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Abstract. In this paper we are concerned with the problem of testing against
the simple-tree alternative that there is at least one treatment more effective
than the control when data are subject to random right-censorship. A class of
tests based on linear combinations of two-sample weighted logrank statistics
cach comparing an individual treatment with the control is proposed. Asymp-
totic relative efficiencies of the simple-tree versions of Gehan-Wilcoxon, logrank
and Peto-Prentice- Wilcoxon under Lehmann and scale altornatives are cvalu-
ated for various combinations of survival distributions and censoring probahil
ities. The results of a Monte Carlo level and power study are presented. An
illustrated numerical example is also reportoed.

Key words and phrases:  Asymptotic relative elliciency, right-censored data,
simple-tree allernative.

1. Introduction

The problem of comparing several treatment groups with a control group
ocelrs frequently in survival data analyses. For example, in comparative clinical
trials, different, therapies are often compared with a standard therapy or placcho
in the prolongation of the survival time of the patient with a certain disease. In
these cases, randomly right-censored data are often available, since subjects who
randomly enter the study to take therapies under consideration may be lost to
follow-up randomly or the study may be terminated at a preassigned time owing
to time Limitation.

For the i-th sample {i = 0,1.... k), let L;1,..., T}, be independent iden-
tically distributed (i.i.d.}) random variables each with a continuous distribution
function F,, and 4, ..., (4, be Lid. random variables cach with a continuows
distribution function G;, where C;,, is the censoring time associated with the sur-
vival time 1},. Suppose that the zero population (i = 0) is the control and the
other & populations are treatments. Furthermore, assume that the B+ 1 sam-
ples are independent of each other and the 7, are distributed independently
of the T,,. In such a setting, we actually only obscerve the bivariate vectors
{Xiu, din ), where X, = min{{;,, Cu), 4 = 1, # Xy, = 13, and U otherwise,
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Let 8; =1 F;, i =0,1,..., k. Supposec that the treatments are at loast equiva-
lent to the control and that a higher response corresponds to a better treatment
effect. In this paper, specifically, we are concerned with testing the null hypoth-
csis Ho: (S, = S, i = 1,2,...,k) against the simple-tree alternatives (Barlow et
al. (1972)) 1: (S, > Sp with strict inequality for at least one 4, i = 1,2,... k)
when the randomly right-censored data are involved. The problem of deciding
treatments (if any) which are more effective than the control is also considered.

For the setting where data are subject to unequal patterns of censorship,
Chakraborti and Desu (1991) based on the Gehan-Wilcoxon (Gehan (1965)) score
and suggested a generalization of the Fligner-Wolfe (1982) test for the simple
tree alternative. They also proposed, according to Slepian’s {1962) incquality, a
multiple test based on two-sample Gehan-Wilcoxon statistics in determining which
treatments are more elfective than the control. However, the logrank statistic
(Mantel (1966)) is probably the most commonly used two-sample test statistic
and Gehan's generalized Wilcoxon statistic is a member of the general class ot
weighted logrank statistics (Tarone and Ware (1977)). Therefore, we consider
i this paper gencralizations of the Fligner-Wolfe test on the basis of weighted
logrank statistics tor the simple-tree alternatives. Multiple tests based on two-
sample weighted logrank statistics are also suggested.

A class of tests based on lincar combinations of two-sample weighted logrank
statistics each comparing an individual treatment with the control is proposcd.
Three special simple-tree tosts based on the Gehan-Wilcoxon, logrank and Peto-
Prentice-Wilcoxon (Peto and Peto (19723, Prentice {1978}) statistics arc inves-
tigated in detail. A pumerical example (King et of. (1979)} studying the effoct
of dicts on the development of tumors is illustrated. The Pitman efficacies of
the simple-tree tests under Lehmann and scale alternatives are calenlated. The
optimal sample size allocation in the sense of maximizing the efficacios is then ob-
tained. The asymptotic relative efficiencies {ARE) among these tests for Weibull
and lognormal distribntiong are evaluated and the effect of censoring on ARE is
explored. The results of a Monte Carlo simulation investigating the level and
power performances of the simple-tree tests for small and moderate sample sizes
are presented.

2. The proposed tests

Fore=0,1,...,k, let D;(t) be the number of patients in group i who have
been observed to die by time ¢ and Y;(¢) the number of patients in group ¢ who
are still alive and uncensored at time £ In Lhe arca ol martingale based analysis
of censored data the two-sample weighted logrank statistic, for comparing the i-th
treatment with the control, is written as

(21) U().,: = /(;OQ K{]z(t)d{[\(](f) E&,(f)}

where Ko, (1} = Wo () Yo(6)Yi(t)/{Ya(t) + Yi(£)} and A,(1) = jni dD;{s)/Y.(s) is
Nelson’s (1969) estimator of the cumulative hazard function of group 4, A;{t).
We consider 1 this paper three special cases of the weighted logrank statistics
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which are of general interest: the Gehan-Wilecoxon (Gehan (1965), Prentico and
Marek (1979)) statistic when Wi, (t) = {Yo(t) + Yi(t)}/(no + ns), the logrank
statistic (Mantel (1966)) when Wa, (£} = 1, and the Peto-Prentice-Wilcoxon (A Peto
and Peto (1972), Prentice (1978)) statistic when Wy, (£} = Sy:(1), where Sg;(t)
is the Kaplan-Meier (1958} estimator in the combined samples of 0 and <. Note
that the Chakraborti-Desu (1991) overall test considers only the Gehan-Wileoxon
two-sample statistic.

Remurk 1. For the Gehan-Wilcoxon statistic, equation (2.1) is

Tig + 1y

(2 9) L { /X Vi(dDelt) — /x Yo{i‘,)dD.,;(t)} |
J0 40

In comparing the i-th treatment group with the control group, we obtain (X,,, 8,,).
w=1,...,n and (Xoy, bou). v = 1,...,n9. Thercfore,

T, L2541

/ }/?(t)d[)[)(t) - Z Z I(K—'Lu = XU'H)I(OOU = J—)
0 nu=1wv=1
and, simllarly,
(e =) g TE(}
f Yo()dDi(t) — Y Y I(Xow > i} {8 — 1),
a w=1v=1

where T{s) = 1, if statement s holds, and {} otherwise Henen, the connting process
formulation of the Gehan-Wilcoxon statistic in (2.2) can be reduced to the more
familiar expression (Gehan {1965)) as

Ty Mo

. 1 , .
(2.3) Ugi = - Z Z H(Xins Gin; Xow, G0},
& + U w=1v=1
where
+1 i X, > Xge and &g, — 1;
(2.4) N Xy Oy Xow, Bow) = & =1 if Xy < Xgo and &, = 1;

0 otherwise,

For testing against the simple-tree alternative Hy: (5, > Sy with strict in-
squality for at least one 4, ¢ — 1,2,..., k), we propose to uge the gtatistics of the
form

k
Uipy = Z 5 Ui,

=1

‘- p - . - k
where 8 == (31, 2, ..., Bk} is a vector of nonzero constants. Let N =3"" n,;. It

can be showr, in Appendix A.1, that, under the null hypothesis Hp, the statistic
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NTUY2U(B)/s has asymptotically a standard normal distribution, where s — /52
and s? is stated in equation {A.3). Thercfore, the proposed test is to reject Hy if

(2.5) U(B) = N2UBY /s > (),

whore z{a) is the upper a th percentile of a atandard normal distribution.

The choice of the constants 3's is open, see, for example, Chakraborti and
Desu (1991) for a discussion on several possible choices of these constants. For
simplicity, however, we suggest to employ 3 = 1, 1 = 1,2,...,k, namely, the
simple-tree tests based on U (1) in the practical situations.

Remark 2. Andersen et al. (1993) proposed a trend test statistic which is
a lincar combination of the generalized Kruskal-Wallis (1952) rank-sum statistics
for right-censored data. For Breslow’s (1970) generalization of the Krnskal-Wallis
statistic, in particular, this trend test is a linear combination of the statistics

Ty k ny

Vie DN S (X s Xjon B3), 1= 0,1,k

nel el p—1

where (-} is in (2.4). Note that the statistic V; comparcs the i-th group with the
combined groups from 0 to &, while the statistic Up; in {2.3) compares the i-th
treatment group with the control (i = 0} group.

If the proposed simple-tree test rejects the null hypothesis Hy. one would wish
to determine which treatments are more effective than the control. According to
Slepian’s inequality, we then suggest, under an approximate experimentwise error
rate c, to

(2.6) claim S > 8, if Uy = 1\T*'1/2(;r{,i/1/.=;,5-.¢- >z(by for i=1,.. Kk,

where ;; is given in {A.1) and a == 1 — {1 — b)*. Note that the pairwise follow-up
tests with the Gehan-Wilcoxon two-sample statisties was proposed in Chakraborti
and Desu (1001).

3. An example

King et al. (1979) investigated the effect of diets on the development of tumors.
Ninety rats of the same age and species and in similar physical eondition were
divided into three groups and were fed with low fat, saturated and unsaturated
diets, respectively. The rats were observed for 200 days after an identical amount
of tumor cells were injected into a foot pad of cach rat and their sumor-lrec Limes
were recorded and reported in Table 1. The tumor-free time of the rat without
tumor at the end of the 200 days and the survival time of the rat dying aceidently
with no evidence of tumor are both regarded as censored times and underlmes.
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Table 1. Tumor-fiee thoe (days) of 90 rats on thuee dillerent diets.

Low-fat 140 177 50 65 86 153 181 181 77 &4
87 58 66 73 110 140 200 200 200 200

200 200 200 200 200 200 200 200 200 200

Saturated 124 58 56 68 79 89 107 86 142 110
96 142 86 75 117 58 105 126 43 46

81 133 165 170 200 200 200 200 200 200
Unsaturated 112 68 84 109 153 143 60 70 98 164
63 653 I¥ Yl vl 56 Ty T 63 14}

66 94 101 105 108 112 115 126 161 178

Source: King et al. {1979).

1.07
- Unsaiuratcd
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Low fat
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Fig. 1. Survival curves of rats in three diet groups.

The Kaplan-Meier survival function estimates for the three groups were shown in
Fig. 1.

To compare the ability of the saturated (treatment 1) or unsaturated diet
(treatment 2) relative to low fat diet (control) in keeping the rats tumor free,
the two-sample weighted logrank statistics comparing the control group with the
treatment groups are employed to construct the simple-tree tests. After some
computations we have the relevant summary statistics in Table 2. According to
these statistics, we found that the p-values for the logrank, Peto-Prentice-Wilcoxon
and Gehan-Wilcoxon simple-tree tests are 8.9 = 1072, 1.7 x 1073 and 1.3 x 1073,
respectively. We then conclude that at least one of the saturated and unsaturated
diets has shorter tumor free time than does the low fat diet. To determine which
treatiment diets that are unable to keep the rats tumor free compared to the control
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Table 2. Summary statistics [or the diet-tumor example,

Statistics TLogrank Peto-Prentice-Wilcoxon  Gehan-Wileoxon

o G.568 4.0053 41.200
Uz 14.010 7.292 7.667
VAL 0.368 0.271 0.259
\/’E 0.323 0.243 U.230

s 0.579 0.409 0.415
ot 1.879 1.565 1711
Uon 1.56G6 3.455 3.513
{1 3.749 2.026 3.013

diet, we found, at o = 0.05, the critical value for the pairwise-wise comparisons
in (2.6) is 2{0.0253) = 1.955. Therefore, all three multiple tests based on two-
sample logrank, Peto-Prentice-Wilcoxon and Gehan-Wilcoxon statistics lead to
the conclusion that at o — 0.05, only the unsaturated diet has shorter tumor frec
time compared to the low fat diet.

4. Asymptotic relative efficiency

Note that, under the simple-tree alternative Hy, we can cxpress the statistic
SL200(8) as

. k o .
v = [T g -3 [T g
i=1 P

T ey JAAT (@)
+A Ao(t){ AT —I}dA(t)

—Z/ Kl {;:;()) }dA(t),

i=1

where Ky and K;’s arc stated in Appendix A.1. Under the alternatives where
the absolutely continuous distribution functions ¥ can depend on N and
Nt~ F{t)) — 0as N — oo, i = 0,1,...,k, for some absolutely
continuous distribution function F. we obtain, along the lines of Section 7.4 in
Pleming and Harringlon (1991}, the general formula for the Pitman efficacy of the

simple-tree weighted logrank test in (2.5) is

{Jo" KovodA — Zf;l Jo miyidA}?
3
o

€ =

H

where

N .
kg = lim | ——Kn. 7= hm
N (N -

N—oo | T : 'IL()) N —o0

ng(N —
N

na)

L AAN JAAY 1)
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ki = lim j——— o ¥ iy v = lim | / {( EAN JdA) — 13,
N T, N oo

t=1,2,....k,
and

0 k
0? = / {Z h.;(t)} {1 ~ AA{)}dA(t)  is stated in (A.2).
Jo —

Note that there are some situations where the & + 1 groups of data are subject to
the same pattern of censorship, see, for example, Chen (1994). Hence, we considoer
in this section the assumption of equal censoring; that is, G, = G, i =0,1.... k.
Let G =1—G and § =1~ F. The cfficacy of U(8) can be simplified to he

S v . o _
{ TTO;(U,W(ZTTL XoiBiwoi o GdF — TF Va8, [, wn.;%-GdF}
Ao f

(JOO{(ZL] AoiBiwo: )2 + El, Aoi(l = Aoy ) FPwp Y Gd I

9

To compute the efficacy discussed previously, two particular types of simple-
tree contiguous alternatives are considered in the following:
[. Lehmann alternatives

H()ZS.,ju_S for ?:0,1,116
and
Hy . 5; = §l-bi/VN and b, > by with strict inequality for at least one i,

i=1,2 ...k where S is an underlying survival function.
II. Scale alternatives

I]DISZ':S fOI" tio}l,k
and
Hy Si(t) = Ste™"/v ’\) and b 2 by with strict incquality for at least

one i, +=1.2,... k.

Note that the Lelmann alternatives correspond to the proportional hazards model,
while the scale alternatives correspond to location shifts in log survival times. It

can be seen that, for ¢ = 01, k| \/E{dfk‘;\r/d_/\ —1} = v~b for the Lehmann
alternatives and limy o VN{dAN () /dA(t) - 1} = —p, {2240 a1 .') -5 (U) — 1} for
the scale alternatives. We assume, without loss of generality, that by = 0. The
formulas for the efficacies of the simple-tree weighted logrank statistics under the
assumption of equal censoring are then obtained, after some algebraic manipula-
tlons, as

)\O{Zf;] VAchi B [ wo,GdE

(41) o k ; ; al : : =
2 [ Buwn)? SE L B N GAF
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for the Lehmann alternatives and

2 [{SE Biwe)? + X5, Bl }CdF

for the scale alternatives.

12
— 1| GdF
J

(4.2)

Remark 3. The problem of allocating observations is usually of iulerest in
practical situations. If se consider the setting of Ag = aX and A\ = dy = -+ =
A = A, where X = (@ + k)71, then \p; = (¢ 4+ 1)7! for i = 1,2,...,k. Since,
under such a sample size allocation, maximizing the efficacy in (4.1) or {4.2) is
equivalent to maximizing AoAoi = a{(a + 1)(a + k)] 71, we find that the efficacy is
maximized by taking e = v'k. Hence, for equal censoring, the optimal design for
the simple-tree test based on U{f3) is the same as that for Dunnett’s {1955) test.

Note that wg; = SG gives the Gehan- Wilcoxon {G-W) statistic, wg; = 1 yields
the logrank (LR) statistic and wg; = S produces the Peto-Prentice-Wilcoxon (P-P-
W) statistic. By replacing with appropriate weights, the efficacies for the LR, G-W
and P-P-W statistics for equal censoring and sample sizes can be readily obtained
as given in Appendix A.2. In fact, the efficacy of the Gehan-Wilcoxon simple-
tree test is identical to that of the Chakraborti-Desu (1991) test for Lehmann
alternatives when sample sizes are all equal. Moreover, for equal censoring and
sample sizes, the asymptotic relative efficiencies among the tests considered here
depend only on the survival and censoring distributions.

To evaluate the asymptotic relative officiencies (ARE) among the simple-tree
tests U(f), we consider the Weibull survival distribution with density function
f(t) = nt" Lexp(—t7), t > 0, for the Lehmann alternatives and the lognormal sur-
vival distribution with density function f(t) = {n/(#+/27)} exp{ (n?/2){log t)?},
t > 0, tor the scale alternatives, where n = 0.5, 1 and 2. We employ the uniform
censoring distributions over (0, R) with probabilities of censorship 0.1, 0.3 and 0.5.
The values of the ARE’s for the Lehmann and the scale alterinatives willi equal
ueiform censoring when sample sizes are all equal are reported in Table 3.

Table 3.  Asymptotic relative efficiencies.

. G-W/LK P-P-W/LR
Censoring
Alternatives probability =05 1.0 2.0 6.5 10 20
Lehmann 0.1 0.78 0.75 0.73 0.80 0.78 0.76
0.3 0.83 0.78 0.75 0.8 0.85 0.80
0.5 .87 .81 0.75 0.95 0.93 0.88
SBcale 0.1 1.15 L16  1.17 1.16 1.i6 1.17
0.3 1.11 1.13 1.15 1.12 114 1.16

0.5 1.08 1.11 1.13 1.09 1.1t 1.14
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We can see, from Table 3, that the logrank simple-tree test is superior to
either the Gehan-Wilcoxon simple-tree test proposcd by Chakraborti and Desu
(1991} or the Peto-Prentice-Wilcoxon siruple-tree test for Lehmann alternatives,
while the Gehan-Wilcoxon test and the Peto-Prentice- Wilcoxon test are both more
efficient than the logrank test for scale alternatives. This is not surprising since
Weibull distributions preserve the proportional hazards, but the hazards arc far
from being proportioral for lognormal distributions. Note that the ARE's are also
generally in agreement with the findings in Liu ef al. (1993).

5. Monte Carlo study

To examine the relative level and power performances of the simple tree tests
based on U{1) in (2.5) for comparing several treatments with a control when
observations are subject to random right-censorship and sample sizes are varied
trom small to modernte, we conducted a Monte Carlo study. We considered kb == 3
treatments with sample sives ng =) — --- = ni — n — 10, 20 and 30 in the level
study and with n = 20 and 30 in the power study.

Exponential and lognormal distributions were considered as survival time dis-
tributions and the uniform distribution over (0, R} was used as the censoring dis-
tribution. Appropriate uniform, normal and exponential variates were generated
by using the IMSL routines DRNUN, DRNNOR and DRNEXP. The exponcential-
transformed normal variates then give necessary lognormal variates. In the level
study, the standard exponential distribution and the lognormal distribution with
zero normal mean and normal variance ¢° = 1/2 were considered. In the power
study, we used exponential distributions with various values of scale parameters
8;'s and lognormal distributions with normal variance o2 = 1/2 but different val-
ues of normal means #;'s. Various values of i which correspond to the probability
of censorship as 0.10, 0.30 and 0.50 were considered in the level study, the corre-
sponding uniform distributions for prohabilities of censorship 0.10 and 0.30 were
then employed as censoring distributions in the power study. Note that the cen-
soring probabilities were fixed for each populations in the level study. However, in
the power study, they might be varied for the four populations involved due to
different survival time distributions.

For cach of these settings, we used 1,000 replications to obtain the level or
powor estimates under the nominal level @ — 0.05. Therefore, the maximum
standard error for the power estimate is about 0.016 (==+/(0.5}(0.5)/1000). In fact,
the standard error for the level estimate is less than 0.007 (21/(0.05)(0.95)/1000).
The level and power estirnates are presented in Tables 4 and 5.

It is evident, upon examination of Table 4, that the logrank, Gehan-Wilcoxon
and Peto-Prentice-Wilcoxon simple-tree tests hold their levels reasonably when
the common sample size is about 20. The power study presented in 'lable 5 shows
that the unweighted logrank test is more powerful than the Gehan-Wilcoxon and
Peto-Prentice-Wilcoxon tests for exponential distributions. However, the Gehan-
Wilcoxon and Peto-Prentice- Wilcoxon tests are both superior to the logrank test
for lognormal distributions. These results in fact coincide with the ones in com-
paring their asymptotic relative efficiencies presented in Table 3.
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Table 4 Lovel setimates for oo = 0.05, uniform censoring and ng — ny — ng — g -~ n.
X ponentia 3 al
Censoring Exponential Lognorma
n. prohability LR PLPOW QW LR PP W Q-W
10 0.1 0.071  0.057 0.065 0.082  0.063 0.068
0.3 0.066  0.062  0.065 0.066  0.057 (.061
0.3 0.058 0.0441 0.067 0.008 0.00% 0.061
20 0.1 0.062 0.054  0.057 0.049  0.051 0.053
0.3 0.058  0.059 0.062 0.048  0.047 0.053
0.5 0.055 0.054 (.057 0.056  0.061  0.054
30 0.1 0.058 0052  0.052 0.052  0.045 0.045
0.3 0.052  0.063  0.057 0.058  0.050  0.053
0.5 0,056 0.058  0.056 0.054  0.053 0.056

Exponential: f(t} = exp(—{).

Lognormal: f{E) = {1/(ty/7)} exp{ —{log £)2}.

Tabic 5. PPowers estimates for & = .05, uniform censoring and ng = n1 = ny = ng — n.

Censoring probability

Survival 0.1 0.3
distribution n 0y & 62 03 LR P-P-W (-W LR P-P-W G-W
Fxponcntial 20 1 1 1 2 0.187  0.175 0176  0.164 0.161 0.151
11 15 2 0363 0.312 0304  0.28)  0.263  0.250
P12 9 0469 0417 0416 0384 0.359 0.344
1 15 2 2 0663 0,599  0.600 0568  0.537  0.520
1 2 2 2 0788 0729 0.731  0.673 0624 0.625
30 1 1 1 2 0.262 0,246 0.239 0.219 0.213 G211
11 15 2 0.502 0423 0424 (0.398  0.378  0.360
11 2 2 0.645 0.552  0.549  0.508 0.48%  0.439
1 1.5 2 2 G.837 0,773 0772 U.124% 0.686 . 66.3
1 2 2 2 0625  0.875  0.870 0827 0.790 0.761
Lognermal 20 0 0 0 05 018 0.22 0218 0160 0207 0.199
00 0.2 035 0306 0359 0349 0.280 0216 0.310
0 0 05 05 €476 0.534 0535 0442 0.400 0477
0O 0.2 05 05 1 &0 0 AERD 1.670 0562 0618 0.611
G 05 05 05 0772 0.831  0.824 0735 0796 G.770
300 0 0 05 0.246 0277 0288 0.297 0238 (1.23%
0 0 02 03 0388 0421 0421 0358 0391 (.385
0 0 65 05 0504 08353 0650 0577 0.604  0.604
0 0.2 05 05 0732 0790 0794 0702 0754 0.743
0 05 0.5 05 0833 0931 0.929 0864 0890 0.891

Fxponentiak f(¢) = (1/0,) exp{—£/6;}.
Lognormal: fi{t} = {1/(ty/m)}exp{--(log s — 6;)%}.
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6. Conclusion

A class of tests based on linear combinations of two-sample weighted logrank
statistics is proposed for testing against the simple tree alternatives when data
are subject to random right-censorship. The asymptotic relative efficiencies and
simulation results show that the unweighted logrank simple-tree test should be
used when the assumplion of proportivnal havards is tesable and sample sizes
are near 20, When the hazards are far from being proportional, both the Gehan-
Wilcoxon and Peto-Prentice-Wilcoxon simple-tree tests are more powerful than the
logrank test. However, as noted by Anderaen et af. ((1993), 349-350), the weight
function used in the Peto-Prentice-Wilcoxon test depends orly on the survival
expericnee, while the Gehan-Wilcoxon fest uses a weight function that depends
on survivals as well as censorings, we recommend to implement the Peto-Prentice-
Wilcoxon simple-tree test, for the non-proportional hazards model, especially, when
the censoring patterns differ greatly in the populations under cousideration.

In comparing several treatments with a confrol, experimenters arc also inter-
ested in deciding which treatments (if any) are more effective than the control.
In such cases, the pairwise follow-up tests based on two-sample weighted logrank
tests arc snggested. The choice of the weight function for the multiple test is,
again, similar to the one for the overall simple-tree test.
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Appendix

Al Asymptotic null distribution of N~1/2U(8)
Note that, when 5; = Sy, using the martingale framework, the statistic Uy,
in {2.1) can be written as

T Koi(t) > Ko}
Joo Yolt) AMo(f) - o Yilt)
where the M;{t) = D, {¢) j(; Y, {s)dA(s) wre independent zero mean martingaloes
and A{s} is the common cumulative hazard function. Suppose that N — oc in
such a way that n,/N — X;, 0 < X\, < 1, and, hence, n;/{ng + n;) — A/{(A +
Ao) = Agi, 2= 001, R TEY(E) /g N mi(t), ¢+ = 0,1,...,k, uniformly as N —
oo, then the three weight functions considered in this paper satisfy the property
that Wy, (t) 2 wee{t) and, thus, K2 (0)[Ya(t) + Vi([&)]/[NYa()Yi{t)] B hu(t) and
Ko (1Ko (1) /INYa(£)] 5 hy;(t) uniformly as N — oo for i = 1,2,..., k, where

h.t';;(t) = /\g)\o,‘,wgi(i)ﬂ'o(ﬁ)ﬂi(t)/;(l el /\(7);.)7\"0&) =+ Ao.lﬁ,é(t)‘!
hij(£) = Ao AuiAgywa, (Ehwo; (E)mo(E)m () (0 /{[(1 — Aoijmolt) + Aoimi(t)]
(1= Aoy )molt) + Aoym; ()]}
it =12,k

Uy; = dM;(1),
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Hence, the Martingale Central Limit Theorem (see, for example, Theorem 6.2.1 in
Fleming and Harrington (1991)) implies that the asymptotic null (Hy) distribution
of the random vector N2y, Uga, .. .. Uax) 1s the E-dimensional normal with
zero mean vector and covariance matrix ¥ = {g,;), where

Ti5 = /{ h“'?.‘j(t)ﬂ - AA‘(t)]dA(t) "J.] = 1!25"-:k:
49

with A(¢) the common cumulated hazard function and AA{t) = A(t) — A(t—).

Note that unblased and consistent estimators of oy 5 are then given by

and

/ " Ko (£) Ko, (t) { CAD( - 1} dD(t)
}()(T) }’r(t) —1 Y (1)
for i£5=1,2,.. k,

where D{t) — 32F  D.(8), Y(t) = 35 Vi{t) and AD(t) — D(¢) - D(t—). Tol-
lowing the (Jmmor—\\’old device, we observe that the asymptotic null distribution
of N— 1/2 L _, 3illy, is normal with zero mean and variance o2 = Zf,l Bloy -
B4y 8,8,74 for any nonzero constants 3, i = 1.2, ... k.

Note that we can write N~1/2U(8), under Hy. as

NT2p(8) = [x Kyt dj\,fg (ty — Z/m ?,d((tt i(B),

0

where Ki(t) = N7'V2 5, Ko (), 1 = 1,2,. ..k, and Ky(t) = Zle K;(t). Moreover,
we have K2(8)/Y,(t) 5 hi(t), i = 0.1,...  k, where

ho(t) = Agmo(t Z AajBiwo; (1) (1) /{1 — Aoy )mo(t) + Aaym; (£)}

F=1
and, fori =1,2,... &,
hi(t) = Modoi(1 = Agi) B7wd (£ d ()7 (83711 — Noidwol(t) + Mg (# 1112

2

Therefore, o can also be expressed as

(A.2) ot — /0 3 hi(t)[1 - AA(EAA().

i=0

An unbiaged and consistent estimator of @? is then given by

, s [N K2 AD(t) - 1Y dD(t)
(A3) 52_/0 {z o }{1_ e } =

i=0

Henee, we obtain, by applying Slutsky’s Theorem, that N—1/2 U(B)/s is asymp-
totically standard noriual, where s 2= /g2,
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A2 Pitman efficacies for equal censoring and sample stzes

The Pitman ellicacics of the Logrank {LR), Gehan-Wilcoxon (G-W) and Peto-
Prentice- Wilcoxon {P-P-W) simple-tree tests for equal censoring and sample sizes
derived directly from equations (4.1) and {4.2} arc given in the following:

k 2 i 2 g
eff(LR,)-—{Z,m} / GdF / (k+1) (Z{ﬁi) +) 8
0 i=1

i=1 i=1

k 2 .
EH(L—R) = {Zﬁtb,} {/) GQSLH?}
=1 s U
k 2 k o
/ (k+1) (Z 5?;) +y 8 / G3S2dF
el i=1 0

k

AT {12{ OO_( ’
(PP W) — {Z,}tblj /D GSJ,F}

i=1

k 3 e
/ (k+ 1) (Zi,) + >0 / GS2aF
; 0

i=1

2

and

[}e)

for the Lehmann alternatives, and

and

k 2 5 - - 2
_ Ll X LSt ST (E) . ’
fFPP-W) — 4:h, — 1} (7SdE
off( ) {L ’} fo ( Sty S

k 2y _ o
(k+1) (Zﬁ,-) + > / G52dr

i—1 70

for the scale alternatives.
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