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Abstract. Various problems in statistics have been treated by the decision
rule, based on the concept of distance between distributions. The aim of this
paper is to give an approach for testing statistical hypotheses, using a general
class of dissimilarity measures among & > 2 distributions. "'he test statis-
tics arc obtained by the replacement, in the expression of the dissimilarity
measure, of the unknown parameters by their maximum likelihood estimators.
The asymptotic distributions of the resulting test statistics are investigated and
the results are applied to multinomial and multivariate normal populations.
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1. Introduction

The conecept of the distance between probability distributions is of funda-
mental importance in statistics. A lot of methods have been developed using
distance-based decision rules, in various areas in statistics like hypotheses testing,
nonparametric statistic, diseriminant analysis, multiple regression models. On the
other hand, statistical information theory provides us with a number of measures
for discriminating among distributions. A divergence or dissimilarity measure be-
tween distributions can be considered as a measure of the “distance” among the
respective distributions from the point of view that, the smaller the divergence
between two distributions is, the harder it is to separate, to discriminate among
them.

In the sequel, we focus our interest on the use of divergence or dissimilar-
ity type “distances” for testing statistical hypotheses. In this context, a measure
of affinity of several distributions has been used by Matusita (1966, 1967), as a
decision rule for testing hypotheses about the parameters of several multivariate
normal distributions. Since Matusita’s pioneer work, a lot of papers have been
appearcd in the literature, where divergence or dissimilarity measures are used
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for the construction and the study of multinomial geodness of fit and indepen-
dence tests, We refer, among others, to Cressie and Read (1984), Nayak {1985},
Gil {1989), Zografos et al. {1990}, Zografos {1993, 1994), Morales et al. {1994),
Menendez el ol. {1995) and references therein. Recently, Salicru et al. (1994) and
Pardo et al. (1995) extented the above ideas and methods to the space of a para-
metric family of distributions, for testing hypotheses ahout the parameters of one
or two populations.

The approach for testing statistical hypotheses, using a divergence or dis-
similarity type “distance”, can he snmmarized as follows: Tot {Py - 8 € 8} he a
parametric family of distribution functions and I{-,-} a divergence type “distance”
on {%: 0@} If 6 € O is known, then, [{F, Py,) is a measure of dissimilarity
of % and Py, and thereforc a measure of the closeness of 8 and 8, for 8 ¢ ©. If
f is an estimator of 6, then, 7 {P;, ) can be used as a test statistic for testing
the hypathesis § = 5. In a similar manner, for 6, an estimator of #; € B i=1,2,
I (P@1 . £, ) can be used as a test statistic for testing homogeneity, i.e. 8 = fy, of
two populations Fy, and I5,. The investigation of the asymptotic distribution of
the above statistics is therefore the main task of the method.

The aim of this paper is to extend the above method, concerning two popu-
lations to the case of several populations. In the following section, the f-dissimi-
larity, a gencral class of dissimilarity measures between k (k > 2) distributions due
to Gyorfi and Nemetz (1978), is introduced in a parametric family of distribution
functions. In Section 3, the asymptotic behaviour of the estimated f-dissimilarity
1s investigated, under a variety of assumptions concerning the relationships of the
parameters of the distributions. The results of this scction are applied, in the final
section 4, to multinomial and multivariate normal populations.

2. Preliminary concepts

Let (X, A, Ps) be a probability space for 6 € O, where © is ar open subset
of M. Consider the generalized probability density function fy{z) = dPy/dp
relative to a o-finite measure u. Suppose that the following regularity conditions
{cf. Serfling (1980}, p. 144) are satisfied.

(R1) 'The support of fy does not depend on # € © and the derivatives

a2 e %
‘5)9{‘;}(;}, Eig,ggfgé))k’ 1, 7.k=1,..., M, exist for all z.
{R2) For each 0y € ©, there exist functions g{z), h(z) and H (1) such that,

for # in a neighborhood N(#,), the rclations idff’(r)| < g{x), ‘?mﬁim | < h{x),

I(,J g-gijw < H{z) hold for all z and [ g{x)dr < oo, [ h(z)dz < oo, Bg(H(X)) <
oo, for 8 € N(6g).
(R3) Far A <

Bfp(x)
o, o

Fol Blog folu}

0
dlmgaf&(r) Hl, 4,9 =1,..., M, is positive definite with finite olomont%
For 8; € O, let the generalized densities fo, () = dPy, /dp, i = 1,... 1. The
[-dissimilarity of fg . fa,, ..., fo, (cf. Gyorfi and Nemetz (1 978)) (‘ﬁncd by

(2.0)  Dy=Dy(8:.6s,....60.) = [ Fon(3), fou @), fo, ()i,
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where f is a contimuous, convex, homogeneous function, defined on the set S =
{(s1,...,8,) 1 0 < s < o¢,i =1,...,v}. Dy measures the dissimilarity {“dis-
tance”) of fp,, i = 1,...,v, and it is intuitively intended as a measure which
reflects the difference between the v populatlonb If flsi,..,80) = =11 s UV
and flsy,. .., 8,0 = — [0, 8, a; > 0, with > a; =1, then f- dzssmmlamty is
the negative of Matusita’s (1967) aflinity of v populations dnd the negative of Tou-
ssaint’s (1974) affinity, respectively. f-dissimilarity leads also to the ¢-divergence,
introduced by Csiszar (1967), if f(s1,82) = sa(s1/82), with s;,s2 € [0,00) and
@ a continuous, convex function defined on [0, o¢), satisfying some regularity con-
ditions (cf. Csiszar (1967)). Special choices of the convex function ¢ lead to the
Knllback-Leibler directed divergence, or Renyi’s order « information, or Cressie
and Read’s power divergence, etc.

In order to estimate Dy, motivated by Salicru et al. (1994}, we supposc that
the parameter 81 = (61,,...,61ar) of the first population is completely unknown,
while the parameters 8}, = (G417, .- 5 ks Ogr 1)y -3 Oty ﬁfn(M(_,H)? co O ),
m — 2,...,v, of the remaining populations are partially known, where the super-
script t denotes the transpose of a vector or a matrix. In particular we assume that
bs = 1, 11 € Iy = {1,...,k}, 0y is unknown when i € In = {k +1,... , My}
and #,,; is known and equal to 8%, fori € Iy = {My+1,... , M}and m =2,... v
In this context, the joint parameter space is an open subbet of PWH"_”(M“”“)
with elements v* = (611, -, rar, Qokaryy - P2mes - Butirry - Bony )

The partitioning setup for the parameters, considered a‘oove ig motivated
by the desire to construct statistical tests of homog,c‘n(‘lty of v mdopendpm 7
variate normal populations N, {y;, V), with V| = HUmJHrm m,j=1,. ,r, being
a positive definite unknown dispersion matrix of order r, for i = 1,...,v. In this
context, econsider for example, the null hypothesis,

Hy py=p5=---=p, and ulll —. =um o me=1,...,7
given that u, nj == 11 ? form < j, m.j=1,...,r and p are predicted values
for pe;, ¢ = 2,...,1. Thlb hypothesis, can be ertten in the form, Hy : 8y = 5 =

- = 8,, with 4} = ((ugi;,'m < dom g =1, 1), (w.g,llzn,'m =1,...,r). ut) and
0: = ((?"'(LJ m < Jm=7 - 1 57.)5(11"E:£)'ff¢1771 = IJ"‘ﬂT)!(JL‘":C)t)? fOI'?: = 2'»““V

Tyl

In this case k — 222 My =k +rand M = r2430 Ty similar manner. for the
- 5 3 a 5

hypothesis of complete homogeneity,

H(]:ul:}-LQ:"':,MU and V]. VZ—"':VV,

we have 8; = (i;, Vi), i=1,...,vand k=0, My =M =T +*'".

Consider independent random samples ,LE’“)\ ,(J”_), of sizes n,,, from the

p()puldtlonb fo,., m = Ll....,v. Let 91? and Hm j b( the estimators of ¢y, and
Oppg, =1, ..., M, 7 =k+1,... My, m=2,...,v, respectively, maximizing the
likelihood f\:llCthn

T Tirn

’y = Z].()“ f()i J, ZZIO f@m )

i=1 =2 g=1

=
SN
b2

R
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Denote by ’:ft = (é“ y - 91 Ay 32 (d1)s s 92 Mys e 9u(k—+ (BYRRE ;QVME)) the maxi-
mum likelihood (3stimat0r of vand n=n{ tns+---+n,.

The sample estimator of Dy is obtained from (2.1). if we replace the un-
known parameters #,,, m = 1,..., v, by their maximum likelihood estimators é{ =

(9111----91%1) and {)f‘ = (9“ L0, 8 wllA 1) - - BmMu B:rb(,u”Jrl) "JO:KnM')! for
m - 2, ..., v. This estimator is th{_, f- dz;a%malamty botween f() yooo0 fy defined by

(28) Dy =Dyl bare ) = [ £, @, ). fy ()

The cstimated f-dissimilarity, measures the distance between 8, ¢ = 1,. i, in
the sense that, the smaller the f)f is, the harder it is to separate to dlscrunlndte
AMMOng b, i =1, ..., v and can therefore be used as a test statistic for testing
homogeneity.

[n the sequel, we assume thal the convex funcsion f admits continuous firse
and second order derivatives on S. Denote by f; ) (u) the first order partial deriva-
tive of f{s) with respect to s;, i = 1,.. ., v, at the point u dIld by f( () the sccond
order partial derivative of f(s) erh Iebpect to s; and s;, 6,7 = 1,...,p, at the
point u. Let H{u) be the v x v non negative definite Hessian matrix of the con-
vex function f at the point 4 with clements _ffgg)(u), fori,7 — 1,...,. Let also

H=H().
3. Main results

Consider the vector W = (W} Wi .. WHE W, is the M x 1 vector with

elements
oy D
(31) Wi=55-D;
b2,
Z/ {;)E(T S fa@)s o fo, (e, 1<i<k
=1
J T ) . ‘
Do) i) g, 2. o, (o))l Eel<i<M
. M
and W, m =2, v, the (My — k) x 1 vector with clements
&

39) W, — —n
( ) d()mi d

O fomla) . :
- / a(;“ f'm (fgl( ) - fa, ('I:))d.u: E+1<i<M,,

Let % be the Fisher information matrix associated to the parameter ~. In
view of (2.2) and regularity condition (R3), £ is a symmetric, positive definite
block matrix of order M + (v — 1}{ My — k) defined by

o 2 X
(3.3) y[?«im 2a |’
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N i 1,k Ths 1,k n,, 1,k
S ( IF (), 1¥(6,).. . IF(BV)) j

nk+ 1, M nk+1,M, n k-+ 1, My
}3‘21—Zli

. mkik+1,M . nok+1, My n, k+1, My
Yoo = diz I7(ay), I {f),...,— e ).
2 “g( ke O et e et )

Puisakxk Zioakx [(M-k)+ (- 1){Ms— k)] block matrix, while Zao
is a block diagonal matrix of order (M — k) + (v — 1)(Mo — k). 2 15(8,,) is the

(7 —4+1) x {r -5+ 1) submatrix of I¥(8,,), which have the 4, i + 1,...,j rows
and the r, r + 1,...,5 columns of I'V(O,n) ancl I'"((}m) is the I'isher information
matrix associated to 6, form =1,... v.

Under the assumption #; = 3 = --- = 0,,, let 77'{#) be the Fisher information
matrix, with ¢ the common value of f)‘,, i = l, ..., . In this case, consider the
square block matrix A of order (M + My — 2k), defined by

. A A
3.4 A=
(3.4) [Am Agz] ’
with
k,'—f—l,ﬂfﬂ] . k 4 1,17\/[0 k+l M[)
kot o} M ! (9) M, 1, M (H) k11, M F(ﬁ)
A]]— v , 4¥ig Vig | ) A]zi | ) ¥
My +1. M },(9) My + I?JM{IF(()) y My+1, M P(())
k+1, My Mo+ 1, M E+ 1, My
E+1,My
Ay = Al and Ay = I7{8).
n= Al and - An =g T O

Conaider also the following partition of the Iessian matrix 7 of the convex
function f af the point 1,

‘ H., Hy. _ 1,1 _ 1,1
3.5 H = , ith  Hyy = H, Hi» = H
(3:5) [Hm H:z-z} b M th BTt
2 v

Hyo —  H

22 2 v
and

H2| "“II:’Z.

In view of (3.4) and (3.5), define the square matrix of order (M — k) + (v —
1y s (My k),

oo Aqns H Ay & IT
9 _ { n®Hy Ans Hp
(3.6) B LAoy @ Moy Apa & Ixo |
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with & the divect product of the respective matrices.

After the notation introduced above, we state the main result concerning the
asymptotic distribution of the statistic Dy. The proof of the theorem is given in
the Appendix.

TuroreM 3.1. Suppose that the reqularity conditions (R1)-(R3) are satis-
fied If - — X >0, a8 n; — o0, fori=1,...,vandn=>"_| n,, then,

a)

V(D —Dgy 5 NOWISIIW),  provided that W'S:'W > 0,
g —= 0%
where W ois given by (3.1}, (3.2) and L. is obtained from X, given by {3.3), if we
replace 70 by A, i =1, v,
b) If8, =6y =---=4,, then

-
- . L
2n(Dy — f(U)) = Y BXT

=1

where X7, are independent random variables, each having a chi-square distribution
with 1 degree of freedom, k* — min{ (e — 1) (M — k), (M — k) + {v — 1}(My — &)},
Bivi=1,...,k*, are the non-zero eigenvalues of the matrix BZQI, with B3 given
by (3.6) and X is obtained from Taa, given by {3.3), if we replace by Ay,

i=1,....v.

The estimation procedure for the f-dissimilarity, considered above, is in-
variant under reparametrizations. Indeed, since the maximum likelihood esti-
mators are uscd to estimate the parameters of the respective populations, the
f-dissimilarity statistic, given by (2.3), is parametrization invariant. The f-
dissimilarity measure, is also invariant under one-to-one reparamectrizations, done
individually on each of the v populations. For example, consider, reparamotriza-
tions of the form ~; — 49, I = 1,. .. v, with v = {+},~4, ..., +%) the joint parame-
ter, where 7y 18 M -dimensional and v 18 (M - k)-dimensional tfor cach { = 2, ... v.
In this case, it is easily seen that the f-dissimilarity, given by (2.1), remains invari-
ant. This is also true for the variance of the estimated f-dissimilarity, obtained in
Theorem 3.1(a). To see this, let I (v} and /(%) be the Fisher information matri-

ces associated to the parameters v and o respectively, with ¢ = (1}, 5, ..., ¢")0
Denote by X, the matrix obtained from I (¢), if we replace % hy A, i =1,..., v,
and let C = ||§%~ s 44 = 1,..., v, be the square, of order M + (v — 1)(My — k),

block diagonal Jacobian matrix of the transformation v v 3. In virtue of (3.1)

|

and (3.2} we have

AN ‘ T
Wy =VyDpln, ... 0,) = C'VDi(v, ..., ) = C'W.

Using the reparametrization formula {cf. Papaioannou and Kempthorne (1971)
p. 30),

"y =cr(yyc =crt (e,
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we obtain,
Yo =020 = Cu,.Ct
In this context, let (75} be the asymptotic variance of the f-dissimilarity statistic

Dy, under reparametrizations of the form -y — 4. In view of part (a) of Theorem
3.1 we have,

op, = WiSy'Wy = Wroe e o) o'W = Wiy, W

Therefore, the f-dissimilarity statistic D ¢ and its asymptotic distribution, remains
invariant under reparametrizations, done individually on cach of the populations
considered.

A special case of Theorem 3.1 appears when My = M. In this case the param-

eter of the m-population 8, = (@nmis- .., Omi, Omikr1)y o Irmar)s me= 1o v, s
unknown and we suppose that 6, = @ = -+ = #,,, for ¢ = 1,....k In the

following corollary, this casc is treated as well as the case Mg = M and £ =0.

COROLLARY 3.1. Suppose that the regularity conditions (R1)-(R3} are sat-

isfied. If T2 — X > 0, asn; — oc, fori=1,... v, then
a)
\/H(Df — Dy} L N(0,6%),  provided that a? > 0.
Ty, — o

iy If My = M, then g* = WIDTIW, with W oand Z. are obtained from
part (a) of Theorem 3.1 taking My = M.

i) If My = M and k =0, then o® =%, | X%L‘L'fi‘IF((J,i)’1 W,, where Wi is
the M x 1 vector with elements

W, = m;’vg—lffl)(jgl (x),..., fo, (xNdp, ¢=1,...,0v, j=1,.... M
80,5
and I‘D(H,;) is the Fisher information matriz associated to 85,4 =1,...,v.
b) Under the hypothesis that ) = 8, = - = 0, if Mg = M, we have
. v—1
QH(Df B f[lj) ?’L?':)rx: Z 81 X’%{ - ke
i=1

where X2, are independent random variables, each having a chi-square distribution
with v degrees of freedom and 3; are the non-zero eigenvalues of the matric H Dy,
with H the Hessian matriz of the conver function f at the point 1 and Dy ihe
diagonal matriz with elements A1 i=1,... v

Proor. a) Direct application of part (a) of Theorem 3.1.
b} In view of Theorem 3.1(b), for Mg = M, we have that

{w—1)(M—Fk)

(D —p1)) 5 ST Xt
Ly T LX) 121



302 K. ZOGRAFOS

with 3; the non-zero eigenvalues of BY 5 ! where B is given by (3.6) and g is
obtained from Yay given by (3.3), if we replace 2 by A, i =1,.. . v If My = M,
after considerable algebra, we ohtain that

det(BZ? _ {,uf) x ld(‘f(fIDA _ WI)JM'_’%’

with H and Dy as defined above and I the identity matrix of order . Because
of rank(H D)) < v — 1, the non-zero ecigenvalues of BEE' arc 3, i=1,...,v—1,
with multiplicity M - k.

Consider the case My = k. The parameter 80 = (014,..., Oiaty, Orensy 11y, - -
B ar) of the first population is completely unknown, while the parameter of the m-
= {M,. . Bias,. ar Mot1) B ), with 9;’,‘”_?.
form =2, ,vand j = My +1,...,M. In this case we consider a random
sample of size n from the first population. From (3.1), (3.2} we have that Wt =
(Wa, o, Wz Wagoats- - -, War), with

population becomes At known,

413

> %%&fﬁf)(fal (@), Jo (@dp. 1<i< My
('37) W’r.l oo m=1 ik |
dfo, (x)

fo§l)(f91(:1;), oy Je {x))d, M+ 1<i< M

while, in this case, Fisher’s information matrix is 7£(6,). X

In the following theorem, the asymptotic distribution of D, is investigated,
when My = & and My = k& = 0. The proof of the theorem can be obtained by a
sitnilar argument to that of Theorem 3.1, and it is outlined in the Appendix.

THEOREM 3.2. Suppose that the reqularity conditions (R1)-(R3) are satis-

fied.
a)
Vi{Ds — Dy) 4 (0,0%),  provided that o = W'IT(H)"'W > 0.
T— 0
1) If My =k, then W is given by (3.7).
) If My =k =0, then Wt = (W, ..., Way) with
5
W, = / 9fo(z) B f (), fo @)y, for i=1....,M.
. ()91,; v
b) Under the hypothesis thot 8) = 0y = - = 0, if My — k, we have,

{2n(D; = FON/AT WO} B X my

provided that jff)(l) £ 0.
Remark 3.1, a) The above results, concerning the asymptotic distribution

of f-dissimilarity statistic, can be used in various settings to testing statistical
hypotheses. In particular, part (a) of theorems and corollaries can be used to test:
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1y Hy: Dy = Dygg, Le., [-dissimnilurity 1s ol cerlain magnitude Dy g,
i) Ho: Dy =Dypo == Dyy, e, f-dissimilarities of [ > 2 groups of
popuiations are equal.
statistical tests, for testing these hypotheses, can be obtained by using the
results of this section, in a similar manner as in Section 4 in Zografos et al. (1990)
and Section 3 of Salicru et al. (1994).
Applications of the above theorems, for special choices of the convex function
f. lead 1o the asymptotic distributions of Matusita’s and Toussaint’s aflinities, as
well as Csiszar's and othor divergence measures, mentioned in Seetion 2.
b) In the case of equal sample sizes, the asymptotic distributions of part (b)
of the theorems and corollaries above can be simplified for Matusita's affinity, as
wo will see in the Subsection 4.2 below.

4. Applications to multinomial and multivariate normal populations

4.1 Multinomial populations

There is an extensive literature, mentioned in introduction, dealing with the
estimation of various divergence measures in a multinomial distribution context.
The cstimators of these measures have been used for the construction and the
study of optimality properties of multinomial goodness of fit and independence
tests. The population and sampling set-ups have been simple or stratified. In
this subsection, a unification of the existing results and an extension to the case
of & > 2 multinomial populations are given as application of the results of the
previous section.

Consider the probability space (X, A, Fy), 6 € ©, with X == {xy,...,2m} and
& — {{p1,. ., par—1) i ps > 0 Ef\ifl p; - L—pa ). For poa counting meagure on X
and 0, €O, m =1,.. v, let fy (z;) =pp, fori=1... . Mandm=1,... v
In this context, if PY = (pyu1.Dm2,s -, Pmar), M = 1,..., v, the f-dissimilarity of
P,..., P, is defined by

M
{4.1) Dy =Di(P,...,) = Z Fp1y ey pug)
7=1
Consider v independent randon saruples, of sises vey, o= 1,..., and n =

b2 A . o .
> i Let Py be the relative frequency of the value z; from the m-population

form=1,...,vand j =1,..., M. In this context, lot. P4 = (P, Pz, -« - » Proar )
‘Lhe astimator of Dy is delined by

M

(4.2) Dy =Dp(Pr,. . P =" f(Prgibs- 1 Puy)
i1

The asymptotic distribution of D is established in the following corollaries.
Conorrany 4.1, Asn, oo, with = A >0, fori- 1,

v we have,
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Va{Djy — Dy) L N{0,6%),  provided that o >0,

Ty — OO

with
v M

(13) o2 Zzpma Pm? ( (1) (] Z Z IJmang (1)(U)fy(yj)(('f)

=1 ¢=1 m=1 {j=1

i

fl?’l-dU_f:(plj,....pw) jF=1,...,M.
b) If L= Py = =P, then

2n{Dy — f(1)) - Z BLXMA,M
with 3, the non-rero eigenvelues of HD,,

PROOF. a} Based on Corollary 3.1(a(ii))}, we have the asymptotic normality
of /n{D; — D) with zoro mean and variance

a1

4.4 2= — W I, W,
(1) =X W),
where W) = (W,,1,..., W) and

- . af, (J:)
(45) Wy = / g I U @) fo, @i = 1 s p),
fori=1,...,rand j = l, ..., M. Furthermore, it is easily seen that
(4.6) I 0m) ™ = il — gl G =1, M =1,

and (4.3} is obtained from (4.4), (4.5) and {4.6).
b) Follows hnmediately from Corollary 3.1(b), taking & = 0.
Consider now the case, when we observe a random sample of size n from the
first multinomial population Py, while the remaining P, m = 2,..., v, popula-
tions are completely known. We have the following consequence of '1'heorem 3.2,

COROLLARY 4.2, a)
\/H(Df - Dy) L N(0,6%),  provided that &% >0,
Ti =+ XD

with

ZPU — Pui) U;) Z prp UV (U),

%=1
i

(mdU‘— (Pryy . sDus ), J=1,..., M.
D) P =P =P, then

20Dy = J)/ AV B X3

provided that fl(f)(l) £ 0.
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4.2 Multivartete normal populations

Consider v independent r-variate normal populations N, (ptm,, Vi), with mean
it and positive definite variance-covariance matrix Vy,, for me = 1,..., 1. In this
section we focus our interest on the use of the nogat've of Matusita’s affinity,

obtained from (2.1) for f(sy,....s.) = —[]_, @ . Straightforward caleulations
(cf. Matusita (1967)), lead that the negative of Matublta. s affinity of the normal
populations Ny (g, Vin), m = 1,...,v, is given by
(A7) p=Dpl{m Vi)on. (o, Vi)
AN
) 1/2
1 _
; ; Z‘im=l Vi .
1 T
' EXI) :)y <v T/Tn'? #‘”—’ (Z ‘fﬂ ) Z I/:"l’i,ll"!”l«>
- m=1 m=1 m=1

124
- Z(Vr;]#mz.‘«"‘m) :

=1

with {-, ) the inner 1)1udupt uf the vectors involved.
Let X™ xI™  x5™ arandom sample of size n,, from the m-population
and X" S the bample mean and covariance matrix respectively, defined by

P
{(m) _ ZX(m)
(4.8) i
! - (m) 7 {rm) >
S’m = e X — X('nl) X _ X(m,) f,.
) nmflzi( g )( J )
form=1,...,v, withn,, >r. Let alson =n) +--- +n,.

An estimator of p can be obtained from (4.7), if population parameters o,
and V,, are replaced by their estimators X and 8,,, m = 1, ..., v, respectively.
The statistic obtained, can be used for testing homogeneity.

Consider the statistical hypothesis,

Hy pp=pp=---=p, giventhat Vi =Vo=...=V, =V,

The m.Le. of o, and V are respectively X{™ and § — [}V (n; — 1)9,]/n.
Under Hy, from (4.7), we have

p = —&exp { {< vt Z Hans - i !*"m> - i <V_1Nm:!vbm>:l }

b EEN | m;l m=1
and its sample estimator is

F’} — (‘Xp{ |:< = i y‘ X{m) 1 y‘ X m,)> Y (()"—].X’(Tﬂ,)jX(TTL)}:\ } .

= 'm_l m=1
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An application of Corollary 3.1(b}, tor f(s;,....8,) = - []_, 3;/” gives that, as
n, — o0, with ™ — A, > 0,i=1,...,p,

v—1
(4.9) 2n{p+ 1) LA Z ﬁ;‘Xf’jJ under the hypothesis Hy,
i=1

where 8; are the non-zero eigenvalues of HDy, with H the Hessian matrix of the

convex function f(sy,...,s,) = —[]_, 9?1 " at the point 1 and D) the diagonal
matrix with elements A", i = 1,...,». We obtain that

At 1
(4.10) HDy = Hf" (5@ - ;)

{, ni=1,...,1m

When the sample sizes arc equal, (4.10) remains true, if we replace A; by A, the
common limit of the ratios n; /n, i = 1,...,v. In this case, after a little algebra, we

can sce that the non-zero eigenvalues of H D)y, are 1 with multiplicity v—1 and from
(4.9), the asymptotic distribution of 2n(p + 1) is X é}fl)r, under the hypothesis
Hy. Thercfore, for large n, Hy is rejected at a level «, if 2n(p + 1) > X(nyl)r‘a.
The negative of Matusita’s affinity p can also be nged to produce an asymp-
totic statistical test for testing complete homogeneity of v independent normal

populations, i.e., the hypothesis
Ho:;lil:yQ:...:#y and VI:V;Z:.._:V;/_

In this case, for Vi, = (n,  1)8n/nm, m = 1,...,v, the estimator of g is given

by

p— Dp((XD V1), . (X 9,
- | e

=L

1/2
Ly . Vi,
v = l

1 v i —1 1
r—1 ) r—1 Cyr—1lylm
R B < > Vi X, (Z Ve ) Vo X“’”>
m=1 m=1 m=1

_ Z({“/--IX(m)’X(m)>

Ty
m=1

where X (™) and S, are given by (4.8). Under the hypothesis Hy, from Corollary
3.1(b), if we take £ = 0, the test statistic 2n(5+ 1) has the asymptotic distribution
Sl 8 X7, withw = (#43r) /2 and §; the non-zcro eigenvalues of HD), given hy
(4.10). When the sample sizes are equal, the asvmptotic distribution of the above

statistic is the X [2(”71) (]S under the assumption of complete homogeneity.
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Appendix

Proor oF THEOREM 3.1. Following the notation introduced in Sections 2
and 3, consider the function

W(ﬁ/) = Df(91:€2= s JHV) = / f(féh (qj)ffb(T) e '1f9y(w))df'b

a) A Taylor series expansion of (%) around v gives,

M+ {v—1)(Mo—k)

() L de(y)
§ ( +Z *fl & - + Z (’Ti_/i)a—%—l'R?L
=AM +1
k v " ()\,0 M 8
: A S hma
:@(’Y)%—L (L . & — 1, ) ()9 + L 6’11 Bh)()(‘)l,
=1 \m=1 i=k+1
1/ ﬂr.’!(]
+ Z Z (6m.' - m: d(}?m Jr Rﬂs
m=2q:=k4+1

with R,, = ¢,]|% — v/l and ¢,, — (), in probability as n; — oc ford = 1,...,v. After
a little algebra, we have

A v My

(9D
Df = Df +Z(€1t 911) )9 + Z Z mi ;-m a0 el + R,
i=1 m=33=k+1 mi

which leads to
(A1) Dy =D; + WH4 — ) + Ra,
with W defined by (3.1) and (3.2). For the m.l.e. ¥ of - it holds that: as n; — oc,
with % — A; » 0, for i = 1,..., v, we have
(A.2) V(3 —) S N2,
where 2, is obmined from ¥, given by (3.3), if we replace 22 by A, i=1,...,v. In
view of (A.2), /n ol has an asyrmptotic distribution as Ty, 00, 1t = L,.... v
and therefore ﬁ}??, = ne,||[5—| — 0, in probability asn, — ocofori=1,... v
Relations (A.l) and (A.2) complete the proot of part (a) of the theorem.

bY I by = 0y = - = f,, then W'S7'W = 0. Taking again a Taylor series

expansion of ¢ (%) around v, we have

B
&
Z 4G () YR,

1 Drvbry;

5
—
-
—
I
hs
~—
2
~—
A+.,
—
>
=
|
2
=
{\:‘\ —

=1 2. g=1
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with B = M + (v — 1)(My — k) and B, = €,]|¥ — v[]*, €, — 0, in probability
as n; — oo for i = 1,...,». Because of homogencity of f on S, we have that:

S f“ {(8) = fls), for s € §. Using this relation, we can easily see that

()jsy) =0,i=1,....,M+ (v - 1){My — k), under the assumption that #; = f, =

Thercfora
3 )
(A.3) 2063 ¢} = 37 G = 3)035 = ) 57 + 2R
ij=1 Hh
Homogeneity of f, entails also that
Yol =, S =0, fYs) = 1s)
m=1 m=1

and fjgg)(t,s) = t’lfi(f)(s), forse S, t>0andi,j=1,...,r
Under the assumption #; = s = -+ = §,,, using relation (A.3) and homo-
geneity of f, we obtain that

2Dy — f(1) = Z (Ori — 013) (615 — 01 £ (Dews;
i j=k+1
Mg

+23° Z S Bu— 02y — ) S (Do

m=2 =kt j=k+1

My 17
+ L L (Hm% — O HlJ - Hlj)fmt (Devs + 2Ry,
hj=k+1lm,l=2
. _ [ @fs, Ofs

with o, = | FQSTLLL)@I; oo dpe.

The above relation can be written,
(A.4) 2D — F(1)) = (B~ B)'B(S — ) + 2R,
tor iﬁt = (91(;” s e ,91]\.{0, 31(M“+1), . ,9111{,9-2(,1;4_1): . ,921\,10, . 01,(;b+1). ces
B.01,), 3 the m.Le. of 3 and B the matrix defined by (3.6).

As n; — oq, ““hTf._’)‘ >0, fori=1,..., 1, we have
(A.5) V(B - 8) % N(0,257),
where Y4 1s obrained from Xgs, given by (3.3), if we replace TEhy AL i=1,.00 0

From Salicru ef al. ((1994), p. 379), we have that rank(4) < M — k, while
rank(H) < v — 1, because of >0, f())(l) =0,j=1,...,v
Thercfore
rank{B3) = rank(A & H) = rank(A) rank(H) < (v — D){M — k)

ancl
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rank(BE; ") < min{rank(B),rank(3; )}
< min{(v — (M — &), (M ~ k) + (v = 1)(My — k}}.

This relation, with (A.4), {A.5) and the convergence 2n R, — 0, in probability as
n; —» o0, i =1,...,v, completes the proof of the theorem.

Proor oF THeEOREM 3.2. The proof of part (a) is omitted. It can be ob-
tained by a similar argument to that of the proof of Theorem 3.1(a). For part (b},
following the steps of the proof of Theorem 3.1{b), we have

M
N ) 5 ~ -
Q(Df - f“))/fl(-;)(l) = }: (8 — 91;‘)(&; - glj)ﬂ'ij + 2R,
1,7 =Mao+1
with oy = ?)é‘i—l gf;—?‘ f; dis and 2nR, > 0, in probability as n  + oc. This
\ : 9015 fs,
relation can be written
(A.0) 20Dy — SO/ AT (1) = (5 - 8) B(5 - 8) + 2Ry,

with 3 = (Brintoays- -5 Oar), Atheurle. of Sand B = ;";zﬂgﬂ(ﬂl) Farther-
more, as 1 — oc, we have

Vals - B) 5 N, B7Y,
which in view of {A.6) completes the proof of the theorem.
IREFERENCES

Cressie, N. and Read, 1. R. C. {1981). Multinomial goodness of fit tests, J. Roy. Statist. Soc.
Ser. B, 46, 440 464

Csiszar, 1. (1967). Information type measures of difference of probability distributions and indi-
rect observations, Studia Sci. Math, Hungar., 2, 299-318,

il MLAL (1989). A note in stratification and gain in precision in estimating diversity from
large samples, Comm. Stafist. Theory Methods, 18, 1521 -1526,

Cyorfi, L. and Nemetz, T. (1878). f-dissimilarity: a generalization of the affinity of scveral
distributions, Ann. Insf. Statist. Math., 30, 105-113.

Matusita, K. (1966). A distance and relaled siatistics in multivariate analysis, Multivariaie
Analysis {ed. P. R. Krishnaiah}, 187-200, Academic Press, New York.

Matusita, K. (1967). On the notion of affinity of several distributions and some of its applications,
Ann. Inst. Statist. Math., 19, 181-182.

Menendex, M. .., Morales, D., PPardo, T.. and Salicru, M. {1995). Asymptotic behaviour and
statistical applications of divergence measures in multinomial populations: a unified study,
Statistical Papers, 36, 1-29.

Morales, D., FParde, L., Sahcru, M. and Menendez, M. L. (1994). Asymptotic properties of
divergence statistics in a stratified random sampling and its applications Lo test statistical
hypotheses, J. Statisi. Plann. Injerence, 38, 201-222.

Nayak, 10 K. (1085} On diversity moasures based on entropy functions, Cormem. Statist, Theory
Methods, 14, 203-215.

Papaioannou, P. C. and Kempthorne, . (1971). On statistical information theory and related
measures of informationn, ARI. Tech. Report 71-0059, Aerospace Research Laboratorics,
Wright-1*atterson A. F. B., Ohio,



310 K. ZOGRAFOS

Pardo, L., Salicru, M., Menendez, M. L. and Morales, D. {1995). Divergence measurces based on
entropy functions and statistical inference, Sankhyad Ser. B, 57, 315-337.

Salicru, M., Marales, D., Menendez, M. L. and Pardo, L. (1994). On the applications of diver-
gence type measures in Lestiog statistical hypotileses, J. Multivariote Anal., 51, 372-391.

Serfling, R. J. {1980). Approzimation theorems of mathemalical statistics, Wiley, New York.

Toussaint, G. 'T. (1974). Sorme properties of Matusita’s measurce of affinity of soveral distributions,
Ann. Inst. Statist. Math., 26, 38G -304.

Zografos, K. (1893}, Asymptotic praperties of ®-divergence statistic and its applications in
contingency tables, International Journal of Mathematical and Statistical Seiences, 2, 5-21.

Zografos, K. (1894). Asymptotic distributions ol estimated f-dissimilarity between populations
in stratified random sampling, Stetisl. Probab. Lett., 21, 147 151,

Yografos, K., Ferentinos, K. and Papaicannou, T. {1990). &-divergence statistics: sampling

propertics and multinomial goodness of fit and divergence tests, Comm. Statist. Theory
Methads, 19, 17RR-1R02



