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Abstract., Centring-then-sphering is a very importani pretreatment in data
analysis. The purpose of this paper is to study the asymptotic behavior of
the sphering matrix based on the square root decomposition (SRD for short)
and its applications. A sollicient. condition is given under which SRD has
nondegenerate asymptotic distribution.  As examples, some commonly used
and affine ecquivariant estimates of the dispersion malrix are shewn o satisfy
this condition. The case when the population dispersion matrix varies is also
treated. Applications to projection pursuit (PP) are presented. Tt is shown
that for elliptically symmetric distributions the PP index aflter centring-then-
sphering is independent of the underlying population location and dispersion.

Key words and phrases:  Sphering, dispersion matrix, invariance, asymptotics,
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1. Introduction

In general, there may be two types of structure in data sct: the lincar (or
cllipsoidal} and the nonlinear. Usnally, only the former can be captured by the
dispersion matrix. The latter is what the data analysts seek for in the exploratory
data analysis (EDA). An efficient way to EDA is to separate off location/scale and
to investigate structure beyond linear correlation and elliptic shapes in separation.
Centring and, then, sphering (called centring then-sphering) data i a simple and
intuitive approach to reach this goal (see Lukev and lukey (19¥1)). Similarly,
in exploratory projection pursuit (PP}, the interestingness is an affine invariant
notion (see Huber {1985}, Section 5.2). Hence an affine invariant projection index
is needed. From any projection index, one can construct an afline invariant onc
by performing a certain centring-then-sphering on data before implementing pro-
jection pursult (Zhang (19934)). Thus, centring-then-sphering provides a conve-
nient way to construct an affine invariant P1* index. For convenience, PI* analvsis
{index) based on centred and sphered data is called PP-after-sphering analysis
{index) throughout this paper. It was found by Friedman (1987) that a substan-
tial computational saving is attained by his PP-after-sphering analysis. Therefore,
centring-then-gphering is a very important pretreatment in data analysis.

* The research is supported partly by National Natural Science Foundation of China.
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The mathematical definition of centring-then-sphering was given by Jones
and Sibson (1983) and is gencralized in the following. Let 2, ..., 2, be p-vectors
observed from population 2 with location g and dispersion matrix 3. Denote
KXp = (21,...,2,). Let p, = (X,) and ¥, = 2(Xn) be affine equivariant
estimates (Le., 2(AX, +v17} = Ap(X,) +v, B(AX, + v17) = AN{X,)A", for
every nonsingular p x p matrix A and p-vector v) based on X,,, where 4 and
are functionals defined on the p x n matrices. Let €7 denote the Moore-Penrose
generalized inverse of matrix €. Then centring-then-sphering, denoted by S, 1s a
linear transformation of the form

(1.1) S(X,)=B,(X, — 1"} with BlB, =%,

where By, is a p X p matrix. For example, let 2, = A(n)D(n) A7 (n) be the spectral
decomposition of ¥,, with

D(n) = diag(d{n, 1),...,d{n,q),0,...,0}, dn,1)=>--->dn,q) > 0.

Lot Dy (n) denote the ¢ x g diagonal matrix diag(d(n, 1), ..., d{n, ¢)). Then we can
set BB, = (Dl_l/Q(n),(}qx(p_q))AT(n) in (1.1), where Oyx(pq) Is a zero matrix (cf.
Friedman (1987), p. 251).

Suppose, for cach p x p matrix A and p-vector v, that a(A(X, — v17)) =
A(f( X)) —v) and S(A{X,, —v17)) = AL(X,)A7, then, for § defined by (1.1}, we
have )

A(S{Xy)) =0, E{S(X,)) = diag(éy, ..., &p)

with rank(i(S(Xn))) e rank(i?(Xn)) aad & = 0 or 1,1 < ¢ < p. That is,
centring-then-spherings defined by (1.1) cvan remove the ellipsoidal struclure in
Xy. Subtracting p,17 from X, is called centring. Transforming X,, — 1,17 by
premultiplication by £, is called sphering. We call B,, a sphering matrix. When
P = 1, sphering is reduced to the commonly used standardization for data, and B,
Is uniquely determined by X, up to factors 1. When p > 1, B, is not uniquely
determined by X, and the requirement in (1.1). That is, there arc a lot of sphering
methods. Which 1s better? T'he invariance/equivariance of sphering, consistency
and asymptotic normality of the corresponding sphering matrix are important
criteria, proposed by Ti and Zhang (1993), for choosing B,,. In literature, there
arc three commonly used decomposition methods to determine sphering matrices:
lower triangular decomposition, square root, decomposition {SRD} and one adopted
by J. Friedman (1987). Li and Zhang (1993) gave the invariance/equivariance
properties both for a gencral § and for three commonly used spherings. They
also proved that, except for Friedman’s sphering matrix, both the lower triangular
decomposition and SRD have the asymptotic normality. Howover, no practieal
way was given to justify the sufficient condition for the agymptotic normality of
SRD in that paper. This is the main topic here.

The paper is arranged as [ollows. The practical way to verify the sufficiont
condition for the asymptotic normality of SRD is established in Section 2. As
examples, the commonly used estimates of dispersion matrix are shown to satisfy
this sufficiens condition. ‘The casc when the population dispersion maluix varies s
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also treated in Section 3. In Section 4, we first prove, for the elliptically distributed
population, that the distribution of the maximum of cach PP-after-sphering index
is free from the underlying population location and dispersion. As a result, a proof
for the asymptotics of Iriedman’s PP>-after-sphering index is obtained. In view of
this result, the P-value associated with this kind of index can be calculated by
Sun’s tail probability approximation formula (see Sun (1989)) or the bootstrap
method (see Zhang (1993a)). 'The last section is devoted to the proofs of the
theorems and propositions which appear in the previcus sections.

The following notations are used throughout this paper. Let DIAG(A4,, . .,
Ay and (A;)1<ij<r denote a diagonal block matrix and a partitioned matrix,
respectively, i.e.,

A
DIAG({A,,. .. A) = ,
A,
Ay A o AL
(Aijiciger = | P :
A A - A

Two kinds of Vec-functions Vec() and Vecs(:) are defined by

VOC(T') — (tlly R :tpl.; tl?: s :fpz; BRI flpu - ;tpy)T:
\/VGECS(T) = (tl'lﬁ‘..,tplgfgg:.. ,Tpg ,Tpp)"-
for any p % p symmetric matrix 1" — (f;;). Denote by diag(h,... b} a § X 5

Cd’7

. . . - - . . . . oty
diagonal matrix. “—57" stands for convergence in distribution. =" mecans that
bhoth sides have the same distribution.

2. Sufficient conditions for asymptotic normality of SRD

In the following, let ¢;, 1 <14 < r be positive integers such that p = 37, g,
Set so =0, sp = Ef:i gin 1 <k <<y

2.1 Case of the fived population dispersion matriz

T this subscelion, we assume Chal the population dispersion matrix 27 has a
spectral decomposition
(21) S =ADA", D =DIAG(M Iy, NIy}, AL A2 0,

and the estimator X, of 3 based on X, has a spectral decomposition

(2.2) Yo, = A)Dn)AT(n),  Din) = diag(d{n, 1},....d{n,p))
d‘(n: i) Zoe 2 d(nrp) = U:
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where A aud A(n) are p x p orthogonal matrices. Define g* = max{l < ¢ <p:
d{n,q) > 0}, where, for convenience, let max@ = (. Then, for / # 0, %L and !
are, respectively, defined hy

5L = Aln)diag(d(n, 1)), ... d(n,¢")}0,. .., DM A(n)";
Sh= ADTAGOM T, AL L YAT, when A, >0,

17y

S = ADIAGA I, ... N 1, ,0)AT,  when )\, = 0.

1Y 1

In the above, £-1/2 and &, 172 can be used to sphere the population and
the data respectively, Obviously. for every [ £ 0, X! can be used as a parametric
description of the dispersion instead of 3. For example, like the standard deviation
of a random variable, the standard dispersion matrix £'/? may be more useful than
¥ in analyzing the signal-noise ratio of multivariate observations. Currently, for
the genecral I # 0, the practical applications of &7 are not found. However, the
asymptotic result for the general case may be helpful to the state analysis of a
random linear system where the polynomial matrix function plays a fundamental
role.

Li and Zhang {1993) gave a theorem about the weak couvergence of the esti-
mator of ', In that theorem, they assumed:

(C21}) X is positive definite.

(C22) ¢, — +4oc and there exists a p X p symmetric random matrix 7 =
(Uish<i < such that ¢, (¥, — %) 4, V= AUA", where U is q; % q;, 1 <, 5 < v

(C23) Uk has distinet eigenvalues, 1 < k < p.

The problem how to verify (C23) was left open in that paper. In practice,
some cigenvalies of 31 (or X,), comparing with the others, arc extremely small.,
We usually modify T {or ¥,,) through replacing these eigenvalues by zeros. We
refer this to the ill-conditioned case. It is obvious that {C21) may not be true
in the ill-conditioned case. In the following, a practical way to justily (C23) is
provided and the condition {C21) is slightly weakened by {C21°). o begin with,
we let 7y be the positive integer such that s,, = rank(%). Denote

(C21") Plrank{3}} < s,,) — 1.
(C23') Vecs(Ugy) has a Lebesgue density, 1< k < .

THEOREM 2.1, Let W be an s x s symmelric random matriz. Suppose
Vees(W) has a Lebesque density function. Then the eigenvalues of W oare dis-
tinct almaest surely.

Theorem 2.1 shows that we can verify -(023) by checking (C237).

Remark 2.1, (i) Suppose ¥ = (y1,...,y,)” has s-dimensional normal dis-
tribution with covariance Cov. Then Y has a Lebesgue density iff Cov is positive
definite.

(ii) Let W be p x p symmetric random matrix and Vecs(W) have a Lebesgue
density. Then, for any principal submatrix, say W*, of W, Vecs(W*) has a
Lebesgue density, too.
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(iii) Agsume that ¥ has s-dimensional elliptically contoured distribution with
dispersion matrix Cov. Then Y has a Lebesgue density iff Cov is positive definite
and [|[¥7 Cov™' Y| has a Lebesguc density.

Remark 2.1 shows that, for a symmetric random matrix U with a normal (ot
some elliptically contoured) distribution, justifying (C23") is reduced to showing
the positive definiteness of the associated covariance {or dispersion matrix),

COROLLARY OF THEOREM 2.1. For [ £ 0 and under conditions (C217),
(C22) and (C23'), cu(2L, ~ T VO = AUW AT here UO = U, e,

i
U = I Wy forio= 1,0 g, US = Oy fori =mo+ 1, r and UD =

1

qi';_'i; Usj. Especially, e, (S0 /% — 2712y 4 y(-1/2)

Remark 2.2, 'We conjecture that, when ¥ is posilive definite, the weak con-
vergence of ¢, (X, — ) implies that of ¢, {3, — 3}, I # 0. The next proposition
supports this conjecture in part.

PROPOSITION 2.1. Assume that ¥ = Aolp, Ao > 0, ,, is an estimator of ©.
I ea(Sn =) 5V, then, forl € {tm/k  k.m = 1.2... .}, en (S — 5y 4Lty

The propositions below are also helpful for justifying condition (C23'). 1o
describe them, we introduce the following notations.

Let A ® B be the Kronecker product of matrices 4 and B, and E(i,j) a
p X p matrix with a one in (¢, ) position and zeros elsewhere. Denote fippy =
b Z?_l FE(i,3) & E(j,4). Snppose that A, B and € are, respectively, & ¢,

t X u, u X v matrices, and that D and FE arc p x p matrices. The following three
equalities (cf. Fang and Zhang (1993)) will be used in this paper without reference.

Vee(ABC) = (C7 & Ay Vec(B), I, Vec(D} = Vee(D7),
I(p’m(]) & E) = (E @ D)I(p!p).

Let Z, W be two pxp random symmetric matrices with finite sccond moments.
Suppose there exist constants ¢; and ¢y with ¢, > 0 and ¢ > —2¢) /p such that
the covariance

(2.3) Cov(Vee(Z)) = é1(lyz + Ty )} + o Voo L) (Voo L)),
(2.4) Cov(Vec(W)) = d1 (L2 + L1 (5 ® ) + ¢y Vee(T)(Vec(£))7,

where ¢1 and ¢2 are independent of 3. Clearly, ranl{Cov(Voe(Z))} = p(p + 1)/2
provided ¢, > 0 and pdq 4+ 26y > Q.

Tyler (1982) shows that the covariance of a rotationable type distribution
with respect to ¥ with finite second moments is of the form (2.4).

Prorosirion 2.2. Assume Vec(W) has normal distribution with zero mean
and covariance Cov{Vec(W)) given in (2.4) where ¢ > 0 and poo+2¢y > 0. Then



228 JIAN ZHANG

there exist  another normal vandom  symmetric  matric Uy of  order
rank(E)(rank(X) + 1)/2, orthogonal matriz @ and diagonal matriz D such that

Y = QDQ7 and W'EQDIAG(UH,{])QT, where D = DIAG({D,,0), rank(D;) =
rank{X). Furthermore, Vees(Uy)) has a Lebesgue density.

ProprosiTioN 2.3, Let W and Wy be two p % p random symmetric matri-
o i A .
ces satisfying W= QW1Q7, where () is a nonrandom orthogonoel matriz. Then
Vees(W) has a Lebesque density iff Vees(W)) has a Lebesgue density.

Remark 2.3, I Y is positive definite and Vecs(V") (V' defined in (€C22)) has
a Lebesgue density, then, using Proposition 2.3 and Remark 2.1(ii), we can verify
{C23) in many cases.

2.2 Eramples
The examples below illustrate the applications of Theorem 2.1 and the propo-
sitions just introduced.

Ezxample 1. Sample covariance. Let z;, 1 < 1+ < n, be an i.i.d. random
sample from an elliptically contoured distribution with location ., dispersion ¥
and finite fourth moments. Suppose Cov(zy) = £, Let

T

l T 1 B -
= Z} Ty, Sp = . Z(:r, —Z)(x; - T).

=1

Case 1. X is positive definite, z: has a Lebesgue density
(2.5) Fly) = det(T)" o{(y ~ w8y — )}

Murihead and Waternaux (cf. Tyler (1982)) show /n(S, — X} 4 N, where
N is normal with zero mean and a covariance given by {2.4). In addition, it is

oy

directly shown that ¢1 = 1+k&, ¢o = k and 1+« = (p/(p+ 1)) ER*/(ER*)? where

{2.6) R? has donsity .ﬂp/‘z Y
I'(p/2)

Since R? is nondegenerate, we have ER* > (ER%)? > 0. This implies ¢ > 0 and
pda + 2¢1 > 0. By Propositions 2.2, 2.3 and the corollary of Theorem 2.1, we get
the desired limit distribution of /(S — 3 for I #£ 0.

P2 lgly).

Case 2. rank(¥) =p; < p, [2]7XF 2 || = R? has a Lebesgue density, where
3% is the Moore Penrose inverse.

In this setting, there exist an orthogonal matrix @ and a nonsingular diagonal
matrix such that ¥ = QDIAG(D,,0)Q7. Let vy = (y],,¥3,)" = Q7 (z1 — ), ynr
is a vector of order rank(X). I'rom Cov(y) — Q7EQ — DIAG(/},0), it [ollows
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that ¥, = {(y7,,0)", R* = HyleIl/zynH and y;; has an elliptically contoured
distribution. It follows from Remark 2.1(iii) that y;; has a Lebesgue density
Flt) = det(Dy) Y2447 D} for some function g{-). Note that

Ve {1 S - 9w~ §)° - DIAG(D,, o)} 4 DIAG(U11,0).

Ci=1

Fromm Case 1, we deduce that Vees{U71) has a Lebesgue density. Thus, applying
the corollary of Theorem: 2.1, we derive the limit distiibusion of /r(5) - B for
14 0.

In the rest of this subsection, we let X, = (z1,...,2,) be an i.id. random

sample from an clliptically contoured distribution with the density given in (2.5).

Example 2. Marimum likelihood estimate. Suppose g in {2.5) has the firs
order derivative. Set A{t) = tg'(£)/g(¢}). Let £2* be a random vector defined as in
(2.6). Suppose Eh?(R?) < +oo. The maximum likelihood estimates {p,, %,) for
the location and scatter (p, £) are the solutions to the equations

SPoqutd(@ — pa) =0, B ut)(z — pn )z — pa)” = 02,

where {; = (; — ,un)”"z_;! (i = pim) and ut) — ~2¢'(£)/g(#). Tyler (1982} shows

d . . . )
that /n{%, ~ )5 N, where N is normal with covariance given by (2.4) and

plp + 2) . —2¢1.(1 — ¢1)
N = ey 2T o A
AE{h*(R?)} 24 p(l-é1)
IL is easy to see FO2(RH?) > 0 which implies ¢a > —2¢ /p. Invoking Droposi-
tion 2.2, Proposition 2.3 and the corollary of Theorem 2.1, the limit distribution
of vn(24 —- %Y follows for | # 0.

Erample 3. Robust estimates. Take Maronna’s M-estimates as an example.
Similar results hold also for Huber’s M-estimates of location and dispersion matrix
{cf. Tyler (1982}), Tyler's distribution free M-estimator (Tyler (1987)), as well as
S-estimator (Davies (1987)). Maronna’s M-estimates of location and dispersion
are the solutions of the equations

T .
nTY gt — ) =0, nT Y () - gz — )T = By,
=1

el

where 2 = {z; — pn) 75!

(1976). 2, — Vi, a.8. with

{(x; — pn). Under some conditions defined in Maronna

Vo= E{wal(z — 0Vy ' (e - w7} =0 'S

Here o is the solution to the equation Ei(oR?) = p, R* 18 defined as in (2.6).
Maronna (1976} and Tyler (1982) show

Vn(E, — Vo) 2 N(0,Cov) = N,
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where Cov = Cov{Vee(V)} is of the form {3.4) with ¥ replaced by Vp, and
b = E{ya(cR:)} (p(p +2)), 62 = E{o R*{aR)}/p.
Oy ={p+2)°6,/(262 + p)?,
2 =06,[(61— 1) = 2(62 — Vilp + (p+ 4)62)/ (262 + p)?).
Since yo{eli?) is nondegenwrate, it follows from Schwarz's inequality that
Eg3(oR?) > (B{a(cR)}? = p?,

which implies (p + 2)&; > p. Note that ¥ > 0 gives &, = EoR*y,(cR?)/p > 0.
Hence (26, 4+ p)° > 0. Consequently,

(pp2 +201) (262 | p)?85 = ((p 1+ 2)6, — p)(262 + p)? = 0,

Le., pgy + 2¢1 > 0. Appealing to Propositions 2.2 and 2.3, and the corollary of
Theorem 2.1, we get the limit distribution of /n(X!, — V) for [ # 0.

2.3 Case of the varying population dispersion matriz

So far in this section we have been concerned only with the fixed popuiation
dispersion matrix. However, in some settings, the population dispersion matrix is
allowed to vary. For example, in order to study the local power (or bootstrapping
approximation) of a statistical test which is based on a sphered data set, we need
the corresponding asymptotic properties of sphering matrices when the underlying
population dispersion matrix varies. These cases are treated in this subsection.

As before, X, = (x1, ..., >,) denotes a random sample from the population
x with location v, and dispersion matrix Q,. Let ¥, = ﬁ(Xn) be an estimator
based on Xy,. The p ordered eigenvalues of 2, and D(n) are defined in (2.2). Let
0, = (,A,G7 be a spoctral decomposition of ., where O, is orthogonal and
A, = DIAG({A(n, 1), ..., An, 7)) with A(n, k) = diag(6(n, sp_1+1),...,68(n, 55)),
I <k < r. Assume that 0, — ¥ and ¥ is positive definite. Without loss of
generality, it is assumed that ¥ = DIAG(A, £, oy Ardy ) o this subsection. Put

S

_ 1 Fk _

bp(n) = o Z d(nyi),  Aln k) = cp(Aln k)Y = (n)l,), 1<k <r
Ci=sp o1

and
A(n} = DIAG(A(n, 1),..., A(n,)).

As a consequence of Q,, — X §i(n) — M, 1 < k < 7.

THEOREM 2.2. Assume that (1) A(n} — A = diag(r,...,r,) = DIAG{A,,

o d .. .
o AG), G Iy (1) e — +00, 6,(8 — Q) S U = (Use)i <o p<r and Vees{U)
with a Lebesgue density; (iii) Q,, — 31 and 3 is positive definite. Then, forl 70,

Cn(xfm - Qi}) 4 U = (U:Ei))lésiﬂﬂ

will ; )

AL — A
& ~U e, s # L.

Ab. - )\t Unt, o] %

Ul =, 1<s<rn U9
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3. Applications to PP

As stated in Section 1, centring-then-sphering is a uscful pretreatment in
data analysis, especially in exploratory projection pursuit. Let (-} be a n-variate
function for measuring interestingness of a projection. Let S be a centring-then-
sphering method based on an i.i.d. sample X,, = («,,...,2,). Then the PP-after-
sphering index is of the form Q(a” S(X,)), where a is a direction. Let

(3.1) Qun{Xn, 8) = ‘sup Q{a” 5(X,)).

flaf=1

O (X, S) can be used to develop a significant test for the departure from “un-
interesting” model in the PP setling (see Sun (1989)). Usiuy Friediman’s spheriog
and Legendre’s polynornials, Friedman (1987) defined a kind of PP-after-sphering
indices which are named FSPs by us. To get the P-values of the maxima of PSPs,
Sun {198Y) obtained the limit distributions for these maxima when the population
is V{u, ¥). In her proof, she required B,, = B-+0,(1//n) (B, is a sphering matrix
and sec Sun {1989}, p. 82) which, however as shown in Li and Zhang (1993), does
not hold in general when ¥ has an cigenvalue of multipiity bigger than one. In this
section, by virtue of the affine invariance of PP index and Theorem 2.6 in Li and
Zhang {1993), we prove Sun’s result without the condition B, = B+ 0,(1//n)
under that the population has an elliptically contoured distribution.
Let {L;(:) 1 < j < J} be the Legendre polynomials on [—1,1] defined as

vy =1, L{w) =v,
Liw)y =[(2f + Lol (v) = (G — D2 ()]/d, J=z2
It is known o
v 0, g # i
/ LiL(Ddt = {2
- 2+ 1’

olherwise,

Let z;, 1 <4 < n are L.id. p-variate observations from an elliptically distributed
random vector z = EC(p, 2), where T is positive definite and  has zero proba-
bility at zcro. It follows from Fang and Zhang ({1993}, p. 92) that there exists a
spherically distributed random vector y with a common marginal density ¥(t) (the
correspending distribution function W({t))} such that z = p + Ay. Let p, = f(X,),
3, = 3(X,) > 0 be estimators of p and ¥ based on X, as before. In this subsec-
tion we assume that X, and ¥ arc positive definite. Let 27! = BT B, v-lopp
be the decompositions of 1 and X7, respectively, where B,, and B are p x p
maftrices. Set

Vn - \/ﬁ(B'n - B)\ Nn = \/f;{(_u'n s .u')

For convenience, write

W) EBau - ), 2BWEB(u - ), z(u)Eu—p,

n

gloyu) =20 (a"u} ~ 1, E_J,B” (o) = % le(g(a, 28 (2))).
i=1
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‘I'he sample version and abstract version of Friedman type PP-after-sphering index
are, respectively, defined as

J
ff“(a) -1 (25 + 1)(5_3‘8" (a})?  {(the sample version),
2n

i=1

J
I8(a) = %Z(Qj + 1)%(Eli{(gla, 25 (x))))®  (the abstract version).
=1

It is concluded from Theorem 2.3 in Li and Zhang {1993} that:

LEMMA 3.1, For X, fized, Q3:( X5, ) defined in (3.1) is a constant func-
tronal in §. Specifically, for Friedman’s PP-after-sphering inder, we have that,
Jor any p x p matrices A, and B,, with BB, = ATA, =¥, SUD | 41 Iﬁ’“(a) =
SUP|a =1 fj‘” {e¥). Similarly, for any p x p matrices A and B with B'B = ATA =
£k SUD|q =1 I8{a) = SUD | o[ =1 IH{a).

THEOREM 3.1.  For the elliptically distributed population with nonsingular
dispersion matriz, the distribution of Qa(X,,, S) 15 free from the population loca-
Liorny wnd dispersio.

The next theorem is a generalization of Sun’s result (cf. Sun (1989), pp. 76-
#9). Note first that F,, and F below denote the empirical distribution based on
Xy and the distribution of z, respectively. The following assumptions are used in
this theorem.

(C31) Lhere exists matrix-valued functional M(u) = {(mg;{¢))pxp, defined on
R?, such that

V(e = X} = V(P — P)M (-} + 0p()E(Vn{Pr — PYmii(-))pup + 05(1)

which converges weakly. || Vec(M (u))| has a finite second moment.
For instance, if ¥,, is the sample covariance matrix based on X, then M(u) =

(uw— p)(u — )7,
(C32} There exists BP-valued functional n{u) = {(n;(z)},x; defined on R”, such
that

\/ﬁnn - \/R(Pn - P)n() + Op(l)i(\/ﬁ(Pn - P)ni(nnxl + Op(1)$

which converges weakly. [[n{u)| has a finite sccond moment.
(C33) ¥(¢) is bounded and continuous, Ejz| < +oc.
Set .

B (@) = 2Bl (glev. 22 (2)))h (o 28 (2)),
B (@) = 2B {g(e, 2% (2)))9p(a7 2 (2))2B(x), 1<j<J

Obvivusly, (C33) implies that 55, (o) and 3, () are well defined and finite.
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LEMMA 3.2. FLet

0 7 15 even,
Bj, = 2/[&(2@(@ — 1)1_[)2@)0{53 otherwise,
0, j s odd,
Bia = 9 ,'f,gf, 20} wl{ttdtey,  otherwise.
N } ‘

Then B, {c) = B;, and 3;,{a) = Bj,00
Write
1, o L
I gl — —(a"M{)o" = 1)H,,, when j is even,
fi(c 3 2
5

Li(gle, ()} — a"n() 55, otherwise,
and
F={fila, )1 <i< ol

THEOREM 3.2. Let BI B, = 5,1 and B™B = Z7° be decompositions of !
and 371, respectively. Then, under (C31), (C32) and (C33),

]
3.2 n sup 17 (« L=t BUp —'\’9 = 13T (e
J g

el =1 2 pol=1

where W ois a P bridge indexed by F (556 Pollard (19%4)1 p. 149 for the definition
of P-bridge} h;(0) = W(f{e, ), ¥ <3 < J; and G s free from both g and .

4. Proofs

The proof of Theorem 2.1 is based on the following lemma due to Okamoto
(1973).

Loumvva 4.1 If f(f1,. ., tm) is a polynomicl in real variables £y,... tm,
which is not identically zero, then the subset Ny = {(Bry oo tn) | flf1, - E) —
0} of the Euclidean m-space B™ has Lebesgue measure zero.

I'rooF OF THROREM 2.1. The idea behind our proof is similar to that used
in Okamoto {1973). Observe that the cigenvalues, denoted by é1,...,8,, of W are
the roots of the equation

g(N) = det(W — ML) =

and g(\) can be written ag

&

g(A) = Zai(Vecs(W}))\i =by(A —81)---(A—4),

=0
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where a;(Vees(W7)) is a polynomials in the elements of Vecs(W), by # 0. Let
DW) =[], ;{8: = 8;)*. By a well-known theorem in algebra (cf. Va der Waerden
(1949), p. 82}, D(W} can be written as a polynomial in the elements of Vecs(W),
and, in addition, the cigenvalues of W are distinct iff D(W) £ 0. So to complete
the proof, we only nced to prove P.{(D(W} # 0) = 1. According to Lemma
4.1, it suffices to prove that the function D{T} in the clements of Vees(T) is not
identically zero. This is clear because we can choose T = diag(t11, . . ., t,,) with
tiy > - > tpp, then D(T) # 0.

PROOF OF REMARK 2.1. (i) and (ii) are obvious, and (iii} imamediately fol-
lows from Corollary 1 in Fang and Zhang ({1993), p. 84).

LEMMA 4.2, Assume that (i) D is given in {2.1); (il) W = (W;;)1<ij<r i5 a
% p (non-random) symmetric matriz, Wiy is g X q; mairiz, and for 1 <k < rg,
Wik has distinet eigenvalues k(s +1) > .. > h{sg); (iii} en — | 00, nonrendom
5(n) is a p X p nonnegative definite matriz, with rank(S(n)) < rank(D) and
e (S(n) — D) - W. Then, for anyl #0,

ea(Sn)t — DY > WO = (Wi e,

j

where W = INT Wi for o= 1 rg, W = Uy g fori=ro+1,....r and
Al—

! .y .,
Wi = S Wy, i 4

A~

Proor oF LEMMA 4.2, A slight modification of the proof of Lemma 2.5 in
Li and Zhang (1993) gives the desired assertion.

PROOF OF THE COROLLARY OF THEOREM 2.1. It is a direct consequence of
Theorem 2.1 and Lemma 4.2 and Almost Sure Representation Theorem (Pollard
(1984), p. 71).

Proor or ProprosITION 2.1. When k = m = 1, we have
en(E07 = A5 ) = —en Ay (B — Mol

which converges weakly to —)\U_ZV by the assumption.
When max{m, £} > 2, taking [ = —1/k as an example, we have
en(EF = AR L)
—e g (0 = Nol)
(EEUE ek E Ik iy 17k
= g (S ALk IAGETD AR 1))
kg DRy a1y,

Il

The following two lemmas are required in the proofs of Propositions 2.2 and
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Lemva 430 In (24), if ¢y > 0, pos + 26, > 0, then
rank{Cov(Vec(W)}} = rank(®)(rank(®} + 1)/2 = rank{Cov{Vecs(W))}.

Proor. Clearly, Cov{Vees(W)} can be obtained by deleting the [(j - 1)p-+i]-
th, 1 < ¢ < j = prows and columns of Cov{Vec(W)}}, which are the copies
of (i — )p+ jlth, 1 < i < j < p, respectively.  So rank{Cov(Vec(W))} —
rank{Cov(Vecs(W))}. Let ¥ = QDIAG(D{,0)Q" (= {QDIAG(D,0)} -
{DIAG(D), 0)0)7 }) be the spectral decomposition of 2. Lhen,

Cov{Vec(W)} = (Q & Q" ){DIAG(Dy, 0) & DIAG{D4, 0))
X g1 (T2 + T py) + @2 Vee( I }{(Vec{7,))7]
x (DTAG(D,, 0} & DIAG(D,,0)){(Q7 Q7).
So to show rank{Cov(Vee(W))} = rank{Z) (rank{Z) + 1)/2, we only need to show
it for & = DIAG(D?,0). To this end, we partition Z {defined in Subsection 2.3},
according to the order of Dy, asg

. 2, 2
7 ’
( Za, Ao )
and let

Y= DIAG(D,,0)Z DIAG{Dy,0) = DIAG(D, 2. D;.0}, EZ—=0.
Note that rank{Cov(Vecs(Z})} = rank{Cov(Vec(Z))} = p{p + 1}/2 results in
the positive definiteness of Cov(Vees(Z)). Thus Cov(Vees(Z),)) is also positive
definite. In particular,
rank{Cov(Vee{D, Z), D))} = rank{Cov(Vec{Z;, }}}
= rank (M) (rank (323 + 1) /2.
Combining this with Cov{Vec(W)) — Cov(Vec(Y)), we deduce
rank{Cov(Vec(W))} = rank{Cov(Vee{ D Z;, D))}
= rank(X)(rank(X) + 1)/2.
Levwva 4.4, For any p x p orthogonal maobric Q@ and p <y randorn sym-

metric V., there exists [p(p + 1)/2° x [plp + 1)/2] nonsinguler matriz G such that
Vees{QV Q") = G Vecs(V).

Proor. Let Q@ ={q,....q), V = (vij)pxp, ¢ 15 p-vector. Then
(QRQ = [Gl g, @O(]g.--‘,q,,(}@qp),
Vee(QVQT) = (Q© Q) Vee(V) = ) {a; © qijvyi
i

(4.1) \
- Z(%‘ g A g @ qylvg }_J(Qz‘ & q; Jvig

i i1

= (& Vees(V)
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with
Gi=(n®a.q &g+ @Rq, ¢ X )

Observe that GTCy = Iy iy, and, in the rows of Gy, the [(7 - 1}p+itthis a copy
of the [(i — 1)p+j]-th, 1 <i < j < p. Let G be the remainder of G after deleting
the [(j ~ D)p+él-th, 1 <i < j < p, rows. Then, rank(G) = rank(Gy) = p(p +1)/2,
and (4.1) yviclds Vees(QVQ7) = G Vees(V).

PROOEF oF PROPOSTITON 2.2, Let Z be p % p normal random matrix with
zero mean and covariance Cov{Vec(Z)) given by (2.3). Partition Z, according to

D, as
(G 32)
Set
e (E: 2:) — DZD = DIAG(D, Z., D1, 0).
Then

Cov{Vec(W)) = Cov(Vec(QUQT)) = (Q % Q7)) Cov(Vec(UNQ™ 2 Q7).
Henee, by Lemnma 4.3, we have W 2 QU7 and
rauk(Cov{Vees(Ur))) = rank(Cov{Vees(U)}) = rank(Z)(rank{¥} + 1)/2.

Consequently, Cov{Vecs(U7}1)} is positive definite. From Remark 2.1(1), it is shown
that Vecs{U)) has a Lebespue density.

Proor or ProposITION 2.3, Tt directly follows from Lemma 4.4.

Proor o TUEOREM 2.2, 'Fhe proof is analogous in character to that of
Theorem 2.5 in Ti and Zhang (1993) (or Theorem 1 in Anderson (1963)). Without
loss of generality, we assume that 0, = A, G, = [,. Tt is shown by Lemma 3.2
that the eigenvalues of Uy + Ay are distinet almost surely. Appealing to Almost,
Sure Representation Theorem (Pollard (1984), p. 71), to finish the proof, we anly
need to show the following lemma.

Lumaa 4.5, Assume that {1) A, Aln) and A are given as n Theorem 2.2;
(ii) W = (Wyhi<ijor 8 a p x p (nonrandom) symmetric matriz, Wi, is q; x q;
matriz, Y, qx = p, and for 1 <k <r, Wy + Ag has distinet eigenvalues, (iii)
¢n 0 | 0o, nonrandom Sy, is a pxp nonncgative definite matriz and o (S, —A,,) —

W. Then, for any ! # 0,
(5], — AL - Wi = ('V"’f;,-[))lsﬂifjsr-

Al . )
Y Wiy, i # 4.

where f-{"i(jf) == l,\é_IW’w, H",g) = u
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Proor orF LEMMA 4.5, S5ince the proof is similar to that of Lemma 2.5 in
Liand Zhang (1993), and, therefore, s omitted.

Proor or TueortM 3.1. Let X7 = L7L be the lower triangular decom-
position of £71. Since, under lower triangnlar transformation, the lower triangular
sphering is invariant (sec Li and Zhang (1993)), ie., if § is the lower triangular
sphering, then S{L{X, — p17)) = S(X,.). And it easily follows from the assump-
tion that the distribution L{X, — 17} is free from g and . Thus, in view of
Lemma 3.1, the desired assortion follows,

Proor or THEOREM 3.2, Inview of Theorem 3.1, without loss of generality,
we agsume that B, — 2;1/2 and B - % — I,. Thon the proof is splitted into the
fullowing three lemmas.

Lisva 4.6, Write W, ={W,{f}: [ ¢ Z}2{/n(P, P)f:fcF}. Then,
under (C31), (C32) and (C33), W, — W.

Ermma A7, Forl < j <.J, jo| = 1, let hy ()= (P P (e, ). Under
(31}, (C32) and (C33),

i
- 1 . .
(4.2) n osup {rla) = 5 sup E (25 + 1)(fn, (2))® + 0p(1).

ool =1

LivMa 4.8, Under conditions (C31), (C32) and {(C33), (3.2) holds.

I’roor or LEviMma 4.6. Note that f; {t), 1 < j <.J are cither synunetric o
asymmetric functions in / according to 7 being odd and even. This together with
B{z - ) following a p-variate spherical distribution shows that Bl (g, 25 (x))) =
0 and 55 {a) = #;,. To show J;, () — G0, we choose submatrix €1 such that
Q5L Q1) 15 & p X p orthogonal matrix. Let v = (u,,vl)" = Q7 2% {2), u; is real.
Then

By, (o) = 2B, (2W(t) — 1) (1),
A5, (a) = 2B (20 {uy) — )by J{aur + Qruz)
0, 18 odd,

2 f 2%(t) - )92 (Otdta,  otherwise.
The proof is finished.

Proor or LEmma 4.7, From the multivariate central limit theorem, it fol-
lows that, for cach finite subset {f1,..., fx} © F, {W,(fi): 1 <i <k} converges
weakly to a multivariate normal random vector. It is analogous to the proof of
Theorem 2.1 in Zhang (1993a) to show that the entropy condition in the equiconti-
nuity lemma (Pollard (1984), p. 150) holds for F. Invoke the central limit theorcm
of empirical processes (Pollard (1984), p. 137), we establish the desired assertion.
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The following statement is useful in proving Lemma 4.7.

LeMMA 4.9, For ||a|| = 1, p x p nonsingular matriz A, p-vector v and 1 <
§ < J, define
ailon Avvozg) = 002U (07 Aln, — v)) — Uip(o™ Alr, — ),
g?j (ars A-, v, r&) — glj(aa A1 U, 'Ii)(TL — ‘U)'

Let

] 1 ) 1> \
anl = Zglj(u:An;Mn:Iz): Rjﬂ,z = " ZQQj((XJAer‘n):‘U"‘:}t
i=1

n i=1
where Ay = I, 4+ 0p(1}, pin = pp+ 0,(1}. Then, for 1 <35 < .J,

{4.3) th”lp | Ko (er) — 31(a)| = 0,(1), ‘sup Kz} — 8ja{a)] = 0,(1).
al|=1 Jex]|=1

PROOF. Take the second equality in {4.3) as an example. First, we split K2

. (1 2
into two parts: Ixfﬂ) and K ,f},z), where

n

A _ 1 .
Ky = ;% (e, Ay i, 3) D <10]

T
(2 1
K = n D 9o An, pr 2 s 0]
i=1

Here, Irj denotes the indicator function of a set. Then, for every & > 0, by {C33)
and the strong large number law, there oxists a large £, such that

Egojlov, Ly p, 2 o) <00y — Bia ()] < €.

limsup sup |Ix£22)(a)f <, sup
jlexli=1 [lexl]=1

For this fixed #y, by the uniform continuity of gs; on any bounded and closed

region, and the strong large number law, we obtain

lim sup sup |K7(52)(a) — Bgay{a, Ly, g, ) ) <] < €.

ffexf[==1
Hence
lmsup sup [Kpa(a) — 8, (a)) < 3e.
llexl=1
The proof is completed,
Proor or LEMMA 4.7. Let G() = no V2XP L2V (a7 (2, — 63)) — 1)

with

=L, v 0B, L), 0<0<1, Op=p+0(,p), 0<§<1.
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By virtue of the mean value theorem, there exist
07 = I + 0" (Bn — L), (’Tﬁ = o+ 0" (pn — p)

such that
ag
="ty A2 Bl (@i B3)) ~ Dl B (o - B3)
i=1

AV — G5) = a"0ina).

G(1) — GO) =

Combining this with Lemma 4.9, we have

G(1) = G(0) + 207V Ely(g(er, z(a)) )il 2(x)) 2(x)
= 207 Bl (gler, 2{x)))0{a”2(2)) + 0,(1),
n{Pn — P)l(gle, 2())) + " Vi B, {a) — a"nny {a) + 0,(1),

where o0, (1} is uniform for {|e|| = 1. Invoke the proof of Proposition 2.1 we have
(1) = Vn(P — P)(f(e, ) + op(1).

Hence,

2 1
n sup frla) == sup Z(z; + DA, {@))? + 0,(1).
flall =1 2 al=1 527

Proor o L.kmMA 4.8, The assertion follows directly from Lemma 4.7 and
the continuous mapping theorem (Pollard {1984}, p. 70).
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