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Abstract. Congider a lincar process X; = Z;‘:’O ;2 i, Where the mnova-
tions #’s arc i.1.d. satisfying a standard tail regularity and balance condition,
vig.,, P(7Z > z) ~ rz “Li(z), P{Z < —z) ~ sz “f1(z), as z — oc, where
r+s8=1,782> 0 @ >0and L; is a slowly varying functivn. It turns out Lhal
in this setup, P(X > x) ~ pr “L{x), P(X < —z) ~ qr™*L{z), as x — oo,
where « is the same as above, p is a convex combination of r and s, p+ g =1,
p.g > 0 and L = {¢]|d L1 where |lgffe = (Se )%, The quantitics a and
A = 2p -1 can be regarded as tail parameters of the marginal distribution of
X:. We estimate o and 3 based on a finite realization X, ..., X, of the time
sorics. Clonsistency and asymptotic normality of the estimators are estahlished
As a further application, we estimate a tail probability under the marginal dis-
tribution of the X,. A small simulation study is included to indicate the finite
sampie behavior of the estimators.

Key words and phrases: Linear processes, heavy tailed distribution, tail pa-
rameters, tail probability.

1. Introduction and summary

Consider a linear process
O
(1.1) X = E Cidiy—,
i=0

co = 1, where the innovations are i.i.d. satisfying the usual assumnptions of heavy
tailed modeling:

(1.2 P(Zy > z) orz ™ Ly(z), and P(Z) < —z) ~ sz “Li(z),
as z — oo, where v > 0, r,5 > 0, 7+ s = 1, and L, is a slowly varying function
at oc (ie., Ly(ez)/L1(z) — 1 as z — oo, for all 0 < ¢ < oc). Here, the notation

a{z) ~ b(z), as z — 00, is used to denote the fact that a(z)/6(z) — 1, as z — oc.
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'The sequence {¢;} of reals satisfies certain mild summability conditions to be
specified later. It then turns out (see Lemma 5.2) that the (common) marginal
distribution of X, also satisfies analogues of (1.2}, i.e.,

(1.3) PXy>z)~pr~®L{z) and P(X; < —z)~qr " L(z),

as & — o0, where « > 0 is the same as in (1.2), p,g > 0, p+y4 = 1 and L = ||¢[|2 L
is another slowly varying function.

The quantity @ is known as the index of regular variation and p can be viewed
as a tall-balance parameter. Let 3 = 2p — |, Notethat 3 =01iff p = ¢ = % in
which case the tails P(X; < —2) and P(X| > x) are asymptotically the same,
Therefore 3 can be regarded as an asymmetry parameter.

‘L'he main problem we consider in this paper is the estimation of the tail pa-
rameters o and 3 of the (common) marginal distribution of the X’s based on a
finite realization of the sertes X;,..., X,,. When the X’s are i.i.d. (which corre-
sponds to ¢; = 0 for ¢ > 0}, Hill {1975) proposed an estimator of o using the
order statistics. Variations and extensions of Hill’s estimator for the i.i.d. case
were later considered by de Haan and Resnick (1980) and Csorgo et al. {1985).
Hahn and Weiner (1991} considered estimation of both « and 8 and the joint
asymptotic normality of the estimators in the i.i.d. case. Asymptotic properties
of the Hill's estimator of & for a stationary strongly mixing sequence was recently
studied by Rootzén et al. {1990). Moreover, a point process approach to prove
consistency of the Hill's estimator for dependent data was recently obtained by
Resnick and Starica (1005). In the i.i.d. casc, new estimators of & and 2 baged
on the empirical ¢.d.f. were recently proposed by Athreya et al. (1992) as simpler
alternatives to earlier estimators mentioned above. In this paper we introduce an
estimator of o based on the empirical c.d.f. which has a least square interpreta-
tion and generalizes the estimator of Athreya et ol. (1992). Consistency and joint
asymptotic normality of the estimators of « and 3 are established in the linear
process setup (1.1). Estimuatior of their joinl covariance matrix is also considered.
As an application, we estimate a tail probability using the estimates of @ and 3.
Although we feel that our results can be extended to the more general stationary
strongly mixing sequence (eg., the setup of Rootzén et al. (1990)) at the expense
of more abstract sufficient conditions, we do not pursue it here because linear pro-
cesses form a rich class of stationary time series models. Yet the sctup is simple
cnough so that relatively straighttorward sufficient conditions for our results can
be obtained. In particular, it is possible to formulate sufficient conditions in terms
of the innovation distribution {(i.e., Z;) and the coefficients {¢;}. In addition, an
cxplicit expression of the asymptotic variances and covariances of our estimators
can be obtained in this situation.

The rest of the paper is oreanized as follows. The estitnation of e, F and the
asymptotic properties of the estimators are presented in Scction 2. In Section 3
we consider the estimation of a tail probability under the {common} marginal
distribntion of X, nsing the estimators of ov and 4. In Section 4, a small simuiation
study is reported to indicate the finite sample behavior of the estimators. The
simulation results do corform with the asymptotic results of Section 2. The proofs
of Sections 2 and 3 results are collectively presented in Scction 5.
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2. Estimation of the tail parameters

Consider a lincar process { X;} defined by (1.1} where the innovations Z,’s are
iid. satisfving {1.2). Throughout this paper, assume the following mild summa-
bility conditior on the coefficients {c,}.

(2.1)(C.1) Z le;1® < oo,  forsome (< §<anl.
3=0

Let F denote the (common) distribution function of X, defined by (1.1). Also
throughout this paper, let G{x) = 1 — F{x) 4+ F{—z). For notational convenience
we will assume that F is continuous so that P(|X| > z) =1—-F{x)+ F((-x} )=
G(x). At the cxpensc of keeping track of left limits all our results go through
without this assumption. Clearly, (1.3} implies
L= Fla) = F-z) — 4  and g(TL) —

(22) G(x) ' G{x)

LK
e,

as & — oc, where 0 < 17 < oo, One can obtain a set of natural cstimators of
a and 3 by replacing F by the empirical c.d.f. F,,x by a sequence =, — oc, in
(2.2), and then solving the resulting equations {obtained by replacing the limits
with equalities). This approach leads to the estimators

and

- 1 - Fn(i'n) - Fn((”-?:n)_)
' Gn(vrn)

where z,, — oo, Fy(z) =n 13" X, <x), G,(z) =1 - F,(2) + F.{(—2)7),
and I € (0,110 (1,0¢). The above estimators were recently proposed and their
consistency and asymptotic normality were established for the case when X, 's are
i.id. by Athreva et al. {1992).

The Athreva ef al. (1992) estimrator of « given in (2.3} can be generalized
as follows. For a positive integer L, select L values of T, namely, 1y,..., 17 &
{0,1)U (1, 00). Arguing as before we sce that

log 7, (Tix,) = —alog T, + log G, (x,,), i=1,...,L.
Thus « can be estimated by the method of least squares yielding

) . =32 Mg T log (G (Tiwn} /Culzn)y o1 &{T)(log 1)
(2.4) depg = : = =

Z;;l(logr]'ﬁ)g Ziﬂ(loc"{]i)z

where &1} denotes the estimator & in (2.3) with T = T,, 1 < i < L. The
estimator &g is expected to be more stable wor.t, the choice of T's and the level
L
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Fig. 2.1. I’lot of the LS estimate based on a sample of size 2000 from Xy = Z,+0.52,_ |,
with Pareto Z and level z,, = nf, Ty = 0.1i+1, 1 <4 < 10, T3 = {0.1(z — 10) +- 1) L,
11 < ¢ < 20. The dotted line denotes the true value of .

Iig. 2.2, Plot of the Hill’s estimate based on a sample of size 2000 from X; = Zy +
0.57;_1, with Parcto Z and number of order statistics ¢, = rba] The dotted line
denotes the Lrue value of o

It turns out, under regularity conditions, the convergence rate for the above es-
timators is Op(1/v/nG(ry)), which is typically comparable to Hill type estimators.
However, siuce dpg is based on smoothing in the estimator space, we can expect it
to be relatively stable with respect to the choice of the level x,,. On the other hand,
Hill’s estimator i3 known to be very sensitive to the chowe of the number of order
statistics nsed. Lo illustrate this, we calculate dpg with 2, = n¥ and the Hill’s
estimator of o with ¢, the number of order statistics used = {ng], respectively,
tor a simulated sample of size n = 2000 from a MA(1) process Xy = Z; + 0.57;,
with standard Pareto innovations corresponding to ¢ = 1. The 1" used in drs
were Ty = 01i + 1, 1 < i < 10, and = (0.1(i — 10) + 1)7', for 11 < i < 30.

Recall that the Hill’s estimate of o is given by & = (¢, — 1} 2:71(}/(71’) — Y(f'))
where Y(‘:’L) < - < Y are the ordered log |X|, ¢ = 1,...,n. The graphs of the

estimate versus # for the two estimators ave given in Figs 2.1 and 2 2 reapectively.
Clearly the graph of é, 5 exhibits less fluctuations in the usable range of ¢ values,
indicating a practical advantage.
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2.1 Consistency

We first address the issue of consisteney of the estimators &pg and 3 in the
linear process sctup of this paper.

Since &g is & convex combination of &(1}), it is enough to prove that each
&(T;) is consistent. In other words, for the proof, we will assume L = 1 and
A=Y, fora T e {0, 1) U{] occ).

The following mild summability condition will be needed for this purpose.

(©.2) 33 el A

i=1 j=0

ciyy])? < 00

for some 0 < 6 < .
It is not hard to check that (C.2) holds if (C.1) is satisfied for some 0 < 6 <
{ax A 1)/2 and for some positive integer m,

Ty

¢l 2 /\ lejes 720
=1

In particular, both (C.1) and (C.2) hold for ARMA processes.
THEOREM 2.1. [Let 2, — o0 be such that

(2.3) nP{|Z] > x,}) — .
Then under conditions (C.1) and (C.2), & P o and f:} L 83, asn — oo,

Note that in (2.5) the tail of Z; can be replaced by the tail of Xq, P(|X:] > =)

5.2). Although this condition involves the distribution of Z| (or X)),

{by Lemma
which is unknown, such a level x, can be chosen only on the basis of partial
information about the tail. For example if we know an upper bound o* on « (i.e.,
" > ) then one may choose x,, = nt/e" It is straightforward to check using
{1.2) that {2.5) holds for this x,,. In particular, for infinite variance modeling one

assumes that 0 < o < 2, in which case one may use x,, = /n.

2.2 An adaptive choice

We now consider a data based selection of the level x, in the definition of
estimators & and 3. The advantage of this approach is that one does not need
to have any knowledee of «. Several such choices are possible. Tn particular one
can take @, — /M, where M, = max{|X,|.....|X.}). Denote the resulting
estimators by & and g%, In this paper, we only prove the consistency of these
adaptive versions.

TneoreMm 2.2. Under the same conditions as in Theorem 2.1, &% - o and

Ae 44
3% = Hdasn > 00,
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2.3 Asymptotic normality

Once again, for the simplicity of presentation we let L = 1, which means
dps = &{T) for a 1" € (0,1) U (1,0). The asymptotic normality of & linear com-
bination can be proved exactly along the same line of reasoning. As a first step
to proving asymptotic normality, we rewrite the estimators in (2.3) in a more

propitious form for a central limit theorem. Define sequences of reals &, and 3,
by

. 1 G(Tx,) ~ 1— Flz,.) - Fl—z.,)
2.6 n— i log a 3y == s
(2.6)  &n ( Tog '1‘) ve ( Glxn) ) and )

n > 1.

Note &, — a and 3, — 4 as n — oc. Furthermore, let

G{Tx,.)
Glay,)

Now set U, = ’b?,/’a‘)n Finally define variahles £, = I|X;| > Tz, |-, I[| X;| > =,,]
and 8,5 = (1= 8,)I[X; > a0 — (1 + 3,)1 [X; < —xy]. Next observe thdt

] . . 1 1 o1

28) by (=Ygt og [ 14— 3¢,

2.8) a&-~a g ) 8" logT 08 +n:un(?n(;l?‘n —-éJ
1=1

and 3 — 83, = (Z”_ L 6n)/(nGL{x)). From the last two relations, it is clear that
we will need a (‘{‘ntml limit. theorem for (377, &5, 3.7, &,;). To achieve such a
result, we require certain additional (,on(htmns on the sequence of coeflicients {¢;}
and the innovation distribution.

(C.3) The characteristic function ¢z of Z; satisfies

G (Tx,)

. > .
Gulzn) = 7

(2.7} Ty = and By =

f (udz{u)|du < oc.

x5

(C.4) For some 0 < 7 < qﬁgf\z, g>1,

ZEIQ‘T = A _e)

i=v

as v — 00, for some § > 2.
Note that (C.4) implies (C.1).

THEOREM 2.3, Assume conditions (C.2) (C.4). In addition assume that the
levels @, — oo satisfy

(2.9) nq(ﬂfl)/(qiﬂ'l-l)+—‘29)p(igl| >1,) — 00,

us 1o — o¢, where ¢ and 0 are as in (C.4),
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(2.10) VGG = dn, B — 80)T 2 N2 (0,E),  as n— oo,

where the asymptotic dispersion mafriz is given by

2
(2.11) Mo T log T s

v (All'f“zﬂ/(log’r)? _)\lgT"‘/logT)
where the Ay are given in (5.25)-{5.27).
Moreover if

(212 VnGle)d, —a) =o(l)  aend  +/nG(x) (B, — F) = o(l)

ws T — o,
then

(2.13) nG(r)(a—a, - 57 L NL(0,S),  as n— oo

Remark 2.1. It is not difficult to check that 2, = n~ Y% satisfies (2.9} for
0 < afer™ < g8 — 1) (g(#+ 1} +20)" 1. Note that 1t means that if & and g are large
then we have morc choices for o, which sounds reasonable. In particular if the
cocfficients {e; } decrease expounentially then it holds for any o* > .

Remark 2.2, One can obtain simple sufficient conditions for (2.12), which
gays that the bias i& asymptotically negligible, provided one is willing to assume
slightly more than the basic tail regularity condition (1.2). These are described in
Athreya ef al. (1992). For example, suppose G{z) = 27 *(A + Oz~ 7)) (see Hall
(1982)), for constants 4 and ~ > 0. Then the first statement of {2.12) holds for
the choice 7, = n"/* with a* < o + 2v. If on the other hand one is willing to
assume a model like G{z) = 2 *A(logz)7, then (2.12) for & will be satisfied for
levels like @, — n!/™ (log n)? ) with (v — 2)/a < & < 2+/a, provided 5 > —2. Note
that by Lemma 5.2, the tail of Xy inherits the tail behavior of Z, and it is not
hard to see that {2.12) for & holds under these conditions.

Condition {2.12) for 3 1s related to higher order symmetry of the tails of Xy,
For example, if one writes 1 ~ F(z) = pr=®|el|2L1(x)(1 + hi{(z)) and F(z) =
g~ *||efr Ly (2){1 + hy{x)), where {¢;} and Ly are as in (1.1} then by (x) — 0 and
halz) — 0, as ¢ — oc. If for £ — oc, the difference |hi{z} — ha{z)| between the
two h functions is O(x~%) for some &> 0 then x, = n'/e" with o < o+ 26, is a
level sequence satisfying (2.12) for 3.
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2.4 FEstimation of the dispersion matriz

We first remark that the model dependent quantities A;; appearing in the
limiting dispersion matrix may be estimated by virtne of equationg {5 25) (5.27)
by estimating the lincar process coefficients. Such an approach would be natural
for ARMA models. More generally, as noted in the proof of Theorem 2.3, the A

Pt . . ] k k
appear as limiting variance—eovariance values for n’ﬁ(z.ill Cnis 2 yq Mni)-
ASL T

Here k =k, = o(n), k, T oc is an appropriately chosen integer sequence and (n; =
E;QI Entim1yrtis i = Z;—I n, (- Lirdds 1 <0< k,r = [n/k|. Let éTLJ = HX | >
L] — 0n HX | > 2,] and (S,U = (1 - f, )I[X >z, - (1 +,3n}IX < i) Set
(:m = Z; 15” timlyrsy and 7 = ZJ 16,“(1_ Vrtj: ¢ = 1,..., k. Since the (,, are

approximately i.i.d., a natural estimate fo1 A1 is given by

k
a 1 - _
2.1 = — ()2
( 4) A1l G, ("L'n) ;(Cm Cn)
where ¢, = % Ei’;l Chm;. Similarly natural estimators for A1z and Ay arc given by
~ k —_
(215) /\12 = Z Cru - Cn)f]ﬂz
n 1=1
and
2.16 Aoy = i — T )
(2.16) Aso = G (Tn ;(7’1 — 1

_ koo, . . . . .
where 1}, = %Z@: L fini- Using these estimators, one then obtains a plug-in esti-
mator for X given by

(2.17) T /A\HATz&/(IOg T)2 —-:\12]:&/ logT
h - /\lzTé/ IOgT )\22 !

The estimates for the asymptotic variance-covariance of & = A, and £ can be
constructed in the same way where the £,.; is replaced by the appropriate convex
combination of the &,;7s for various X;, ¢ = 1,..., L.

THEORKEM 2.4, Suppose n®P({| 7] > x,.) — oo, for a i) < k < q(Q - /{{L+
) (1 + 6)). Under conditions (C.2)-(C.4), for k, = n® with r(( U +1)<a<

6/(1+6), we obtain S, > % asn - 2.

COROLLARY 2.1, Under the assumptions of Theorem 2.3 and Theorem 2.4
and (2.12), we have with k = n®, for %((—lfﬂh +1)<a<6/{1+8),

VG ()8 VY E — o, 8- 8)T < N(0O,I) as mn— oo,

where Yo given by (2.17) s non-singuler and posilve definite with probability tend-
ing to one.

Note that one can construct a confidence sot for {a, ) via Corcllary 2.1,
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3. Tail probahility estimation

We now use our estimators of the tail parameters « and 3 to cstimate the
right tail probability P{X, > wu) under the (common) marginal distribution of
X, where u == u,, — oc. The usual empirical tail probability is not very suitable
because the level u is large. However, we can estimate the tail probability by the
empirical value when the level is smaller, say u/T for some 7' > 1, and use the
regular variation property (2.2) to estimate the required tail probability. Letting
T — up/xy, this approach leads to the cstimator

(3.1) PX1 > un) = plun/20) *Gnlza),

where @, is as in (2.5}, = (1 + 3)/2. Similarly, with § = (1 — #)/2 the left and
the two sided tail probabilities are estimated as

(3.2) P(X, < —up) = c}(un/:ﬂn)_&Gn(mn) and
(3.3) P(|X1\ Uy ) = {-u,,,,_/.ar;n)""A"Gn(:r:n).

THrEOREM 3.1. Let & = &), Suppose all the conditions of Theorem 2.3
hold. Let w = u, = Tz, with T € (1,00), where x, is as in the statement of
Theorem 2.3. Also assume that

(3.4) VaG{aa ) {P(Xy > T2,/ P X (| > za) — pT 7"} = o1}

Then
1

Glxy)

{p(X1 > ) = PX1 > up)} <, N(D, U?)

with,
T = (p 1O 2, pI ) Al 1 2,1,

where A = ((ay,;)) s the matriz given by a;; = Ay, L < i3 <2, with T =1},
ary = (V)T 4 el o A Uest AT Hed)® =17 *(lewd Aled )Y, asy =
lelle® Xop (e s)agnlee) = B){|ew| A e}, ass = |lell g™ 2205 (ee| A e}

Remark 3.1, 1f p is known to be one (e.g., when X, > 0}, the estimator in
{3.1} stould be adjusted by using § = 1. The asymptotic normality of the resulting
estimator can be proved in a similar manner.

Remark 3.2, Suppose (cf. Remark 2.2) Gz) =z *(A + O{xz™7)), for pos-
itive constants A and v, Write 1 — F(z) = pG(x){1 + »(z))}, where r(z) — 0,
as 1 — o Snppose wle) = O{x77"?). Then {34) holds with 2, = !/ far
o <z + 2";’, == Ay

!
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4. A simulation study

We now report the results of a simulation study which demonstrates the
asymptotic normality of the tail parameter estimators. First we generate 5000
independent samples of size n each from the MA(1} process X; = Z; + .57,
t > 1, where the Z's are standard Pareto for which 1 - Fy(a) = 2! for 2 > 1. In
this case o« = 1. For simplicity thronghout we use L = 1, ie.,, & = &(1)). We use
a moderate value of 77, namely 7 = 2 which happens to be the minimizer of the
asymptotic variance of &(T) on (1,oc). Also xn — /1 is used throughout.

Figures 4.1-2 show the normal @ — @ plots of 5000 standardized &, ie.,
VnGlap )& — 1)/ /o1, for n = 500 and 4000, respectively. Figure 4.3 shows
# sirnilar plot for the sample size n = 8006 where a data based studentization
VNG {z,){6 — 1) /B, is used. Also see Table 4.1, where the bias, the variance,
the skewness (based on the third moment) and the kurtosis (based on the fourth
moment} of the sampling distribution of /nG/{x,)é are empirically calculated for
sample sizes n = 500, 4000 and 8000.

‘The normal approximation is somewhat unsatisfactory at n = 500 (specially,
in the left tail). The sampling distribution has a noticeable skewness. The normal
approximation is effective at n = 4000, and at n = 8000 it is very effective cven
with a data based normalization. The block size used in the construction of &4
is 7, = 80. In order to sce how the choice of the block size affects the estimation
of @17 and in turk the normal approximation, different block sizes were used and
the 95th and the 97.5th percentiles of the sampling distributions were calculated
in each casc by Mounte Carlo based ou 5000 replications. The sample size used
is n = 8000. More specifically we use r,, = 40, 50, 60, 70, 80 and 90. The two
special percentiles are plotted against r in Fig 4 4. Circles and dots are used
for the 95th and the 97.5th percentiles, respectively. The corresponding standard
normal percentiles are represented by the two horizontal lines. As can be seen from
the picture, the normal approximation is relatively insensitive w.r.t. the choice of
r in the range 40 to 80 and is reasonably accurate. For » = 90 in which case
the blocksize is almost equal to the number of blocks (= [8000/90] = 89), the
percentiles of the sampling distribution drop below the nonmnal percentiles.

Note that it is expected that a large sample size will be necessary for the
normal approximation to be fully effective because the estimation is based on
indicators of evenes wilhl small probabilities.  Also the dependence in the data
makes additional contribution to the skewness. A similar phenomenon was noticed
for the Hill's estimator as well. See Rootzén ef al. (1990).

Next we consider the sarme model as before except this time the innova-
tions (errors) Z's are generated from a two sided Pareto with density fz{z) —
(222) 7| 4/51). Note that for this example o = 1 and 8 = 0. This corresponds to
a non-degencrate case in 4. Once again we use 5000 replications of size n = 8000

-cach and caleulate the studentized 3(—= /nG, (2,,)(8 —0)/v/F22). The normal ap-
proximation appears to be very good as illustrated by Fig. 4.5. The joint asymp-
totic normality of & and 3 is evidenced in the 2-dimensional histogram in Fig, 4.6
for the 5000 values of (v/nG(2,)(é — 1), /nG{a,){B — 0)). Here the correlation
(cmpirically calculated) was v, 5 = —0.014.
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Fig. 4.1. Normal Q — @ plot of 5000 replications of standardized & each based on
samples of size m —= 500 from an MA(1) process X; = Z; + 0.57;_1, where the Z are
standard Pareto.

Fig. 4.2, Normal ¢ — @ plot of 3000 replications of standardized & each based on
samples of sive n = 4000 from an MA{1) process Xy = Z; + 0.5Z; .1, where the Z are
standard Pareto.
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Fig. 4.3. Normal Q—©Q plot of 5000 replications of studentized & each based on samples
ol gize n = 8000 from an MA(L) process Xy = Z; + 0.57, 1, where the Z are standard
Pareto.

Wig 44 Thea Qh-th (cireles) and the Q7 feth (datg) percentilag of 2000 replications of
studentized & for different values of r each based on samples of size n = 8000 [rom an
MA(1) process X, = 7y +0.57,_y, whore the Z are standard Parcte. The straight lines
correspond to these percentiles for the standard normal.
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Fig. 4.5 Fig. 4.6

Fig. 4.5. Normal @ —@Q plot of 5000 replications of studentized ﬁ each based on samples
of size i = 8000 from an MA{1) process Xy, — 7 + 0.57; 1, where the 7 are two sided
Pareto.

Fig. 4.6. A 2-dimensional histogram of 5000 replications of normalized (&, 3} each
hased on samples of sive n = 8000 from an MA(]) process Xy = Zy 4+ 0.574; -1, where
the Z are two sided Parcto.

Tublo 4.1, Bias, Variance, Skewnoss and Kurtosis of o/ nG{x,, ).

n Bias Variance Skewness Kurtosis
500 0.53 2.74 0.81 1.37
4000 0.40 2.42 0.43 3.33
A000 .36 2.31 0.37 3.20
Asymptotic 0 208 n 3

5. Proofs

We begin with a technical lemma that collects asymptotic information on the
tail behavior of the d.f. of the linear process defined in (1.1},

LEMMA 5.1, Let { Xy} be the linear process defined in (1.1) with innovalions
satisfying (1.2). Also assume (C ) a*n(i (C.2). Thm fm" a fired y > 0, as x — o,
Gy PUX > m X 1w~ 3T el Ay ey 1]

i) P{X, > = |X;| > :Ly}/P{\Zl\ > ozt o~ S Iley > 0]+ sl{ok
Oler™ Ay sl

(i) PN > wy, Xy < o} /P20 » 2} ~ Y0 (rder < 0] ¢ slley >
O (lewi™ Ay ler—jrnl®),

(iv) P{Xy > 2. X; > 2} /P{Z | > 2} ~ 3 T lew Acjppnoy > 01 4 sTie, v
G-t < O] (e A !f*;:ﬂ'—i e
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(v) P{X) < —2,X; > a2}/ P{Zy] > x} ~ Do o(rIley < 0 < ¢+

slle,on 1 <O <ep]i{en Aepr—1])*

Proor. (i} Fix a positive integer m and set

(5.1) X =N"nz, .

i<

Now in the heavy-tailed case, i.e. under assumptiion {1.2), a large value for XJ(-m)
is almost exclusively attributable to a single large innovation. A more precise

statement of this observation is that for y > 0, as z -» oC

}
(52) P \/ C:‘?;Zlfi:

¢
i
i
|
i

s, |\ eZyma| > ay b~ PUXTY| > 2, (X > g}

ti<lm

The above statement follows from the fact, which is discernible by the argument
in Proposition 2.1 of Chernick et al. {1991). that for any € > 0,

and the fact that as n — o0, P{V
s}/ P, > )

(I@Zlf,,;i s m?|\/i§'m.c‘izj—‘ﬂi o

i

LEL3

{5.4) o Z PlleZ)| > =}

i—m g2

m—i+1
+ Z Plle 2] >z |eiy g 141] > ayt
i=0

—ir—2
+ Y Pllad> fl'y}) /P2 > a}
=={)
i m—j+1 —m4i—2
~ D el X lalay e o7+ y el
=i — 42 i=( =0

Therefore from (5.2} and (5.4) it follows that

lim  lim p{\)(i(m)\ =z, E.X',Em)! =yt /PUZ| > 2}

(RS CR

o
= L(‘(:i| A ?}“_I|C?+Jvlf)&-

i—0

—
St
ot

-
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straightforward albeit tedious caleulations establish that (5.5) suffices to show (i).
The other statements in the lemma arc established by similar reasoning and hence
their proofs arc omitted. O

LeMmwva 5.2, Under the same conditions as Lemma 5.1,
(1) iMoo PEIXL > 2/ P20 ] > 2} = 30 o lerl™ = lell® and
(it) limg o P{X1 > 2}/P{|X1]| > 2} = (rSle 2 + sZ[e]7)/ e 2 =: p.

Proor. (i} follows from Lemma 5.1 (i} with v = 5 = 1 and (ii) follows from
(i) and Lemma 5.1 taking y = j = 1 in (ii). O

Proor or TuroriM 2.1, Recall that for &, in (2.6) we noted &, — o as
o . . . U L . S
n — oc. Thus it suffices to show &y, — @&, - 0, which is easily seen to be implied
by
- Fo(za)+ Fo((—en)7) P

5.6 = — 1.
(5.6) Y, Gl 1

(5.7) B(Y, 1) =0

(5.8} Var(Yy)
o PAX > mad + 2350, [PUXL] > 20, [XG] > 2} — PH{|IXA| > aa)]
- n?{|X1| > zn}

By a lengthy computation one can show that

TR OG L — 30

nP{|X1| > a2}

(5.9) lim  Lim {

S PUXY > 20, [Xy] > @} = S0y PUXTY | > 0, | X > 2} }

=0

where X J(W') was defined in (5.1). One may also check using (C.2) and (2.5) that

= Sl PUXT > X > ) = PIX > )
T— O TLP2 {|)(1 ‘ - -Ln}
POl ST A |
n{|Xy] > 2.}
5 msaBim i1 ~ el

n

< lim

FL— 0

+

Yl ) ez =), as mooe,

i
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It thus follows from (2.5} and (5.8) Lhat limg, .. Var(Y,) = 0, which together
with {5.7) completes the proof of (5.6). The consistency of /3, can be established
similarly. O

PrROOF OF THEOREM 2.2, By Proposition 4.28 in Resnick (1987) it follows

— - d < -
that ;' M, = o' maxicien |Xe| > W where a, = inf{u: P{|Z| > n} < n='}
and W is a nondegenerate continuous r.v. Hence for any € > 0 there exists K > 1
sufficiently large that

(5.10) P{K o, <M, <Ka,} >1—¢, n>1

Now define processes

. GT (}‘TLCI, T — tyal b
(5.11) P (T) = —(;((-\/-%) K'<T<K, n>1,

where K is chosen large enough so that (5.10) holds. It follows by the method of
proof of Theorem 2.1 that for cach fixed K=! < 1 < K, 4, (7) Lop-e w1
as n — oc. Let @ denote the rationals. Then by a diagonalization argument it
is casy to see that for every subsequence n' there exists a further subsequence n”
such that

(5.12) P (T) 25 6(T),  as n —oe, TEQN[K ' K]

Using the uniform continuity of 4 on [K'~* K] and the monotonicity of the 1, in
T, it follows from (5.12} that

(5.13) sup |, (1) — (1)) Lo as no oo
K- 1<T<K

Setting Y, (2) = G, {z)/G{z), we obtain
(5 14) YVivM,) =4, (M, a,)C(Ja,) /G M,).

Using the locally uniform convergence of regularly varying functions (Bingham et
al. (L9871, p. 6) and (5.13), we obtain

G(/a,) r
5.15 51 o (1) e — 1| 7+ O
(d L)) . :’SII)EI‘ ﬂ‘ ﬂ( )G(\/z}‘«;{l1) *

[t then follows from (5.10), (5.14), and (5.15) that Y, (\/M,) LA 1, as n - oo, and
50 the theorem holds for 4*. The analysis for 8* is similar. O

LemMa 5.3, Let Y, =I(|X; > a),i> 1. Then

> | Cov(YL, V)| < MGV (a),
=2
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where M is a constant not depending on o and p = q/{q — 1) where q is as in
(C.A4).

Proor. The proof proceeds along similar lines as that of Lemma 2.2 in
Chanda (1983). Let for i > 1, R,..; = Z,:Q_?l A g, X7 =X, — R, _,, where
Z = Z,)itéd < land - Z - EZ, if § > 1 where § is specified later in the proof.
Denote by L;(y) the conditional expectation of Y, given B;_1 = y. Throughout the
proof, M would stand for generic constants not dependent on ¢ or . By condition
(C.3), the density g; of X satisfies ||g;l[. < M and hence for any i and z,

|L:(w) - Li{z)| < M] (] > a) = I{ju+ 2z -y > a)du

< Mly — z|.

Theretore, for 0 < 5, 0 < e, — d; < Mn, where ¢; = Nax|, <y, Li{y) and
di — miny, <y, Li(y). Now Cov(Y1,Y;) = I' + I?, say where I} = E(Y| —
Gla)YI(Rii| < m;). Clearly EYIYI(IRi_y| < m) = EViL, (R {{Ri_y1 <
m) < e;EY) = e,G{a). Also, the same is bounded below by &, EViI(|R;_| <
n:) > di{CG(a) - GV “((1,)(9_}/ “}, by Cauchy Schwartz where (; = P(|R,_1| > n:).
Similary one gets

Also, I < EYI{|Ri_:! > 1) < Gl/p((r,)Q:/q. Caomhbining the above inegualitics
one gets

| Cov (Y. Y| < Glayy, + GV# (@)1

Now by Theorem 2 of von Bahr and Esseen (1965), @, < nPE|R, 4F <
ﬂa’ni"é S le]?, for 0 < 8 < 2 A a. Therefore

> [ Cov(Y), ¥i) < GMP{aym,

pz i

provided

B Y )
Zm + Z?}f”” ( Z |(:k|‘*/") < 00
k

=2 g2 =i—1

Tt = (02, e ]07939/0a%8)  Then the above is no more than
x o6 o a/{y+8) ~
2277,,; — ZZ ( Z ;(:k|é/()) < 2ZA7|(:;‘;|M("’+H) <l X,
i=2 i=2 \k=i—1 k=1
by {C.4) wish a choice of § s.t. §/(g + &)Y > v. O

To prove Theorem 2.3, we need to establish a weak limit result for
(nG(xy)) Y2077 €0ys 307 805). This is achieved via the blocking technique for
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sums of weakly dependent random variables. The following lemma captures the
bagic idea.

LEMMA 5.4, Let bk =k, - 0o, I = [, — 00 be wnteger scquence satisfying,
K% O, k/(nGY4(x,)) — 0, where 0 and q are as in (C.4). Define, with
r = [n/k],

5.16 U, = i)t i
( ) \/m— Z% Lyr44
(F’i?) T/I Z En (i=1)r+4> lg7gk:
\/n(;r ) Pl
1 n—kr
515) WS

vnGiz,) oyt

Then (1) Zfﬁ L Vit W = 0,(1) and (ii) |c)(k)( coou) =M E] - 0, asn — oo,
for any uw € R, where for any 1 <4 <k, &' is the joint characteristic function of
(U, ..., U,).

Proor. Tt is easy to sce that

(519} [ () = [ ()P ) ¢ e D, L )l

Let N,_ — expliud.] Yoy - q")(f_l)(u,...,u), FP; = expliell;) and N

012G =it 15 rﬂ 1}, 7 = 2. Note that N; .y is independent of A;. There-

fnre with £ = P -~ B{P; | Ny, we gel [N, 1P | = [EN; 1P| < 2E|P* , slie
j—1] < 2. The rofme RHS (5.19) is bounded by 2EE|P}.

Note that X; = R; + W, where It; —Zi% lc,7j i § = v =1L is N
measurable, and W; is independent of Af 1. Furthermore
r—i
P N R(R; + W)

M’(I?l) =1

where h(z) = I{|2z} > Tx,) — v, I(|2] > x,). Therefore, one can write

=1
E(P | Ny = BV Wi L exp \/72h (B; + W7
where (W, ..., W) is an independent copy of (W, ..., W, ) and is also inde-
pendent of A, H(.‘IlLt
‘ u
5.20 KPP < Ele e hER; + W;
(5.20) B e Z
r—=1
— exp memar Xh (R; + W)

\/n . zn)
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Using the elementary inequality |exp(iz) — 1| < M|z!", where 7 is as in (C.4), for
all # ¢ R, for a large enough constant M, we get that RHS (5.19),

T?..7£
U
5.21 <2ME | —e—e—— E ER(R; + W;) — h{R;, + WH)|",
(5.21) < ( nG(l‘n)) < (R i) (7 3)|

since } < 7 < 1.
By {C.3), the density of R, is bounded by M, say, uniformly in j. Therefore

ENI(|R; + Wy > Ta,) — I(|R; + W)| > Tz,
< (EMII(|R; + Wil > Ta,) — IR, + WH > Ta,)|)7
< (M'f]](y} > T ) = I{ly + W) — W] > Tﬂ:@dy) )
< MIW; = Wil

for some M’ not depending on 7.
Since v, = (1), by the above calculation,

Tor—l
RHS (5.21) < M" (—Eg) kY EIW - Wl
=1

VG (x,)

for some 0 < M" < a0,

T 1‘73 [n e}
U
<M ———] k e,
(o) 22

for some { << M < o,

T o0
U
(5.22) = (—) A

by interchanging the order of the summation. Now RHS (5.22) convorges to zero,
as n — oo, by (C.4) and the conditions on ! and k, completing the proof of (ii).
To prove (i), write V; = V. ; — V,o. W = W, — W, where

I/i 1 Z (f[|X(i—l)r+jf > Tmn} - G(T:rrt))%

B 1
’ \/m’ﬂ.) g=r—141

n—kr

and

W, —

1 L B
\/m JX: (I{|Xpyry| » Tay)  G{Tay)).

=1

Then

2 2 k b
E (Z Vi + W) <2 {Var ( Vit WI) + Var (Z Vi + m) }
a1 =) v



TAIL PARAMETER ESTIMATION 385

(kl +n —rk) 5 A
SMW EY? +23 | Cov(Yy,Yit1)l

i=1

+ a2 (EY/IQ +2 Z | COV(Y@’?HZ')[) }

i=1

where ¥, = I{|X;| > Tz,), Y; = I{|X;| > ,),

ki
=0 —m8m8 MM —
(ncﬂ/q(mn)) ’

by Lemma 5.3, which converges to zero as n — oo, by the condifions on [ and k. O

PROOF OF THROREM 2.3, Take k = n% | = n*? where a = (g+1)8/(q(6+
1} +28). Then the conditions of Lemma 5.4 are satistied. Also note for later use

ki

(5.23) KZP{[Z1] > zn)

= o(1)

&l L — OG0,
Therefore by Lemma 5.4 in order to prove

_____T‘ i SN0 A1)
\/TLGTL‘n ‘EJ (; 11)

it is enough to show
k

U — N0, My,

1

where U 2y, given in (5.16) and U* are i.i.d. In the same way by arguing with
a linear combination of £ and 8, to prove

i T T
ﬁ (; Enj,Zfiny) 2 Na(0,A)

it suffices to show that

k
{5.24) (Z ,ZU ) N{0,A)

where (U7, U}) are iid. and (U}, U*) (U;, U;) with

T

r—I
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Applying Lemmas 5.1 and 5.2, we obtain
(5.25) Ay1 = limk Var(U})

8.8 [s. )

;i'r-v--- _ Zrz‘+2| |'7ch (chr+T72a) Z (|C;,;‘/\|C_-}‘)_‘rkf]‘)a

=0 oo
X
=T (T Hewi Ao )
E—0
berl AT e 1)

(5.26) Agp = limk Var([;’*)

= —24{p — Z(I + ,‘f‘?z}Sgrl(c.'kq)(;‘f'k| A e}
|| |J k‘!’
:)U
|fH S)T([‘Lk\/(]\[}’*I{(L/\(’j>(}] el A e N®

where sen{z) = flo > 0] — Iz < 0], and
(5.27) Ao = limk Cov(U;, U7)

= |lef|;¢ (1~ 8) Z (rfcy > 0]+ sf{er < O |ex| AT He )™
k.l

— (L4 8) D (rIfer < U] + sl > O3 (lex] AT e )
k!

— (1= AT (rIler, > 0] 4 sTiey < 0} (lex! A fer])®
k.l

+ (13T« Z(rl[ck. < 0] + slleg > O (|eg] A Jeg| 1™
k.

Thus from (5.253-(5.27) we see that for 5,8, C R,

k k
(5.28) ﬂli{r; Var (.@'-l \ ¥4 e Z 0:) = \11 + 2s1820 12 + 85/ \
- 1 !
Next note that for all large n, |Zr_'! Codietrril = 200+ T7%p and

i ;l—r O (i~ )4y S 27 s0 that the Lindeberg-Fe Hm (ondlt ions hold for s ZI; Ul
59 >—:l UF by virtue of {5.23). Hence by the Lindeberg-Feller CLT and (5.28).

& k
_ - d . . .
51 Z U + 50 Z U5 N{0,57A11 + 2818212 — 83090)
i
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~1

and this yields (5,24}, since s; and sg are arbitrary.
The proof of {2.10) concludes upon noting that

nG{x,) DA L T “?‘7 30 + ou(1).
8- nG (@y ) b0

Of course, (2.13) is obvious from (2.10) given the assumptions in (2.12). O

PrROOF OF THROREM 2.4. W first establish that the Ay, in (2.14)-{2.16)
arc consistent for the A;; in {5.25)-(5.27). To that end consider

k

k
1 o
{529) Aﬂ — m—(ai E 1 QT” = n(' .51 Cnt 1 ’bﬂ — 171)]5711
i= i=

where B, = X;:l INX G yrag] > znl-
Let [ = n® where b = a/8. Consider

k k k k i
n((i ZC’Z“:Z iZU?JFZ‘/iE:*QZ(JiW,
dn ) T I ! l -

where U/, and V; arc as in Lemma 5.4. Now

k &
B3V €23 (V) 1 Vartt)) =0 (1) =

- n
13 =1

since o < 8/(1 + 6).
Also by (5.25) E(EU#} — Ay, Therefore

FONIAARS \/H(ZU?)-\/E(ZVP) — 0.

. . koo P o
lherefore in order to show S_0_, (7, /(nG(#,.)) = A1, it is enough to show that

k

(5.30) STz

Going through similar arguments as in the proof of Lemma 5.4, and the fact that
| < Mir/ \/ nG/{xr,), where M is a constant, one can obtain

(5.31) b F) (e — MY (2))F] <€ constant (m) k1Y,

where 22 € R, 91 is the characteristic function of (U7,....U%), 1 < j < k. It
is easy to check that RIS (5. 31) — 0 by choice of k and [ Therefore {5.30) will

i
follow if we can show Zl Lir® oA 1, where U7 are 1.ud. and U] = U;. Define

7=
'Lfi

1
W — -
Co ALy

1 <i<k,
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where A}, (n) = kEU? — Ay, by (5.25). Then EW* = 0 and
11 1 i

L 2
. EEU |
E(gm) = kEW;* [A*_()PWE
i L a—1}a o .
v (W) = O T 06 g ) D)

by a similar caleilation as in the proof of Lemma 5.3 which goos to zero by
. . P
assumption. This shows S-F 0772 5y .
By (C.2) and Lemma 5.1 (i) it follows that

1
. E
(5 32) n>1 nC(In Z B

P L P . ) -
Thus we get that A,, — A;1, which in turn shows A;; — Ayq since ﬁ(ﬁnf

%{Z'f:] (U; + V)2 £0. One similarly establishes the consistency of :\lg(n) and
3\22(71). The theorem then follows from this and Theorem 2.1. O

The following result will be needed in the proof of Theorem 3.1. Since its

proof follows the same lines as that of Theorem 2.3 it will be omitted. Define
variables

(5'33) Xnj = I[|XJF > wn] - G(-’Bn): j=i n>l.
Let A = {ai;) be the matrix given in the statement of Theorem 3.1.

LeEMMA 5.5, Assume thal the hypothesis of Theovem 2.3 holds. Then with
$njs Ony as in Section 2.3 and x,; as defined in (5.33),

5.34 w3+ 6033 Xng) > N(0, A
(5.34) ﬁZE Xnj)' (0, 4).

nG(z,)

PrROOF OF THEOREM 3.1. By virtue of (3.4), it is enough to show
JG( ){P(Xl > ) = PlUa/2,) "G lzn)} S N(0,0%)

where 07 is defined in the statement of Theorem 3.1. Now note

G( ){P(X1 > tp) — plun/Tn) “G(x,)}

— JAGE G — 1)t )" C;((T))
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+ P\/M{(“n/mn)ﬂ& - (T"‘"‘/I”)‘a}%

ot fn) /G(T;n) (Grlrn) — Gln))

_ %T“‘\/RG(zn)([} —B) = pT" log T'/nGlza) (G — )

+ e o,(1),
P nG(Iﬂ);Xm j'( )
1 1 T T ki3
S 50 SLUTE) SIFRETIL St IC)
nG{en) \ 2 = = =
2, N(0,07). m]
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