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Abstract. Let (X,Y) denote a random vector with decomposition ¥ =
JIX) + e where f(x) = E[Y | X = z] is the regression of ¥ on X. In this
paper we propose a test for the hypothesis that [ is a linear combination of
given linearly independent regression functions g1, ..., g¢. The test is based on
an estimator of the minimal [°-distance between f and the subspace spanned
by the regression functions. More precisely, the method is based on the esti-
mation of ccrtain intcgrals of the rogression function and therefore does not
require an explicit estimation of the regression. For this reason the test pro-
posed in this paper does not depend on the subjective cheice of a smoothing
parameter. Differences hotween the problem of regression diagnostics in the
nonrandom and random design case are also discussed.

Key words and phrases:  Nonparametric regression check, validation of good-
ness of fit, L%-distance, equivalence of regression functions, random design.

1. Introduction

Consider a two dimensional random vector {X,Y") which allows a decomposi-
tion

(L.1) Y = f(X) +o(X)e

where f is the regression of ¥ on X, ¢ denotes a centered random variable which
X=x]=
o%(x), i.e. V[e] = 1. In other words, we consider a nonparametric (heteroscedastic)
regression model, where the explanatory variable z is a realisation of a random
variable X with unknown disteilbution. Let g1, . . ., gq be given linearly independent
regression functions and define U = span{g,,...,gq}. In this paper we propose a
simple test for the hypothesis that the regression of ¥ on X is a linear function of
g1y-.-,9d4, L.C.

(12) Hy: felU
versus

is independent of X and o( ) > 0 is an unknown variance function V{¥
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(1.3) Hi:féU.

Much effort has been devoted to the problem of model diagnostics, because the
statistical analysis for linear models is more tractable and allows a direct interpre-
tation of the observed effects in terms of the parameters. Among others we refer
to the work of Zwanzig {1980), Brodeau (1993), Azzalini and Bowman (1993),
Eubank and Hart (1992), who considered the case of a nonrandom design vari-
able. Kozek (1991), Staniswalis and Severini (1991), Hardle and Mammen (1993),
Stute and Manteiga. (1996) and Stute (1997) studied the testing problem {1.2)
versus (1.3) under the assumption of a random design as above. Most authors
propose a test statistic based on the sup- or L-distance between a nonparametric
and a parametric fit (see e.g. Kozek (1991), Stutec and Manteiga (1996} or Hidle
and Mammen {1993)) which requires a square-root consistent estimation of the
parameter vector. For a deterministic design and homoscedastic errors Dette and
Muuk (1998) based their test criterion on an estimator of the minimal L2-distance
between f and the subspace IV of regression functions with respect to a weighted
L*morm. The particular case of lincar and polynomial regression was treated by
means of spline smoothing techniques in Eubank and Spiegelman (1990) and re-
cently by Jayasuriya (1996). In this paper we generalize Dette and Munk’s (1998)
approach to the case of a random design and heteroscedastic error structure. Sur-
prisingly, this situation turns out to be rather different compared to the fixed
design case. This is caused by the need to estimate additionally the design density
in the Fourier-expansion of the L2-distance

M? = min E[(f(X) - 9(X))*]

between U and f.

In Section 2 we provide an estimator for M2 which is shown to be asymptot-
ically normal. This is applied in Section 3 to goodness-of-fit testing of linearity.
It is shown, that, compared to the fixed design case, the asymptotic variance is
additionally increased by terms which depend essentially on the variability of the
design variable X. Only, under the null hypothesis {1.2) both variances coincide.
Hence, inference for (1.2) may become rather noninformative as the variance of
the explanatory variable X increases. Therefore, the practical merits of this paper
consist to some extent in the understanding of the differences between the fixed
and random design assumption for the statistical analysis of regression models.

In order to overcome systematic drawbacks of testing the classical hypotheses
(1.2} in the context of model checking (this will be made precise in the following)
we suggest to use tests for precise hypotheses (Berger and Delampady (1987))

H, - M?>x% versus K., M?<n.

Rejection of H. allows to assess the validity of the modcl U within an L2 neighbor-
hood at a controlled error rate . Here 7 denotes a specified measure of discrepancy
which is assumed to be a tolerable deviation from the model. The reformulation
of the null Hy into H; can be motivated by the demand of various authors {see
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Berkson (1942}, or Hauck and Anderson (1996))} to ‘interchange’ the classical hy-
potheses Hy and H, in many situations of practical interest. Typically, this will be
the case when the wrong decision for Hy, will be a more serious error as a rcjection
of Hy. This arguinent applies in general for goodness of fit testing, particularly in
model diagnostics {see MacKinnon {1992} for a carcful discussion) because here the
acceptance of Hy implies a subsequent data analysis within a parametric frame-
work, i.c. under the assumption of f € /- without any evidence for Hy. We will
see in Section 3 that a proper test for H, requires the estimation of additional
terms occurring from the variability of the design variable X (compared to the
case of testing Hy) in the limiting variance of the empirical counterpart of M2,
When testing Hy these terms do not occur which implies that even a large observed
P-value of the pivot statistic for Hy bears no evidence in favour of Ha. The lack
of a naive use of Mvalues in many statistical applications was already criticised
by various authors in a different context than regression checks (see Berger and
Sellke (1987) or Schervish {1894) for an averview).

We finally mention that our approach avoids an explicit (nonparametric) es-
timation of the regression function. Only integrals of the regression and the basis
functions gy,..., g4 have to be estimated and as a consequence the tegst proposed
in this paper does not depend on any specific choices of a smoothing parameter.

2. The empirical L-distaince: asymptolic theory

2.1 A weighted L*-distance

For the sake of simplicity we shall only consider real valued X’s. Most of the
presented results have immediate extensions to the case of a multivariate explana-
tory variable (see the discussion in Remark 2.4). The main results of the paper
require the following basic assumptions regarding the distribution of the (real)
random variables X and #.

X has a density, say h, with compact support,

(2.1) say H C R, which is Hdlder continuous of order

o % and bounded away from zero on its support.

(2.2) X and € are independent.
(2.3) Eel =0, V=1, K% <o

For the variance function () and the regression functions we will make the
following basic assumptions

{2.4) o f.o,....0a € HBL(H), Elo*(X)] >0

where Hol,(H) denotes the set of functions defined on ‘H which are Hélder con-
tinuous of order v > 1/2.
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As a measure ol goodness of fit for testing the hypothesis of linearity we
consider the best approximation of the regression function f by the linear model
J =spanigi,..., g4} with respect to the L2-norm induced by the distribution of
X, ie.

(2.5) M? = min E[(f(X) ~ g(X))?].
g
With this notation the hypotheses {1.2) and {1.3) can be conveniently rewritten
A
(2.6) Hy:M?=0, H,:M?>0.

As mentioned in the Introduction we will additionally consider the following ‘pre-
cise testing’ problem

(2.7) H,:M?>n versus K,:M?<n

whore 71 > 0 denotes a fixed preassigned bound for which the regrossion function
is considered as sufficiently close to the (linear) model space U. Observe that the
rejection of Hy implies the existence of constants a;, ¢ = 1,...,d, such that

d 2
E (f(X)—Za@gl(X)) <7
=]

at a controlled error rate, say o.

2.2 Estimation of M? and asymptotics
In order to construct asymptotic tests for H, and Hy we utilize that the
distance in (2.5} can be expressed as a function of the inner products (see Achicser
(1956))
Ay = E[f*(X)]
(2.8) Ar = Elf(X)ge{X)], 1<¢
Guw = Elge(X)ge(X)]. 1

More precisely, putting
A= (Ag,..., Ag)T e R,
(29) G = ((Gll sesey Gdd)? ((;121 e 5Gld)5 (G23: R GQd)a R (Gd—Ld))T
—(GT,...,GT\T g g4T1/2)
where G; € R"""H'"', i==1,...,d, we have (see Achieser (1956), p. 16)

: , I'(A,G)
, 72 _ - ’
(2.10) M = plAG) = =
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Here I'(A, (¢} denotes the Gram's determinant

Ay Ay Ay - Ay
Ay Gy Gz - Gud
(2.11) T(A4,6)= |42 Gz Gun - Gu
Ay Gig Gag - Gy

and T{@&) is the determinant obtained from I['(A,G) by deleting the first row
and column. Note that p is well defined, ie. T{G) > 0, because I'*(G) gives
the volume with respect to the measure P¥ of the parallelpepid spanned by the
linearly independent vectars gv, , ga. Therefore, a test for the hypotheses (2.6)
can cither be based on an empirical counterpart of M? or of I'(4, G} which wil}
both be carried out in the following (see Theorems 2.1 and 2.2 below).

In the subsequent discussion let (¥7,X,),..., (Y, X,) denote independent
copies of {¥,X) where realizations of the random variables correspond to the
observed values of the regression. Consistent estimates of the above determinants
can casily be obtained by estimating the expectations in (2.8). To this end let
X(1),-- -, X(n) denote the order statistics of X7,.... X, and define Ry Y, ... It !
as the antiranks of Xy,..., X, L.e. (X, YRl—l),...,(X(n),YRT—IL) is the ordered
(according to the z-values) sample of the observations. The estimates of (2.8) are
defined by

n

. 1
(212) Ay = 3 VYo,

n—1
i

—

(213) A= =Y 0l X(p)Vpor =~ > glX,)Y;, 1<e<d
D je=1 =1
o (r l T
(2.14) G = -~ S (X )g(X,), 1<E<k<d
j=1

Finally, we estimate M? as
(2.15) M2 = p(A™ G

and T'{A4,G) as

(2.16) f‘n — ]_"(A(?‘-‘-)] @(n))
where
iln i(n) qln
(2.17) A = (Al AT
(215 00 (G, G G GO,
(e e NN (e )
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Observe, that the estimator M2 is well defined if and only if
(2.19) (GM™)y > o,

which is asymptotically valid because Kolmogorov’s SLLN and condition (2.4)
imply i
NG™) - T{G) >0, PY as,

by the independence of X and &. The asymptotic theory for ]L[,% and T(") ig given
in the following two theorems. The proofs are complicated and therefore deferred
to Section 4. Throughout this paper let A{u, 02} denote a normally distributed
random variable with expectation g and variance o2

THEOREM 2.1, If the assumptions (2.1)-(2.4) arc satisfied and if n — oo,
then

vn(M2 - M3 E N0, )

where
(2.20) 7 = Elo" (X)) +4E[e”(X){(f - Po £+ VI{(f — Puf)(X)}¥]

and Fy; [ denoles the projection of f onto the subspace U = span{gy,...,gq} with
respect to the inner product E[r(X)s(X)); r,s € L*(P¥),

THEOREM 2.2, If the assumptions (2.1)-(2.4) are satisfied and if n — oo,
then

Vi, — T(4,G)) 3 N(0,75)
where
(2.21) 7f = THCHE(X)] + 4B (XM{(f — Pu (X))}

d
VD nlgs o ge-1,90, Geats -, 90 (9 — Proge) (X ge(X)

£=0

where gy = f and Py, denotes the projection onto the subspace Uy = span{go, . ..,
Ge—1, Ge+1s -y ga) (Vo = U) with respect to the inner product Er(X)s(X)], rse
LA(PXY, and

(2.22) n(f1 e fa) = [(Efo(X) Frel X)) sm |-

ltemark 2.3. Note that under the null hypothesis of linearity, H, : fel,
we have

F=Puf=0, g—Lyg=0 (=0, d

and the asymptotic variances in Theorems 2.1 and 2.2 reduce to

(2.23) = E'(X)), 15 =TYGE(X)),
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respectively. It turns out (see Section 4) that a prootf of I'heorem 2.2 is substan-
tially more difficult than the proof of the corresponding result in "Theorem 2.1. A
simple intuitive explanation for this phenomenon is the following: the statistic J‘fﬁrﬁ
is invariant with respect to a change of the basis g1, ..., gq of the model space Uy.
However, the statistic I',, considered in Theorem 2.2 does not enjoy this invari-
ance property, which results into a more complicated formula for the asymptotic
variance,

Remark 2.4. It is also worthwhile to mention that the cstimator A[(]n) in

(2.12) can be rewritten as

lgmgs 1o f 1
(2.24) Al — - ZYJJ on Z(YR? — YHJ_ll)z +o0 (W) :
7=1 J=2
Note that the first term in (2.24) is a consistent estimator of E[f2(X) + o%(X)},
while the second term consistently estimates E{o?(X)] (see Rice (1984) or Hall et
al. (1990)).

This point of view allows us to indicate an immediate generalization of the
proposed method to the case of a multivariate explanatory variable, i.e. X has
a density with compact support H C R? which is Hélder continuous of order
¥ > 1/2. We usc the cotimator J\Z’é (or Iﬁ‘.,,,) whero ,Zlgn) and ééz) are defined hy
(2.13) and (2.14) exactly as in the univariate case (1 < £,k < d) and A s given
by

< (n 1 .
(2.25) Al — EZY# s

where 52 is a consistent estimator of E[o?(X)] (see e.g. Breiman and Meisel (1976)
or Herrmann et al. {1995)). We finally note that the asymptotic variance of M?
{or T',) depends on the specilic chivice of this variance estimator.

3. Goodness-of-fit tests and further discussion

As pointed out in Section 2 a test for the hypothesis of lincarity Ho : f € U
versus f; 1 f ¢ U can be based on M’g or 'y, and the corresponding asymptotic
result in Theorem 2.1 or 2.2, respectively. For the sake of brevity we restrict
ourselves to the empirical distance ]\:fﬁ. Similar remarks apply to the goodness-
of-fit test based on 1“77 .

3.1 A simple model check

A test based on J‘.;[ﬁ only requires the additional estimation of the asymptotic
variance . From {2.23) we obscrve that, if f € U, then 7 — E[s4X)
following lemma provides a consistent estimate. The proof is deferred to Section 4.

, and the

LeMMa 2.1, Assume that (2.1} {2.4) are satisfied; if n — oo, then

-2

: 1 5 P
(31) (3'2 = m Z(YRJ—_&O — YR;&, )Z(YR;I. e YR;‘_II)E -—}—) E[Ud(X)]

=2
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Note that the estimator &5 is a generalization of the variance estimator pro-
posed by Rice (1984)

1 = {
- ~2 . S YA
(32) gy = Q(R _ 1) - (YR’II YHle)
J=2
in a homoscedastic setup ¢?(x) = o%  Observe further, that in this case

E[o*(X}] = o* could also be estimated by 1. Mareover, there are numerous
other difference based estimators (sce e.g. Gasser ef al. {1986} or Hall ef al. {1990))
which generalize {3.2) and can easily be modified for the estimarion of Els*{X)).
Theorem 2.1 and Lemma 3.1 imply that, under the null hypothesis of linearity,
Vn/Ei M2 is asymptotically standard normal. Hence an (asymptotic) level o test
for the hypothesis Hy : f € U is obtained by rejecting Hy if

M
(3.3) Vi g

T

where u) .o denotes the (I — @} quantile of the standard normal distribution.
Similarly, the samoe test can be obtained from Theorem 2.2, Note these tests have
asymptotically the power

. M2 4 —1/2
(34)  Poge | vn Sui_g | =1 - ®(uy_o — C(E[H (X)) + o(1)

]
Un

under contiguous alternatives M2 = Cn=1/2 C > 0.

3.2 Testing precise hypotheses and confidence bounds for M*

I the Introduction we sketched some arguments in favor of testing hypotheses
(2.7) instead of {2.6) because the variation of the design density may inflate the
power of a test for Hy, leading consequently to a large rate of misspecifications, i.e.
deciding for Hy although M? is large. The additional difficulty encowntered with
testing precise hypotheses certainly consists in the specification of the tolerance
bound 7 for the deviation from the linear model IV which the experimenter will
tolerate. In general, the hypotheses, which have to be tested— precise or point
null—, will depend on the subsequent data analysis, e.g. estimation and interpre-
tation of the parameters within the linear submodel, prediction of f or additional
testing of specific subhypotheses of the model U, However, if one has decided for
such o bomd 7. a level o fost for H,, - M2 > 7 iz given hy the rejection regicm

(3.5) e e
1

where 7{ denotes any consistent estimate of 77 defined in (2.20). In some concrete
practical applicatiopns it way be diflicult to determine such an exact bound x.
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In these cases we can simply evaluate an asymptotic one sided | — o confidence
interval for M? as

(3.6) Clico = {0, M2 + 2720y _ 7).

This provides us certainly with more information concerning the evidence of the
presence of the linear model I/ than a pure test decision of a test for the simple
hypothesis Hy.

We finally discuss the homoscedastic case where the variance ¢?(¢) is known
to be independent of t. Then the asymptotic variance 77 simplifies to

F2M?) = ot + M40 — M2 + ma(f,U),

where my(f,U) = E[{{f — Puf)(X)}*]. Hence, if 6?(t) = o2, we obtain under
contiguous alternatives such that A/I,"Z =7 —Cn 12 (> 0, the asymptotic power
of (3.5) as

(3.7) 1— By, — C{at £ AM>(4a% — M?) 4 ong(f,., TN} 12,

where f, denotes a regression function such that A2 = 7. Observe further that
in this case an alternative confidence region is given by the set

Cli_q = {M?: HM?* > un V2N R,
0

where H(M?2) := (M2 — M?)/7({M?). A simple calculation shows that H is a
decreasing function on [0, 00) if and only if

202 > M2

Hence we find that only in this case the confidence region is a simply connected
interval of the form [0, ¢).

3.3 A comparison belween random wnd nonrarndorn design

It is of some interest to compare the differences between the random and fixed
design assumption in the present situation of model checking. For the sake of
simplicity let H = [0, 1] and consider a nonparametric (heteroscedastic) regression
with a fixed design, i.e. we observe the outcomes of

AJ:j(tj)—l-(T(fj)EJ, j=1...,n

independent random variables where 23, .. .. g, are independently distributed with
mean 0 and variance 1. Let 0 < {3 < --- < 1, <1 denote the design points which
form an asymptotically regular sequence in the sense of Sacks and Ylvisacker
(1970), i.e.

(3.8) nl};.lx

b t »
B —-3/2
/1.1_1 Byt n‘ ofn™="/%)
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where h € HoOL, [0, 1}, ¥ > 1/2, is a positive (possibly unknown) density on [0,1]
exactly as in the random case. Although, the interpretation of A is rather different
for fixed and random designs it is near at hand to think that both situations
are mathematically equivalent, simply interpreting the fixed design density as a
donmty which generates ‘randomly’ design points. Let L2 be defined exactly as
W where X,y and YR v are replaced by ¢, and Z;. More precisely, we define

ﬁi — p(@(n),]_‘)(n))

where GO0 = (G, C{YT, D = (DY, DG, D, DY) )T and
(3.9) ol 2 iz-z .
- 0 n—1 - el
=
| ; 1 &
(3.10) O = n ng(t.i‘)zj: t=1,....d
(3.11) b = Zgg Gk=1,...,d

Note that the variables D(Tz) are not random (in contrast to the case of a random

design) but are used to approximate the inner products fo asr{D g (E) (1) dt with
respect to the (unknown) density k. The following result generalizes recent flndings
of Dette and Munk (1998), who considered a different estimator which incorporates

the assumption of a constant variance o2{t) = o2 and a known design density in
(3.8).

THEOREM 3.2, If the assumptions (2.3), (2.4) and (2.8) are satisfied for a
positive design density h € HOL,([0,1]) for some v > 1/2, then, if n — o,

V(L2 — My B a0, 22)

where the asymptotic variance is given by

1 1
(3.12) /\2_-/ 04(t)h(t)dt+4/ () {(J — Py ()} h(t)dt

Note that {3.12) is the ‘fixed design’ counterpart of (2.20) and that
M=rlefeU,

where 7¢ is the asymptotic variance of \/nM?2. From {3.4) it follows that under
contiguous alternatives approaching Hy : M? = 0 with rate O(n"1/2) there is
(asymptotically) no first order difference between model discriminating in the ran-
dom and non-randowm design case. However, if it is to be tested that Hy:M? >,
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for some w > 0, then, under local alternatives approaching M? = 7 with rate
O(n~'/?), the difference of the limiting variances is given by

(3.13) ¢ = N =V[{{f - Pu)X)}] > 0.

Only, when M? vanishes these additional estimators do nat inflate the variance.
We illustrate this effect in the following where the variance ¢ is assumed to be
constant. A similar calculation as in (3.7) for the fixed design case vields for the

asymptotic relative efficiency botween the test in the fixed ond the random design

1/2
arg — [y, malfnU) -7 /
t ol +4on '

This loss in efficiency can be substantial if the tolerance hound « is small or if the
variance of the errors is smalil. Observe further, that by varying only the design
density h within the class of densities satisfying the Sacks-Ylvisacker condition
(3.8) the difference in (3 13) and hence the ARE can be made arbitrarily large for
a fixed alternative f.

Note finally, that the additional term in the random design variance (3.13)
affects the rate of misspecifications of the model U, i.e. the type IT error. In fact,
we find that the hypothesis Hy © f € U will be falsely accepted with increasing
probability as V[{(f — Py £){X)}?] increases, fixing an alternative M? = ¢ >
0. Because this quantily will be unknown in general this observation supports
certainly the ‘precise testing’ approach in the random design case. Note, that
also the confidence interval in (3.6) involves additional estimation of V[{{f —
Py f){X)}°] (such as the test for the precise hypothesis ) i contrast to the
test for Hy in (3.3). Here, the test statistic does not discriminate between fixed
and random design which may result in a large type II error solely caused by
the variability of X. Hence testing of (2.7) or the additional consideration of
confidence intervals for M2 is strictly recommended.

3.4 Testing equality of regression curves

In the following we apply our approach to the assessment of the equality of two
regrossion curves, say f and g. Teats based on kernel estimators for the hypuothesis
Hy . f = g have been suggested by Hall and Hart (1990), Hirdle and Marron
{1990) and King et al. (1991). Finally, Delgado (1993) proposed a Kolmogorov
Smirnov type statistic which does uot depend on kernel estimators.

Assume the unknown regression curves to be Hélder continuous of order ~ >
1/2, where the corresponding measure & of discrepancy between f and g is the
weighted L3-distance

(3.14) 5 = 8% f.a) = E[(f(X) — o{X))?].

Because 82 may be considered as the minimal distance of I — g to the subspace
Uy = {0}, the asscssment of similarity of two regression curves can be regarded
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as the validation of the linear regression model f = 0. Assume that we observe
triples of random variables (X,,Y;, Z;) (¢ = 1,...,n}, where

Y = f{Xi) + oy (Xi)es
Zy=g(X)+o0z{Xi)e, 1<i<n

and the variance functions satisfy o2 ,0% € H&l,(H), v > 1/2 and define

n

Z(Y& r ergl)(yﬁ;_‘l - ZR:_II)

i=2

i

£2
On = n—1

similar as in {2.12).

TrisoreM 3.3, If the assumptions (2.1)-(2.4) are satisfied and if n — oo,
then
VLS, - 87) 5 N(0,£2)

where
(315) € = Elo*(X)] + 4B (XH(f — ()13 + VIS — )0}
and o(t) =ov(t) — oz(t) (t € H).

‘The proot 15 mmplicitly contained in the proof of 'I'heorem 2.1 and therefore
omitted. We finally remark that confidence limits and hypotheses tests for & can
he constructed in the same way as demonstrated in the previous sections.

4. Proofs

The first two lemmata give the asymptotic distribution of the vector (A("‘)T,

(?(”')J‘)'I‘ introduced in formulas {(2.17) and (2.18) in Section 2. Here and in the
following we define a complete ordering on the set of indices of the clements of

in accordance to the ordering of the elements of the veetor (GT, 7)Y in
(2.9). We start our investigations with a discussion of a statistic which turns out
to be asymptotically equivalent to the vector (/51(")71,(}(’““)I 3 (sce the proof of
Lemmma 4.2).

Lenmya 4.1, Let

n

(4.1} ‘SAY((}“) L E 7 Z(f(X(;j) + U(X(j))\:-nu HUF X )+ O—(X(J))Efﬁ_?.”ljr
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and define A = (S0 A AV QU =GP G N where AUV
and @én) are given by (2.13} and (2.14). Assume that the basic assumptions (2.1) -
(2.4) are satisfled, then

(4.2) EIAM] = A 4 o(n~Y?)
(4.3) EG™ =G

Al
()

where the elements of tiw matrices ¥y, € Rl Efz E £ Rd Zl c R4 /‘
ng,ZQJ;E_H c Rdxd’ L " "{4 c Rdxd(d 1)/2 and ):41 c R (d- lu‘/)X(d 1yd/2 are
given by

(4.4) lim nV

T D0

S = B (X)) 4B (X)) + VX))
(Z70)e = 2E03( X) f(X)ge(X)| + CLFAX), go(X) (XD, £=1,....d
(ZH!?_ [fz(X)an(X)L £=1,....d
B = CUHX)L 9(Xae(X)], 12é<k<d
Eanex = Elo*(X)ge(X)gr(X)] + Clf(X)ge(X), f(X)gn(X)]. 1<k <d
{ngg)ék = C[ X)w(X) (] {Xﬂ fk e ].,...,d
(Sin)ece e = CLAX )X g0 (X g (X)), £=1,...d, 1< <k <d
(E%%)ék = Clg7(X),98(X), Lk=1,....d
(Ziadeienny = Clgp(X), o (X (X)), £=1,...d, 1<0 <k <d

)

(L44 e ey = Clae(Xgr (X, go (Xge (X,
l<tok<d, 1< <k <d

ProOF.  The relation (4.3} is obvious observing (2.14) and (2.8). Similarly,
we have from the definition {2.13)

T

- 1
AP = =37 gux - § :
¢ n & 1(”( Gy ge(X, 3+
for £ = 1,...,d which proves (4.2) for the last d components of A™). by the

independence of X and . For the first component of Al we obtain

EiS{M] = nfl}:ﬁ (X)) + (Xl g W (X )+ o{Xgyep 2 )]

—’4()‘-()( )
T
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In order to prove the re prosentdtmn (4 4) we derive exemplarily the asymptotic

covariances n("(b((,” ,Aen ) and n(‘(A ™) (W(W ) which appear in the matrices ¥,
Pag and Xas. All other cases are troflted (“{rl( tly in the same way and therefore
left to the reader. For the first term we note that by {4.2) and (2.13) and the
independence of X and =

nC[Si™, A“”]

- H v {F (FX) + al{Xy)e ) (H X o) + o (X e )

P X))+ o(Xg))ep 196X )]
— Bl (Xw) + o(Xle - ) (X)) + 0(Xpy)e g )]
E(f(Xj) + o(Xiz)ep-1)9e(X )]} + of1)

\ !

= Z {EL(X0)9e (X)) F (X)) = EUF(X ) Elge (X ) F(X ()]}

tj‘ =2
+ — Z{E F(Xy)ge(X i)
+ o{ X))o (X)) J( X)) ge(Xim )1} + o(1)

_1{2 ELA(X ) X)) F(X )] — E[f2 (X)) Elge{ X)) £ (X))

(L
p=2

+ Elo* (X)) F( Xy ael X ) + fT(Y(a—n)U(X(b))f(X(f))ge"(X(w1))J}

+ o1}
= CLPX), ge(X) F(X)] + 2B(0”(X) [ (X)ge(X)] + (1) = (ZFy)¢ + o(1)

where the last equality follows from the Holder contiruity of f, o2 and ge (see
(2.4}} while the third equality is a conscquence of the fact that

73; > BIFAX g X)) FIX G = ELFP (X)) Elge(X o)) (X))

L2l

S Y BRI BBl ) fX o)

1<d74<n

o)

The second term is treated by a similar argument, lLe.

- Z Elge{ X)X ) (X0, (X))
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= Elgel Xy} (X N E9r (X (5))gs (X))
1 n .
== N Elg (X0 X0 (X0, (X)) — Blge(X) (X)) Elor () g5 (X))
=1

= Clge(X) f(X), g-(X)g: (X)].

Because all other terms are treated in the same way the assertion of the Lemma
follows. O

Lrvva 4.2. Under the assumption of Lemma 4.1 we have

a{(Gn) - ()} 2y

where the covariance matriz X w8 defined in (4.4).
Proor. Recall the definition of fi((,") in (2.12} and S’én) in (4.1). Let /1((,”) =
S5+ B where
R l Th
R[(Jn) — n—j Z{f()((j)) + G’(X(j))ER?— 1}
=2
AFX G ) = FX ) b ep o X n) - (X

By the Hélder-continuity of f and 62 we have

BIRE) < o S MBS (X)) = H(Xgon) 1 (X)) + 0(X )1
q=2
+ E[f (X)) +a(Xpep llen lo(X o) = o (X))

SC’f,ag ZiE((?&m —fi(j—n)”JE{(J‘(?ﬂm)+€R‘;1) [} =0m )
32

which implies /n Ry = 0. Here the last identity is an immediate consequence
from the inequality

B[[Xgy — X 0l < (Bl Xy — Xgopl2)Y = 0n=).

This follows directly from formula {3.1.6}, p. 28 in David (1970} if & is a uniform
density on [0, 1]. The general case is obtained alang the lines in David (1970), p. 65
by means of a Taylor expansion observing that the density A of X is bounded away
from ().
Thercfore it is snflicient to show the assertion of Lemma 4.2 with A(™) replaced
by
A =i A AT
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To this end let
E=(fa. . la kiny . kag ki, o kaoyg)T € RG22

and consider the linear combination /nf? (A — T (G — )T, Because
of the independence of X and = the distribution of this random variable is asymp-
totically egual to the distribution of

1 7 o
(1.5) 7 ;(W,; — EIW,])

where

Wi = 6{f(Xa) + =) (f(X) 4 eis) + Z{ﬁjfb(Xz)(f(Xi) +e0) + kg0 ( X))
i=1

+Z Z krsgr (X )04 (X)),

r—=] g=r+1

The random variables Wy — E[W)], W, — E[W,], ... form a sequence of 2-dependent
random variables with mean 0 and asymptotic variance

lim V

TE— 0

= ("%,

T (W, = ()
=1

by Lemma 4.1, where ¥ is deflined by (4.4). Now a well known central limit theorem
for m-dependent random variables (see Orey (1958)) and (4.5) show that

A 4
N
Vﬂe (Cﬂn)_(?)

1 asymptotically normal with mean zerc and variance #4' 3" £ The assertion of
Lemma 4.2 now follows from the Cramér-Wold device, [

PROOF OF THEOREM 2.1, Note that M? and MZ arc invariant under a
change of basis of the subspace U. Thercfore, for the proof of Theorem 2.1, it
1s sulficient to deal with the case where the regression functions Gly---5 g are
orthogonal with respect to the distribution of the explanatory variable X i.c.

(4.6 Elg{X)gp(X)] = 8s, Lhk=1...,d
where by, denotes the Kronecker symbol, Assume first that d > 2. We calculate
the gradient of the function p(z,y) defined in (2.10), where 2 = (xg,..., z4),
Y (Yo Udds Yize e e Yae 1.¢)- "Fo this end we note that for a svmunetric matrix
A = (ay;)7=) (m > 2) we have
A y .

P)\( Al = A%, 2<¢<m

g,
1 ) T
(4.7) 5

A =2 1Y AT, < <m
Oy
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where A% denotes the determinant obtamed from |A| by deleting the i-th row
and j-th column. The formulas in (4.7} follow easily by Sylvester’s identity (see
Gantmacher (1959), p. 31} and an expansion of the resulting determinants. Re-
calling the definition of I'(z, y) and I'(y) in (2.11) and observing the orthogonality
(4.6) (i.e. G = Iz} yields

% (,9) lamAy—c=1
a . .
aTyjP(%?J) le—ay—c= —24;,  j=1,...,d
s ol u) lemau=c
O Py lemayec T(O) — T, G mT(y) |0
oy T © Oy =

r2(G)
{r*’“-i“ (A.G) - T(A,G) = A7, if Q=

(1.8) T
2(_1),¢.+31—u+1,,7 H(A,G) _ 2(41,)4;“ if 1 < i< 7 < d

where TP+ A G) denotes the determinant obtained from T'(A, G} by deleting
the (i + 1)-th row and (7 + 1)-th column. If

. ( 0 S o 09 8 )
H B Y R - < B u ST o . Py,
dze 0" By " Oyaa’ Oyi2 Oyara”

r=Ay=0G

=(1,-244, ..., 244, AT AL 241 Ay, 24, 1 Ay)
denotes the gradient of p evaluated at (A, G), then we obtain from Lemma 4.1

MTIE}J« — EOA(Y); + 4E[”2(-¥)f2(x)} + V[fz(X)]

d
+4 3 (B0 (X)ge(X)gu(X)] + CF(X)ge(X), FX)gr(X)]} - Acdy

£.fh=1
d [ 2 T A2 42
+ Y Clei(X), gh(X) AT AT

+4 C

Go(X)gr(X), g0 (X) g (X)) ApAr Ap Ay

123 CUPAX ) g7 (OIAT + 4D CIAXD, g6 (X)an(X ) Ap Ay

£=1 £k

o
— 43 CLAX)ge(X). gi(X)] A 47
£k—1
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d

=83 " ClAX)g:(X), g6 (X )gr (X)] ApAp Ag
=1 ¢ <k’

+4Y Y Clof (X}, go (X)ge (X )] A2 Ap Ap
=18 <k’
2

d
= E[o"(X)] + 4B | 0*(X) {f(X) - ZAegf(X)}

d 2
+V {f(X) - ZAEQM(X)}
=1
= Elo*(X)| + 4E[0*(XH{(f - Py £)OY] + VI{S ~ Puf) (X))}

where the last cquality follows from the fact that for an orthonormal system of
regression functions the best approximation of f in L2{PX) by elements of U =
Span{gr, ..., gat is given hy

d d

Pyf =Y Elf(X)g(X)a =3 Asar.

=1 =1

Because 1%y > 0, the assertion of Theorem 2.1 now follows by Cramér’s The-
orem. The case d = 1 is proved in the same way observing that in this case the
gradient can be calculated directly as p’" = (1 — 24, 43). 01

Proor OF THEOREM 2.2. Tn a preliminary step we assume that the regres-
sion functions gi,..., g4 arc orthonormal with respect to PX and note that the
gradient of T'(x, y) evaluated at (A, Q) is given by

v = (17 _QAl:' ) 72Ad:71: s 1?”(11214114-25 s ¢2Ad—'1Ad)

where

ve=dAo ) A7
J#E

This gives for the asymptotic variance of \/r_LI‘(fI('”'), & 7))

(49) 0TSy — Bl O0] + 4Bl (X){( — Py (X))

d .
VX)) =2 Agge(X)F(X)
£=1

o

FY g X4 2 T A Age(X)gr(X)
£=1 {<k

The asymptotic normality of /(T { A, Gy —T(A, ()} follows again by a rou-
tine argument as described in the proof of Theorem 2.1. The expression for 72
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in {2.21) is obtained by a very tedicus calculation which will be indicated in the
following. Note first that

e = n0g1, oy 061,90, 9015 -5 Ga) (90 — Fu,00)
:ﬁ(gfrgla“':.gf—leg()ag£+l:"‘7gd)

where
- fo fa \
Efe(X)H(X)] - E[fa(X)H(X)
o gy~ | ETRPORGIL o B
Elfa(X) fa(X)] -+ E[f/(X)]

and we have used the well known fact that

fo— Pspan{fhm‘fd}fo - Zgi(l),ﬁ

(see Achieser (1956), pp. 15-16). By (4.6) this gives {gg = f)

d
=" A, it £=0
B =1
e =
Yege — Ag f_ZAjgj , if f=1,....d
il
and (4.9) reduces to
75 = Blo*(X)] + 4E[0* (X){{f - Puf)(X)Y ]+ V 'ffz(X).w(X)}
1=0
= Elo*(X)] + AE[a*(X){{f — Py /) (X)}]
d
VO 0l e-1. 90, Gerts - 0 (g0 — Prfew)(_X}}of(_X)}
£==A)

which is (2.21} for an orthonormal system of regression functions.
Tror the general case of not necessarlly orthonormal regression functions let

(gla"':gﬂf)T - II ) (.(}13“ '7.6‘5{)’[‘

where H is a lower triangular matrix and g, ..., gg are orthonormal with respect
to the distribution PX. Let (4,6} and (AU G0 be the analogue of (A, G)
[defined in (2.9)] and (/i(”], Gy [defined in {2.17) and (2.18)] where the regression
functions g; arc replaced by their orthonormal counterparts g, (£ = 1,...,d). Tt
tollows from Achicser {1956G), p. 25, that det H = /T{G) and consequently we
obtain

(A G) = T{GI(A G,

(4.10) . o , I _
I, =A™ G = rG)ra> GUdy = T,
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Therefore the first part of the proof shows that

Vi(ln = T(A,G)) = Val(G) (T, — T(A,G)) B N(0,72)

where

(411) 75 = TZ(G){EIU‘*(X)J AR (XH{(f - PofHX)Y

+V Zn(ﬁa,--uf}e L0 Gestseeey Gd)

(ge — Pmﬂf)(X)fif(X)] }
= DGV E[o*(X)] + 4B (X)(f - Puf)( X))}

TV

27’](91: e gE=1, 80, Getrs - 9} ge — PUzye)(X)Qf(X)}

£=0

which gives (2.21). In (4.11) the last identity is a consequence of the identity

(g0 = [}

d
ZU(@W yoees Ge=1590y Ge s -5 Ga)(Ge — Py Ge)ge
£=0

= fo@ﬁ:glp- 5621590, Jex1, - Ga) G

o
(dor oy ZGU] (96,905 96—, 90, Ges15 - -5 Ga)
£=0
d
DGl G190 9641, Ga)(ge — Pu,ge)ge
£=0

(I =0,...,d). This completes the proof of Theorem 2.2. O
Proor or LuMMa 3.1, We write

. 1 n—2 .
o, = FTEpY ;{Hi'f-Q +a{Xpaoy)epmy, — ol Xy le g 1

'{H-,j‘f‘a(XU))E;;{:‘ (J’()((, 1) 2! }

where H;, = f(X(y) — f(X;-1y). By the Holder continuity of f and o and the
independence of X and = it follows that terms of the form

n—2

1

" Ha»3HG(X(¢+1 )e Fe {o(X (i))E n ! "”{X(s 1 )5 11}
i—2



NONPARAMETRIC REGRESSION CHECK 273

converge Lo zero i probability, Therefore, a straightforward caleulation shows

n-2
.. L :
‘T:‘l ~ in Z{U(X(i)}gu,‘ - ”(‘X(i*13)5H1 11}2
" i=2

Ao(Xpeny)en 1~ o(Xin))eg )2 +op(l).

Sirilarly, terms of the form

n—2

1
; E O'(X(.t'_l))O’(X(i))G<X(i+1})U(X(7;+.2))ER;1]53;151{;‘116}3;:2
=2

42

1N~ 4 |
= ; 20’ (X(?;))EH;llgfﬂi—laRl-ﬁlER---l + Op(i)
i

converge to zero in probahbility, and we obtain
1 n—>2
-4 -2 _2 2z 2
T =g Z;{ff KN-p)eg 2 + o (X ey o}
; {JQ(X(1+1))5?rﬂi_+_ll + UQ(X(-H..)))E%;_']?} +op(l1).

The convergence of &% to E[o*(X)] now follows from the Hélder continuity of &
and the independence of X and . 3

PrOOF orF THEOREM 3.2. Using the notation Aj = ¢; —t,_; it follows from
(2.8)

T
max
11

Ajh(t;) - l‘ = o{n%
n

which implies for any function & € HoL, ({0, 1])

(4.12)

! 1 n1
/O BB — le k(1)
|

P

S CGIIOT SY VIR NS it (
pu |

h =

1
7

f—\jh(tj))

<y / BOR(E) — Bt k() dt + o(n~12)

=1 i1
T ¢
=< Ch.k Z / ;t - fjh(]f +4 O('n, I/z) = ()(nfl/Q):
=1 tj-1

and shows that

1
i DENT";-) =Dy / Ge(t)gr(t)h{t)dr.
0

o=
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For the components of the vector C™ the calculation in (4.12} and the central
limit theorem for m-dependent random variables (see Orey (1958)) show

V(e 0y B N0, %)

with mean vector given by

(f f(ﬂh dt/f Y1 (EYR{)dE, . /f Yga(tih{t) d)‘)

and covariance matrix
5 2y D
= T

where Yy € R, 2{2 I Rd, Yos e R4 gnd

7

1 1
== ot ’ o’ 2 s
o A mMﬂﬁ+4£ L2 (O
(Bia)e =2 [ P f(Bgelh(t)dt,  £=1,. . d
n1
{(X09)ek :] a2 (g (Dge(DAdE, Kk E=1,....d

The assertion of the theorem now follows by exactly the same reasoning as given
for the proof of Theorem 2.1. O
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