared with Ay, and the spheres are actually disjoint.

Usually, the size S, w = A, C and V', is the diameter. In this paper, S is the
area of sectional circle and Sg and Sy are the areas of the great circles of sphercs.
Their p.d.f.’s (probability density functions), d.f.’s (distribution functions) and
survival functions are denoted by f,(s), Fl.(s) and F,(s) = 1 — Fi (s} (w=V, C
and A), respectively.

It is known that

(21) /\V = \/EAA/(Z.”(]) where o — E( \/ JSV),

(2.2) fols) = Vsfv(s)/uo, 0<s<oo, 8ia=S8a(l =177,

2.3 - L/ v)d £ SN L. Fy{v)d
03 a0 =ge [T Em v, B - o [T R,
aned

N ©
(2.4) Folo) = 577 / Tttt

where U/ is the uniform random variable on (0,1} and independent of S, The
prohability distribution of S, is called Wicksell transform of that of Sy
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2.2 Extreme value theory
Let (X;)52, be a sequence of L.i.d. (independent and identically distributed)
random variables with & d.f. H and let W, = max(X:,....X,). I there exist
coefficients a,, (> 0) and b,, such that (W, —b,)/a, converges in distribution, i.e.
if lim, oo H"(apz + b,) = L{xz) for some nondegenerate d.f. L, then H belongs
to the domain of attraction of L (ar H € D)) and L iz limited ta the following
d.f’s.
exp(—z %), z > ), e>0, i=1,
Lic(z) = ¢ exp(—(—x)"), z <0, >0, i =2,
exp(—exp(—x)), -—o<zr<oc, e=0,i=23

For the maximum of Wicksell transforms of the diameters, a goneral result
was obtained by Drees and Reiss (1992). In terms of the d.f. &, of T, = 9,
8>0,w="1 and A, which are uscd in later, their result is as follows.

PrROPOSITION 2.1.

$4 € ‘D(Ll,ctf@ﬁ)*l) if Pve D(Llﬂ)ﬁ > (2:0)_1:
Pa€D(Lycrro) i Py € D{La), ¢>0,
Py D(wa) if @y € D(Lgo).

A simple proof of this propoesition is given in Subsection 3.1, In the following,
we shall discuss only the case of Lsg, the Gumbel distribution, which is denoted
by

Alx) = exp(—exp(—1)), —oo <z < 00.

In general, let N be the Poisson variable with mean 8 and independent of
(Xj)_?ir Under the condition I & P(A) and N = 0, for the d.f. H* of W,y —

max(Xy,...,Xn),
H(agy +by) — Aly), as 6 o,

where bg = b(#) = H™Y{1/0), ap = a(#) = b(fe) — b(#) and H(z) = inf{y |

1 H{y) < z}. A morc gencral result is shown in Subsection 5.2,

2.3 Generalized gamma model and prediction problem
As in Takaliashi and Sibuya (1996), we study the problem within the frame-
work of a parametric model. Let the generalized gamma distribution with the
p.d.f.
T

1 .
(2.5) F(Tﬁ . f—(;;;cmffle*(m/f) 10<z <0, & >0,

be denoted by Ga{a, v, £), and suppose the area Sy of the great circle of the sphere
to follow Galey, v, €'/7) with known &, v > 0. The parameters £ and the intensity of
the sphere Ay are unknown. ‘I'his modelling was justified in Takahashi and Sibuya
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{1996). We observe the circles in & parts of identical area A of the sectional plane.
The number N4 of the circles in a part of area A is the Poisson variable with mean
Aad. Let W, be the maximum area of the circles in a part of arca A if Na > 0.

There are two problems (V) and (C}). Since the latter is simple we discuss
only the probiem (V).

(V) Predict the maximum area Wy | of the great circlos of the spheres in a
part of volume V. The expected number of spheres in the part is Ay V.

(C) Predict the maximum area Wy, of the great circles of the spheres which
intersect with a part of arca Ag. The expected number of spheres in the part is

AaAer.

2.4 Basc of prediction method
Our prediction methods are based on the following facts on the scale and
location parameters of W2, w =V and A, and S,

ProrosITION 2.2 Assume Ty = 57, to follow Ga(a, 1,£). If AqA, WV —
oo, then the distribution of the power transformation of the marimum area W7
i approzimaeled by the Gumbel distribution A((t —n,)/8), w = V and A, where
the scale parameter £ is common and equal to that of Ty, and the location is
determined as follows:

(26)  mv/&=1v +(a—Dlogry —logl{a), 7v =log(Ay V),

(2.7) AL =14+ (uﬁ + % — g) log 74 — log {2\/§F (Q’ + —2%) } ,
74 = log(AaA).

The relation between two intensities (2.1) s as follows:

(2.8) Av = VmAa/20),  po = YT (e + 1/(29))/T ().

Remark that

(2.9) Ty = T4+ log% — 8,

o) el ) o)

For the better Gumbel approximation, we deal with 7, =V and A4,
instead of 5.
Rased on these facts, we predict Wl as follows. First, we estimate £ and 74

by data. Irom the estimate (5 . TA), we estimate further functions of (£,74),

{2.10) 5*;Tlogf+log{%l‘ ((y%—%)/[\(a)},

(211) 7y — T4 + log% &, and (%) =7 | (o 1}log7v  logD{a).
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Finally, the mean and quantiles of W, are estimated by linear expressions

(2.12) v+ o€ = §(iv [E + o).
For the mean ¢ = «p, Euler's constant, and for the quantile ¢ = w, =

—log(—log p).
The bias and variance of the above estimate v + ef are approximated by

(2.13) v Bias(€)  and  (7v)? Var(é),

respectively, for practically probable parameter values, («,v) = (1,1/2) and 74 =
2 ~ 5. See Takahashi and Sibuya {1996). Hence, an accurate estimate of £ is
nceded for good prediction.

3. Measurement methods and corresponding prediction methods

In this section, we investigate sorme measurement methods on the sectional
plane and corresponding prediction methods. Recall that we can observe the circles
in & parts of common area A of the sectional planc. The first two methods, the
circles in each of k parts of common arca A arc measured. For the rest methods,
the circles in a part of area kA are measured, that is, the data in & parts of common
area A are pooled. For convenience, we drop the subseript A in W, na, 7a, etc.

3.1 Muozimum areas (PM1)

Measure the maximum areas W; among circles in each of £ parts of comimnon
area A on the sectional plane, 7 = 1,..., k. The prediction method, PMI1, and
simulation results are given in Takahashi and Sibuya (1996). The accuracy of PM1
is unsatisfactory.

3.2 Maozimum areas and the number of the circles (PM2)
Measure the maximum arca and the number of the circles {W;, IV j)’}:l n &
parts, each of area A, of the sectional plane. Because of Proposition 2.2, assure

the data (W])5_ to follow the Gumbel distribution A{t/¢ — ¢}, where

. o L3 _ NP 1
(3.1) = ¢ =T+ ((_l{+ v 2)105171033{2\/;F (O{+ 27)},

T = log(AaA).

The prediction method, PM2, is as follows. First, estimate 7 by 7 = log N, where
N = Lf_l N; /k, and et

a)—-f’—k a+:1 _3 log 7 —iog <2 Ir u+i .
2y 2 T 2y

Second, fit A(t/€ — é;) to (W’f)fﬂ and cstimate £ by the maximum likelihood
method. The likelihood equation is solved by the Newton-Raphson method start-

ing from £ = W /(o + v}, where W = Z':Ll W, /k, the moment estimate of £.

From (7,&¢), we can predict Wl by the same way as in Subsection 2.4.
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The asymptotic conditional variance of the estimate 6?} is evaluated by
& o1
E{(Co+ve -~ 1)2 +72/6}  kL(E)

where I, (£) is the Fisher information of £ in A(t/£ — (y), provided that 7 is known
and (g = {p is a constant, and

Var (50 =

, 1 2 ~ _ .
{3.2) Vuf(ff) kI (€) in e Var{(o), where (o= FE{(y),

for the estimate EE) (see Subsection 5.3). Hence we expect that the variance of £o
Is small if ¢y is large. Simulation supports this conjecture.

3.3 Ther largest areas and the number of the circles (PM3)

The data in k parts of area are combined, and the prediction is based on
the 7{> 1) largest arcas on a part of arca kA. The estimation method is duc to
Weissman (1978).

If the expected number As{kA) of the circles within the part of area kA
is larger, we may expect that the asymptotic joint distribution of the + largest
order statistics will well approximate the finite distribution, and hence expect,
that estimate of £ using the r largest order statistics, V; > Vo > -+ > Vi, is good.
However, this estimation is unsatisfactory, and we use the total number Ny of
circles within the part of area £4 as well as the r largest areas.

The joint density of X; = V;’, J=1,...,r, is approximated by

(33) f(l’j,Ig,...,.ﬁL‘T;f,C):Eirexp — eXp (_%“"C) —Z(%C> y

i=1

B my 2 >y,

where  is defined by (3.1) with 7 replaced by i = log{A4(kA)).
Now, the prediction method is as follows. First, we estimate myp by #ip —
log Ny, and let

=~ 3
Co = Tw + (,t+i—f log fyy — log 4 2 11‘ a—%ﬁl_ .
2y 2 7 27y

Second, using this estimate Co, we fit the joint density f({- £, Co) to (X )J,, | and
estimate £ by the maximum likelihood method. The likelihood equation is solved
by the Newton-Raphson method starting from the estirnate {0 = X — X,, which
was proposed by Welssman (1978). Let {W denote the estimate. From (Tw,fw),
we can predict W, by the same way as in Subsection 2.4. In this case, f ,7and A
must be replaced by rfw, 7w and kA, respectively.

The asymptotic conditional variance of the estimate fW is evaluated by

£ 1

Var(fw ) = Cr + Co{Cor — 2(1 + rp{r))} ) 1{€)
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where [-(£) s the Fishor information of £ 1n (3.4), provided that 7y is known and
(o = {p 18 a constant, and

52

o —.lOg ?")2 Var(é;)a where (o = E(al),

(B4 Verl@e) = - % 5

for the estimate &, where C, = {2 (r + 1) + ¢ (r + 1) + 1}, ¥(z) = [V(2)/T(2).
For the details see Subsection 5.3. Hence, we expect again that the variance of E/;
is small if {p is large. Simulation suppoerts this expectation.

Generally, it is hard to choose the optimal r (sce, for example, Hughey (1991)).
A theoretical method of choosing r is given by Smith (1987). Applying Smith’s
method, we need the exact distribution of S:‘{ and the attraction cocfficients which
satisfy the condition in Cohen (1982). However, it is difficult to treat directly the
exact digtribntinn aof Sz. Moreover, we use the attraction coeflicients determined
by the asymptotically approximated distribution of 5. Hence, Smith’s method
is not applicable in this case.

Here, we consider the following r's:

i

o = {(10 X Nw + 0.5], Ty = [Cl X v/ Nw + 0.5},
re = {eo x log Nw +0.5], 73 = [ez x (log Ny )? + 0.5),

2, Ca, are constants and [y] is the largest integer not exceeding y.
The prediction method with r; is denoted by PM34, 4 = 0,1,2, 3.
Another method of choosing r was proposed by Pickands (1975). However, the
asymptotic tail of distribution &7 is not close to a tail of exponential distribution,
Pickands method is not well.

where ry, ry, 0o

3.4 Threshold method (PM4)

We measure all the areas of circles exceeding a threshold u and the total
numbaer Ny of circles within a part of area kA. The areas Uy, Us, ..., U, (> u)
and Ny are the available data, where n is a random variable. The variable X; =
U;? —u”, 7 =1,...,n, follows asymptotically {1 — oo) the exponential distribution
with p.d.1.

fla:6) = € exp(~a/E), x>0,

See, for example, Pickands (1975). Tn this case, the prediction methad, PMA4, is as

follows. First, we estimate £ by &r = (3°7.; X;)/n, and sccond, we cstimate

by 7w = log Ny. Then, we predict WJ by the same way as in Subsection 2.4.
Generally, it is hard to choose the threshold « balancing the bias and variance.

4. Simulation results

All prediction methods in Section 3 were compared by simulation using S-Plus.
The parameter were sel Lo (he [ollowing practically probable values: the area Sy
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Table la. AgA = o

Parameters &k = 40 £ TV E{vWy) W as wh go
Mcthods  Trus 1000 13.695 14272 16.660  18.295
M1 Bias 0.149  —0.094 1978  2.335  2.578
S. D. 0.141  0.327 1679 2016  2.246
M. S.F. 0042 0116 8733 9519 11693
M2 Bias 0.156 —0.138 2.061 2435  2.689
3. D. 0.085  0.105 1103 1305  1.442
M.S. E. 0031 0030 5466 T7.632  9.313
PM31 Bias —0.015  0.023  —0.202 —0.239 -0.264
8. D. 0.079  0.105 1.045  1.233  1.361
M.S. E.  0.006 0.012 1134 L1578 Ly22
PM32 Bias —0.031  0.039  —0415 —0.490 --0.542
s. D, 0.071  0.100 0.942 1111 1.226
M.S. B, 0.006  0.012 1060 1475 1.787
PM33 Bias ~0.015 0023 —0.194 —0.229 —0.253
S, 0.070 0.105 1.040 1.237 1.365
M.S. . 0006 0011 1137 1582  1.927
k = 80
PMI Bias 0.165 —0.153 91533 2.547 2815
8. D. 0.098  0.222 1156 1.390  1.549
M.S L. 0037 0.073 5972 8417 10.324
PM2 Bias 0.153 ~0.135 2,031 2398  2.648
S. D 0.058  0.074 0762 0.901  0.996
M.S. B, 0.027 0.024 4704 6561 8.003
PM31 Bias 0019 0.027 —0.242 —0.286 —0.317
s D, 0.057  0.075 0.766  0.903  0.096
M.S. K. 0004 0.008 0645 0897 1003
PM32 Bias ~0.025 0.033  —0.327 —0.387 —0.428
8. D. 0.035  0.073 0739  0.87L  0.961
M. S F.  0.004  0.007 0.662  0.008  1.106
PM33 Bias —0.016  0.025 0208 —0.216 —0.272
s. D. 0.059 0077 0785 0925  1.021
M. S. E. 0.004  0.006 0659 0917  1.117

of the great circle of the sphere follows Ga(1,1/2,1), k = 40,80, V/A = 200,000,
AaA =5,10,15, and the prediction was repeated 1,000 times.

Simulation study was done for PM3:¢ with various values of ¢;, i = 0, 1,2, 3,
and we found that the following three prediction methods are satisfactory:

PM31  with 7 = [/ Nw +0.5],
PM32 with To = [4 x® Iog JVM/ =+ 05],
and
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Table 1. AszA — 10.

Parametors & =40 £ TV EWVWy)  wias w99
Methods True 1.000 14388 14.065 17 358 18 QK8
PM1 Bias 0.138 —0.192 1.789 2.119 2.344
s, D, 0.112 0.427 1.662 2.001 2.232
M. 8. B 0.039 0.220 0.96G3 3.494 10.476G
PM2 Bias 0.091 —0.085 1.260 1.476 1.624
5. D. 0.060 0.076 ().829 0.971 1.069
M. S E 0.012 0.013 2.273 3.123 3.77Y
PM31 Bias —0.018 0.020 —0.256 —0.300 —-0.329
5. D. 0.057 0.076 0.796 0.932 1.025
M. S E. (.004 0.008 0.700 0.959 1.158
P32 Bias —(.025 0.027 —0.343 —-0.408 —0.449
S, D, 0.055 0.075 0.764 0.899 0.989
M. 5. E. 6.004 0.008 0.712 0.975 1.178
PASS Bias —0.015 0.017 —0.206 —0.241 -0.265
5., 0.059 0.078 0.833 0.975 1.071
M. S E. 0.004 0.006 0.736 1.008 1.218
k=80
PM1 Bias 0.142  —0.230 1.82% 2,168 2.3U8
S. D. 0.103 0.299 1.200 1.455 1.623
M. S. k. 0.031 0.143 4800 6.816 8.387
I’M2 Bias 0.088 —0.082 1.228 1.439 1.582
5. D. 0.044 (.054 0.609 0.714 0.785
M. 8. E. 0.010¢ 0.010 1.878 2.579 3.120
PM31 Bias —0.022 . 0.026 —0.311  -0.365 77—70.401
5. D. 0.045 0.059 0.631 0.742 0.815
M. 5. K. 0.003 0.004 0.198 0.683 0.826
PM32 Bias —0.021 0.024 —0.289 -0.339 —0.372
S. D 0.046 0.059 0.643 0.753 (.827
M SR 0003 0.004 0.497 0.681 0.823
PM33 Biasg —-0.016 0.018 —0.219 —0.256 —0.282
5. D. 0.048 0.0680 .665 0.779 0.856
M. 8. E. 0.003 0.004 0.400 0.672 0.813

PM33  with 75 = [0.5 x (log Ny )? + 0.5].

From now on, PM3i denotes the prediction methods wicth above 1y, 1 = 1,2, 3.
Under the considered simulation model, it holds

T R Ty R Ty,

The simulation results for prediction of the expectation E{v/Wy )}, 95% quan-
tile wf g5 and 99% quantile wj o4 of the distribution of /Wy are summarized in
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Table 1c. Aq4 = 15.

Parameters k=40 £ TV E(VWv)  wies  wigg
Methods True 1.000 14.703 15.371 17.764 10,303
PM1 Bias 0.114 —0.175 1.498 1772 1.958
3. D. 0.140  0.481 1.635 L0689  2.197
M. 5. . 0.033 0.262 4.918 7.016 &.5660
PM2 Bias 0.069 —0.066 0.993  1.150  1.272
8. D. 0.052  0.065 0.743  0.867  0.951
M. S E. 0.008  0.009 1537 2.005  2.523
PM3l Bias —0.020  0.021  —0.290 —0.338 - 0.370
S. D. 0.049  0.065 0705 0.822  0.901
M.S.E. 0.003  0.005 0.580  0.789 0,949
PM32 Bias —0.022  0.023 0313 —0.365 -0.400
S. D. 0.048  0.064 0.687  0.801  0.878
M.S. E.  0.003  0.005 0.570  0.774  0.932
PM33 Bias —0.015  0.016 0216 —0.252 -0.278
5. 0. N.051 0 .0ART 0733 0 R54 0.437
M. S. F.  0.003  0.005 0.583  0.793  0.955
k = 80
PM1 Bias 0.118 —0.220 1.540 1.822 2014
S, D. 0.095  0.315 1120 1.347  1.502
M.S.E. 0023 0.148 3624 5135  6.315
PM2 Bias 0.067 —0.062 0.969  1.130  1.240
. . 0.037  0.045 0.528  0.616  0.676
M.S. F.  0.006  0.006 1217 1.657  1.995
PM31 Bias —0.023  0.027  —0.332 -0D.388 —0.425
S. D. 0.038  0.048 0.548  0.639  0.702
M. S E. 0.002  0.003 0411 0559  0.673
PM32 Bias —0.018 0022 0258 -0.302 —0.33]
S. . 0.041  0.051 0.595  0.693  0.761
M. 9 R 0.002 0.002 0.420 0.5672 0.68%
PM33 Bias —0.015 0019  -0.217 —0.253 -0.278
8. D. 0.042  0.051 0608  0.709  0.777
M. ST 0.002 0.003 0.416G 0.566 0.682

Tables la, 1b and lc. The performance of PM4 is not well, and its simulation
results are omittod. Figure 1 shows boxplots of the five prodictors in the case of
AaA =10, k = 40,80 and the horizontal dotted line represents the truc value of
E(v/Wy). All prediction methods have non-negligible biases, aud the mean square
errors (m.s.e.’s) of them arc computed in Tables la, 1b and lc.

By these tables and figure we evaluate the prediction methods as follows.
PM1 and PM2 have positive bias, while PM31, PM32 and PM33 have negative
bias. If & Increase, then all the prediction methods decrease the s.d.'s. 'LU'he hetter
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Fig. 1. Prediction of the mean £{(/Wy), AgA = 10 and k& = 40, 80.

Table 2. The true value and m.s.e.’s {the upper and lower figures respectively) of prediction
E(VV&/’Y) by I'M31, PM32 and I'M33 for known (a,y). AaA — 10 and & — 40.

o 0.5 1.0 1.5 2.0

13.337 14.272 15.049 15.707
0.346  0.514 1400  3.582
0.25 0.336 0418  1.109 3.154
0.357 0.5953 1.636 3.838
13.729 14.965 15.999 16.889
0.697 0.700 0.666 1.069
0.5 0.645  0.712  0.588  0.837
741 0736 0722  1.217
13.612 15.086 16.294 17.327
2.591 1.019  0.967 0.957
1.0 2,869 0900  0.923 (L8865
2.437 1.078  1.001 1.044
13.416  15.063 16.381 17.4%8
12,306 2,346 1.314 1.383
2.0 13.541 2469 1,190 1319
11.616  2.353  1.425  1.4865

Note: The case (ex,v) = (1,1} is the exponential distribution that is the
unique invariant d.f. of the Wicksell transformation. Thus, the ordinary esti-
mabiow wetliod is available,
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Table 3. The true value, blas, s.d. and m.s.e. {the upper and lower fisures respectively) of
prediction E(y/Wy) by PM31 misspecifying (ar,v) = (1,0.3). A4 A = 10 and & = 40.

o 0.7 0.8 0.9 1.0 1.1 1.2 1.3
v
46.626
(.35 —13.587
2.330
190.023
28.606 29,120  29.614
0.4 —6.062 —h.T11 —5.420
1.509 1.557 1.563
35.024 35.041 31817
19.463  19.806 20.135 204533 20.760
0.45 —2.637 2377 —2.093 -1.8530 —1.566

1.041 1.071 1.060 1.6562 1.154
8.040 6.707 5.504 4.528 3.785
17.654 17.977 18.287 18.586  18.874 191533 19.422
0.46G25 —2.313 ~2.004 —1.791 —1.923 —1.279 —0.935 -~0.670
0.962 0.930 0.693 1.034 1.068 1.069 1.073
6.273 5.121 4.194 3.396 2.651 2.054 1,601
16.378 16.672 16.064 17.227 17.480 17.743 17.088

0475 —1.787 —1.360 --1.206 —1.008 —0.774 —0.48 —0.250
0.898 0.906 0.922 0.925 0.920 0.929 0.957

3.999 3.95R 2.R30 T RTA 1 446 1.100 0n.ava

15.262 15,521  15.77Y 16.028  16.268 16.500 16.725

0.4875 —1.311 -1.064 —0.843 -0.614 —0.369 —0.082 0.127
0.847 0.821 0.866 0.839 0.859 0.881 0.907

2.430% 1.806 1.461 1.080 0.875 0.783 0.839

14.254  14.500  14.737 14.965 15,186 15399  15.605

0.5 —0.928 -0693 —0436 —0.266 —0.009 0.235 0.522

0.795 0.809 0.825 0.796 0.835 0.847 0.855
1.493 1.135 0.871 0.700 0.697 0.773 1.003
12567 12,777 12978 13,173 13.361  13.542 13.718
0.525 —U.294  —0.098 0.156 0.378 0.614 0.825 1.080
0.650 (1.683 0.710 0.720 0.732 0.731 0.730
0.563 0.476 0,528 (.661 0.913 1.215 1.698
11.387 11.560 11.728 11.890 12.047

0.55 0.393 0.642 0.829 1.036 1.256
0.646 0.638 0.644 0.662 0.655
0.572 0.810 1.102 1.552 2.007
9.438 9.567 9.691
0.6 1.300 1.497 1.669
1 /30 0.504 0.537
1.972 2,494 3.074
8.049
0.65 1.888
0.442

3.761
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is the estimate of £, the better 18 the prediction values. PM2 is better than PM1.
PM31, PM32 and PM33 arc preferable to PM1 and PM2.

Compared with PM1, PM31, PM32 and PM33 need more measurement work
for combining the data in parts of arca and counting the total number of circles.
However, these prediction methods are accurate under the practically probable
assumption (Sv ~ Ga{1,1/2,), AsA = 10 and & = 40, see Murakami (1993)). So,
we recommend PM31, PM32 and PM33.

Further, the performance of these prediction methods for other parameter
values and for misspecified parametera are computed in Tables 2 and 3.

Table 2 shows the simulation result of prediction £ (W‘l/ 7Y by PM31, PM32
and PM33 for known (e, v). It shows PM31, PM32 and PM33 are relatively good
in the neighborhood of {a,7) — (1,1/2).

lable 3 shows the simulation result of the prediction E{v/Wy) by PM31
misspecifying (o, v) = (1,1/2) when (o,7) # {(1,1/2). It shows that PM31 is
robust if (a, 7} is close to (1,1/2). However, the misspecification can be serious,
especially that of v causes bias, it is important for using PM31 to specify rather
exactly a and . The simulation results of PM32 and PM33 are similar to that of
PM31, so we omit them,

When parameters @ and v are unknown, we have to measure all the arcas of
circles on the sectional plane, but this is not always possible in practice. We shall
discuss the prediction method for this case in a sequel paper.

5. Supplements

5.1 Mezimum of Wicksell transforms
The limit behavior of the maximum of Wickscll transforms is as [ollows.

THEOREM 5.1. {1} The following assertions hold:

(A1) FaeD(Lyap) o FveDLy), e>1/2
(A.2) Fa € D(Laiays)  if Fv € D(La), ¢> 0.
(A3) Fq e D(L;‘;Q) if Fy € D(ng)

(2) Suppose the p.d.f.’s fulfill the von Mises conditions (see Drees and Reiss
(1992)}.

(B.1) The following three conditions are equivalent, if ¢ > 1/2.

) Fv € D(Lie), 1i) Fo e D(Ly o yp), i) Fae D(Ly c—1/2)-
{B.2) The following three conditions are equivalent, if ¢ > 0.

i} Fv € D(Ly.), i) Fo € D(Ly.), i) Fa € D(Loei1/2)-
(B.3) The following three conditions are equivalent.

i) Fv € D(Lao), 1) Fo € D(Lgo), ili) Fa € D(Lao).
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The assertions ii) on Fe are important to discuss the prediction in the problem
(C) which is omitted in this paper. The following proof of this theorem is simpler
than that of Theorem 1 in Drees and Reiss (1992). We prove only the case of
Gumbel distribution {L30). The other two cases are similarly proved.

We need the following lemma;

LEMMA 5.1, Suppose that positive functions f(-,-) and g{-,-) satisfy

f Fls,v)dv < oo, / g{s,v)dv < oo
0 0

for some w (0 < w < o0) and for s<wv < w

liTmf(s,v)/g(s,v) =¢, 0<e¢<00.

lSiTrB 1’“‘) f(s,v)dv/[w gls,vidv =c.

PROOF OF THF‘ORLM 5 1(A.3). The upper endpointq of the qupport of Fv

Then

tho auxzhdry functlon h mmh that
{5.1) Fols+zh())/Fv(8) > e ™% as slw

for all & € R. Suppose h satisfics the same conditions in Drees and Reiss ((1992),
p. 211}, then

Faleanton = /l},( ) (siL zh(s)) Frlo)ay
—¢ 1+ Ih’( ) = .
f Vit — s+ z(h(t) — h(s)) Fy{t + xh(t))dt

where ¢ = [/{2E(v/Sv)). Hence, by Lemuma 5.1, {5.1) and the propertics of A
Fa(s+ah(s))/Fa(s) > e *  as s|w,
that is, Fiq € D(Lg()). ]

Proor oF TueoreM 5.1{B.3). (i) <= (ii): Suppose Fy € D(L3y), then
there exists the auxiliary function k such that

fV(S+$h(S))/fV(S) —e ¥, as s Tw,

for ali @ € R, where b satisfies the same conditions in Drees and Reiss {1992). On

the other hand, by (2.2), we have fo(s) = 2¢,/sfv(s), e1 = 1/(2E(v/Sy)). Thus,

fols +wh(s))/ fo(s) — Vs + ah(s) fv (s + wh(s))/Vefv(s) — e, as s 1w,
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Hence, Fe © D(Lso).
The converse is proved in an analogous way using the fact that

fv(s) = fol(s)/(2e1v's).

(1) <= (iil); Suppose F4 € D{Ljy), then there exists the anxiliary function
h which satisfies the same conditions in Drees and Reiss (1992), such that

fals+2h(s))/fals) — ™%, as 8T w,

for all z € R. From (2.4), and replacing Fiy by Fyy and Fy by fa in the above
proof of Theorem 5.1(A.3), we have Fy- & D(Ls0).
The converse is trivial from (A.3}. O

I'rom this Theorem and the results of de ITaan (1970), we have Droposition
2.1.

5.2 Extreme value in a random sample of random size
Under the same condition in Subsection 2.2, let Ny be a random variable
taking non-negative integers (not necessarily Poisson variable) such that

p{n;f) = P(Ny=n), n=0,12...
and
0<pg = E(Ny) <oc, 0<oi=Var(N;) < co.

'THEOREM 0.2, Suppose L. is an extreme value distribution and H € D(L)
that is

H"(a(n)x + b(n)) — L{x), a8 n— o0

Suppose the random variable Ny has the probability function p(-;8) such that
p(0;0) — 0, pg — oo, and a2 = Olus) (pe — o0), as § — 0y. Then

H*(a(ps)x + b{ug)) — L{z), as 0 — 8.

Theorem 5.2 follows from Galambos {1987), Chapter 6.

5.3  Fualuation of the expected information
Following Smith (1986} we evaluate the Fisher informations of £ in Section 3.

First, we assume that 7 i3 known, {; = {, i8 a constant, and the joint density

of (Xi,..., X)) is f(;€,G) in (3.3). The log likelihood is

™

= —rlog€ — exp(—z, /€ + Go) — Y _(2;/6 = o),
7=1

and
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() = e (22— 2,8 exp(—a, £ 4 o) + 2670 Y .
G=1

Now Z; = X,/& — (o has the p.df. exp(—jz ~ e *)/(j), —o¢ < z < o0, so for
integer m and a > —j:

E(Z" exp(—aZ;)) = (~1)"T™ (j + a)/T(3),

where T} i the m-th derivative of the gamma function. Using the rclation

X; =¢8{Z; + (o), we have

E(X;) =& (),
E(Xpe ?r) = &{Gor — (L +1(r)},
E(XZe ) = 2{29(r) + (¢ (r) + 02 (r)) — 2600 +ryp(r) + ).

Thus, we have
[:(§) = E(—(d/{d§)}*]) = {C + GolGor — 201 +ryo(r))]} /€7,

and, if r =1,

L) ={(Go+vr — 1)? +77/6} /7.

Next, to consider the case {; is the estimate (y, recall that for a general
bivariate random vector (X, Y7),

(5.2) Var(Y) = EX(Var™ (Y | X)) + Var™ (BY (Y | X)).

If # = 1, consider (5[],5), £ = E(;, of the sample size k. The expectation of
conditional variance is

JoLC N U
(k11(£:C[])) k11(£)

Te evaluate the variance of conditional mean, we need, for example, to consider the
Edgeworth expansion of E(£ | (), because £ is given by the estimation equation.
Assuming the MLE and the moment cstimate are nearly equal,

E(€] &) = &0vs + )/ (v + Go),  where ¢y = I((),

ﬁ - - _ g
()CE(E ‘ C) Cn_ YR+ C[)-’

and the variance of conditional mean is approximately equal to
2., -2 o
(v + Go) " Var(G).

"Thus we have

2 o~
Var(£) = 1 3 Var((o).

GRRCTEROE
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If r is sufficiently large, the expectation of conditional variance is approx-
1 i

imately equal to I.(€)7'. Suppose the maximum likelihood estimate é = {w is
necarly cqual to X, /{{;—log r), which is the maximum likelihood estimate proposed

by Weissman (1978). Then

N (TR 10 S SN
E =S W) Zg B
Cla= 2N 2Bl

£ - (r))
(Co —logr)*’

and the variance ol conditional mean is approximnately equal to

(¢ — p(r)* Var(Es) = £

ar((o) = ————3
(Go — logr)* ()= Gy

Var@)-
Thus, we have

1 2 -

{ B VELI‘(CO).

Varle) = 776 T G e
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